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Abstract

In this paper, we present how FlowVR enables the development of modular and high performance VR applications
running on a PC cluster. FlowVR is a middleware we specifically developed targeting distributed interactive
applications. The goal of the FlowVR design is to favor the application modularity in an attempt to alleviate
software engineering issues while taking advantage of this modularity to enable efficient executions on PC clusters.
FlowVR relies on an extended data flow model that enables to implement complex message handling functions like
collective communications, or bounding box based routing. After a short presentation of FlowVR, we describe a
representative application that takes benefit of FlowVR to reach a real time performance running on a PC Cluster.

1. Introduction

Developing VR applications that include numerous simula-
tions, animations and advanced user interactions is a chal-
lenging problem. We can distinguish two strong difficulties:

e Software engineering issues where multiple pieces of
codes (simulation codes, graphics codes, device drivers,
etc.), developed by different persons, during different pe-
riods of time, have to be integrated in the same framework
to properly work together.

e Hardware limitations bypassed by multiplying the units
available (CPUs, GPUs, cameras, video projectors, etc.),
but with the major drawback of introducing extra difficul-
ties, like task parallelization or multi devices calibration
(cameras or projectors).

Software engineering issues have been addressed in dif-
ferent ways. Scene graphs offer a specific answer to graphics
application requirements. They propose a hierarchical data
structure where the parameters of one node apply to all the
nodes of the sub-tree. Such hierarchy creates dependencies
between nodes that constrain the graph traversal order. These
dependencies make efficient scene graph distribution diffi-
cult on a parallel machine [MF98, RVR04]. Several scien-
tific visualization tools adopt a data-flow model [BDG*04].
An application corresponds to an oriented graph with tasks
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Figure 1: Several applications developed with FlowVR such
as a terrain rendering (a), a multi-camera 3D reconstruc-
tion (b), an object carving potter wheel (c) and a rigid body
simulator (d), can be combined in a single large VR Appli-
cation running on a cluster (e-f).
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at vertices and FIFO channels at edges. This graph clearly
structures data dependencies between tasks. It eases task dis-
tribution on different processing hosts [AUR93]. To manage
large distributed virtual worlds, networked virtual environ-
ments usually target only kinematic simulations of rigid ob-
jects [SZ00]. Each participant locally simulates the world
for its zone of interest. The difficulty is then to ensure co-
herent interactions without slowing down the simulation due
to strong synchronizations or a heavy network traffic. Ap-
proaches like dead-reckoning enable to extrapolate object
position to absorb part of the network latency.

Hardware limitations have been tackled first by de-
veloping graphics supercomputers integrating dedicated
hardware [MBDMO97]. Focus was on increasing the
rendering capabilities through different parallelization
schemes [MCEF94]. Today, such approaches are facing dif-
ficulties to keep pace, regarding price and performance,
with commodity component based platforms like graph-
ics PC clusters [SFLS00]. But aggregating commodity
components requires an extra effort on the software side.
Chromium [HHN™*02] proposes a highly optimized stream-
ing protocol, primarily aimed at transporting OpenGL prim-
itives on PC clusters to drive multi display environments.
To improve latency, virtual reality oriented libraries dupli-
cate the application on each rendering host. A synchronous
broadcast of all input events ensures copies stay coher-
ent [CNSD*92, BJH*01, SG03]. VR applications can also
take advantage of a cluster to distribute input devices or sim-
ulation tasks. For instance new complex devices, like multi-
camera systems [GWN*03, MP04], increase the number of
components to manage and the need for parallel process-
ing. Distributed code coupling have been experimented for
VR applications with tools like Covise [AUR93], Net Jug-
gler [AGMRO2] or Avango [Tra99].

All the mentioned algorithms and tools are useful in dif-
ferent application scenarios. Large scale applications often
requires a number of these technics but it is difficult to
choose the most efficient ones and combine them in a sin-
gle application. In this paper we present a software frame-
work for the development of large distributed VR applica-
tions. The goal is to favor the application modularity in an
attempt to alleviate software engineering issues while tak-
ing advantage of this modularity to enable efficient execu-
tions on PC clusters. We developed FlowVR [AGL*04], a
middleware dedicated to distributed interactive applications.
FlowVR reuses and extends the classical data-flow model.
An application is composed of modules exchanging data
through a FlowVR network. A module is usually an exist-
ing code that has been updated to call FlowVR functions. A
module runs in its own independent process or thread, thus
reducing the effort required to turn an existing code into a
module.

From the FlowVR point of view, modules are not aware
of the existence of other modules. A module only exchanges

data with the FlowVR daemon that runs on the same host.
The set of daemons running on a PC cluster are in charge
of implementing the FlowVR network that connects mod-
ules. The daemons take care of moving data between mod-
ules using the most efficient method. This approach enables
to develop a pool of modules that can next be combined in
different applications, without having to recompile the mod-
ules.

The FlowVR network defined between modules can im-
plement simple module-to-module connections as well as
complex message handling operations. For instance the net-
work can implement synchronizations, data filtering opera-
tions, data sampling, dead reckoning, frustum culling, col-
lective communications schemes like broadcasts, etc. This
fine control over data handling enables to take advantage
of both the specificity of the application and the underlying
cluster architecture to optimize the latency and refresh rates.

FlowVR comes with a complete tool suit to develop the
modules and the applications, to map an application on a
cluster, to launch it and control its execution. FlowVR also
comes with tools for trace capture and visualization, to ana-
lyze an execution.

We have used FlowVR to develop several large VR ap-
plications taking advantage of up to 54 processors, with a
display wall of 16 projectors and using multiple cameras as
input devices. We present in this paper one representative
application. We show the benefits of using FlowVR to favor
the application modularity, to provide a model expressive
enough to enable a large range of optimizations to reach a
high performance. We also identify some basic patterns that
have emerged from these developments and that proved well
adapted for VR applications.

In section 2 we present FlowVR. Network patterns are
presented in section 3. The applications and results are de-
tailed in sections , 4, 5 and 6 before to conclude.

2. The FlowVR Middleware
2.1. Overview

FlowVR' is an open source middleware, currently ported
on Linux and Mac OS X for the IA32, [A64, Opteron, and
Power-PC platforms. In this section we present it main fea-
tures. Refer to [AGL*04] for more details.

A FlowVR application is composed of two main parts, a
set of modules and a data-flow network ensuring data ex-
change between modules. To execute an application on a
cluster the user maps the modules on the different hosts
available. The FlowVR network is implemented by a dae-
mon running on each host. A module sends a message on

T http://flowvr.sf.net
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the Flow VR network by allocating a buffer in a shared mem-
ory segment managed by the local daemon. If the message
has to be forwarded to a module running on the same host,
the daemon only forwards a pointer on the message to the
destination module that can directly read the message. If the
message has to be forwarded to a module running on a dis-
tant host, the daemon sends it to the daemon of the distant
host. The target daemon retrieves the message, stores it in
its shared memory segment and provides a pointer on the
message to the receiving module. Using a shared memory
enables to reduce data copies for an improved performance.

Daemons can load custom classes (plugins) to extend
their functionalities. For instance, the current version loads
a TCP plugin to implement inter-host communications. Cus-
tom plugins can be developed to support other protocols for
high performance networks like Infiniband or Myrinet.

2.2. Messages

Each message sent on the FlowVR network is associated
with a list of stamps. Stamps are lightweight data that iden-
tify the message. Some stamps are automatically set by
FlowVR. The user can also define new stamps if required. A
stamp can be a simple ordering number, the id of the source
that generated the message or a more advanced data like a
3D bounding volume. To some extent, stamps enable to per-
form computations on messages without having to read the
message contents. A stamp can be routed separately from its
message if the destination does not need it. It enables to im-
prove performance by avoiding useless data transfers on the
network.

2.3. Modules

Computation tasks are encapsulated into modules. Each
module defines a list of input ports and output ports. Dur-
ing its execution a module endlessly iterates reading input
data from its input ports and writing new results on its out-
put ports. For that purpose it uses the following three main
methods:

e The wait defines the transition to a new iteration. It is a
blocking call that ensures each connected input port holds
anew message. Notice that this semantics requires that at
each iteration a module receives a new message on each of
its connected input ports. This constraint can be loosen by
using specific FlowVR network components, as we will
see in the following (section 2.5).

o The get function enables a module to retrieve the message
available on a port.

e The put function enables a module to write a message on
an output port. Only one new message can be written per
port and iteration. This is a non-blocking call, thus al-
lowing to execute computations and communications in
parallel.
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Figure 2: The FlowVR application development chain. From
modules (left) to the commands the controller forwards to
daemons (right).

Each module has two predefined ports called beginlt and
endlt. The input activation port beginlt is used to lock the
module to an external event. The output activation port en-
dlIt is used to signal other components that the module has
started a new iteration.

A module does not explicitly address any other FlowVR
component. Its only exchange channel with the outside
FlowVR world is through its ports. This ensures modules
can be reused in different applications without code modifi-
cation or recompilation.

Usually a module is build using an existing piece of code
that is modified to include the required FlowVR function
calls. It runs in its own process or thread as it would be-
fore becoming a module. A module can be programmed in
any language as long as the Flow VR library provides the re-
quired language binding. The current implementation only
provides a C++ binding. Other languages will be supported
in the future.

Each implemented module is associated with an XML file
that describes the module properties (Fig. 2). This file con-
tains the path to the executable, the list of ports of the module
and the command to launch it on a distant host. Templates
and scripts can be used to ensure the genericity of this de-
scription. When designing an application, A second XML
file is used to list the instances of modules involved in the
application. For each module this list sets the module name,
the host where it should be launched and the values of its
different parameters. The flowvr-module utility parses these
files to build (Fig. 2:

o the list of commands required to launch the modules,

e the list of all modules present in the application with their
name, their list of ports and the host name they will run on.
This list is the base for designing the Flow VR network.

Notice that FlowVR can handle commands that launch
several modules at once. This is useful to include a paral-
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lel code into a FlowVR application by having each process
acting as a module.

2.4. The FlowVR Network

The FlowVR network specifies how the ports of the mod-
ules are connected. The simplest primitive used to build a
FlowVR network is a connection. A connection is a FIFO
channel with one source and one destination.

To perform high performance and complex message han-
dling tasks we introduce a new network component called
filter. Like a module, a filter is a computation task that has
typed ports. But filters are deeply different from modules in
two different ways:

o A filter is not constrained to receive one and only one mes-
sage per input port and per iteration. A filter has access to
the full list of incoming messages. It has the freedom to
select, combine or discard the ones it wants. It can also
create new messages. For instance, a filter can discard in-
coming messages which 3D bounding box falls outside of
a given volume.

e A filter does not run in its own process. It is a plugin
loaded by FlowVR daemons. The goal is to favor the
performance by limiting the required number of context
switches.

As such, a filter is more difficult to program than a module
regarding message handling. Usually, a user only selects the
filters it needs amongst the ones that come with FlowVR.

Amongst filters, we call routing nodes the filters that sim-
ply forward all incoming messages on one or several outputs.
They are useful to set custom routing graphs.

We also distinguish another special class of filters, called
synchronizers. A synchronizer implements coupling policies
by centralizing data from other filters or modules to take a
decision that will then be executed by other filters. A syn-
chronizer differs from standard filters because all input and
output connections only carry the message stamps alone.

To design a Flow VR network, the user writes a Perl script
(Fig. 2). Using a procedural language enables a high level
and compact network description. Numerous patterns that
proved useful have been encapsulated into functions. If re-
quired, a user can complement the set of existing functions.
This script takes as input the list of modules of the applica-
tion and generates the list of FlowVR commands required
to construct the network (two steps process involving the
Sflowvr-network tool - Fig. 2).

Each FlowVR application is managed by one special
module called a controller. The controller first starts the ap-
plication’s modules using the launching command computed
by flowvr-module. Once modules are launched, they register
themselves to their local daemon which sends an acknowl-
edgment to the controller. Then, the controller forwards the
FlowVR network commands generated by the Perl script

([ beginlt)
(] beginlt) compute
compute (host)
(host1)
__out [ endlt i
- ST greedy/sync
in__| beginlt in beginlt | ;
display display |
(host2) (host2) 3
[ endit ( Tendit | |

(a) FIFO network. (b) Greedy network.

Figure 3: Two different FlowVR networks to connect the
compute and display modules. Full messages are carried
over plain line connections, while stamps only are sent over
dashed line connections.

to the daemons that execute these commands to configure
themselves (load plugins, set parameters, etc.). The execu-
tion of the application can then start.

2.5. Simple Example

Let us consider a simple example based on two modules
called compute and display. Each one has a single port called
in and out respectively. A first very simple application con-
sists in running each module on a different host (host/ and
host2) and having a FIFO connection that enables compute
to send each message it produces to display (Fig. 3(a)). The
Perl script required to design this network is very simple:

use FlowVR::XML ’:all’;

parselInput () ;

addConnection (’ compute’,’out’,’display’,’ in’);
printResult ();

The arguments to the addConnection method are the
name and port of the source and destination modules. As this
connection is a FIFO channel it forces the modules to run at
the same frequency. This synchronous coupling scheme ei-
ther reduces the framerate of the display module (if the com-
pute module is the bottleneck), or introduces latency due to
message bufferization.

To correct this behavior, VR applications often use a
greedy pattern where the consumer uses the most recent data
produced, all older data being discarded. This enables for
instance to retrieve the last data produced from a tracker
independently on the refresh rates of the producer and the
consumer. FlowVR enables to implement such pattern with-
out having to recompile the module. For that purpose we
use a classical pattern based on a filter and a synchronizer
(Fig. 3(b)). Each time the synchronizer greedy/sync receives
an endlt message from display, it selects in its incoming
buffer the newest stamp available and sends it to the filter
greedy/filter. This filter waits to receive the message associ-
ated with that stamp, and forwards it to the display module.
All older messages are discarded. This network is simply
built replacing the addConnection call in the Perl script by
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addGreedy (' compute’,’out’,’display’,’in’,
getHosts ("display’),getHosts ('display’),
"display’,’greedy’);

In addition to the source and destination, we need to spec-
ify the location of the synchronizer and the filter (second
line), as well as the module to get the endlt signals from and
the prefix to use to name the created components. In this ex-
ample we choose to map the filter and synchronizer on the
host2 of the display module. It favors system reactivity as re-
questing a new input value is only based on a local decision.
Other configurations can be used. For instance mapping the
filter and synchronizer on host! would save network band-
width by avoiding messages that will be discarded to be sent
over the network.

3. Network Patterns

In this section we present basic network patterns that proved
useful for most of the VR applications we developed. Perl
functions corresponding to these patterns are directly avail-
able.

3.1. Broadcast

Broadcasting a data is a classical collective communication
pattern. It is often used in VR to ensure data retrieved from a
driver are broadcasted to the multiple copies of the applica-
tion, each one driving a different projector. The data received
should be the same to ensure the coherency between the im-
ages computed by each copy.

We implemented a broadcast pattern based on a binary
tree of routing nodes, each routing node having one input
and two outputs. This approach has two advantages. First,
only the size of the tree and not the filter have to be changed
to adapt to the number of target modules. This is simply done
by adjusting the parameters of the Perl function that sets
such a tree. Second, the filters can be mapped on different
processors to parallelize the execution of the broadcast.

3.2. Coherent Greedy Broadcast

The greedy behavior implemented for a simple one-to-one
connection in section 2.5 can be generalized to the broad-
cast. But setting a greedy filter and synchronizer at the root
of the broadcast tree impair reactivity as the data has to be
broadcasted after being selected by the synchronizer, which
increases the latency. To avoid this, we use a filter located
at each leaf of the tree and a single synchronizer (Fig. 4).
The synchronizer waits for all target modules to request a
new data. It then sends the selection order to each filter that
locally selects the right message to forward.

3.3. Merge

Gathering several messages into one is useful especially
for computations distributed amongst several modules, each
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Figure 4: Greedy broadcast using a centralized synchro-
nizer to drive multiple filters.

module computing only one part of the result. Similarly to
the broadcast, we use an upside-down binary tree of merge
filters.

The merge filter has two input ports and one output. It
combines two incoming messages into a single one that is
forwarded on the output. The default merge filter simply ap-
pends the different results. A modified filter can be used for
more sophisticated combinations.

3.4. Stop/Start Control

Let us first consider a simple example where we want to al-
low an operator to activate or disactivate part of an applica-
tion while running. Each module could be modified to re-
trieve this control information and handle it. This may how-
ever be difficult when dealing with modules written by oth-
ers. We can take advantage in Flow VR of the fact that a mod-
ule begins an iteration only when it has received a message
on each of its connected input port. Blocking an input flow
implies stopping the computation of the module. We devel-
oped a controlling filter to implement this blocking mech-
anism. Such filter let flows pass if the value on its control
port is true. This filter simply discards any messages when
the value on its control port is false. This allows for mes-
sages not to accumulate and for restarting the program with
the most recent data. We usually associate such filters with
a module that displays GUI elements such as toggle buttons.
Clicking the button sends a signal to the corresponding filter.

3.5. Frequency Control

By default modules usually does not control their iteration
rate. However it can be useful for avoiding useless iterations
that consume processor time and network bandwidth if they
are not discarded before being send by a greedy filter. To en-
able controlling a module frequency without having to mod-
ify the code of the module itself we use a max frequency
synchronizer (Fig. 5). This synchronizer gets the frequency
value on one input port. Each time it receives a request for a
new iteration from the module, it may delay its answer (sent
on the beginlt port of the module) to enforce that the target
frequency is respected.
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v : ControlGUI
Deginit : (control)
compute Max Frequency speed—control
(hostl) Synchronizer
_out [ endlt A

Figure 5: Frequency control pattern using the MaxFre-
quency synchronizer.

4. Application Components: VR Modules

In this section, we report on the Flow VR use for developing
a large VR application. After briefly presenting the applica-
tion, we describe the different modules developed following
the Flow VR approach.

4.1. Application overview

To demonstrate how FlowVR helps in developing large VR
applications we chose our most representative application. It
consists in implementing several user interactions with visu-
alization on a display wall. It is made of three main parts:
3D input device, advanced interactions and distributed ren-
dering. Each part is relatively complex and computationally
demanding. Basically, it extends the markerless 3D model-
ing described in [ABF*04]. The input device retrieves 3D
user shape information through state-of-the-art vision tech-
nics, integrating cues from multiple cameras. This informa-
tion is then used for implementing user interactions. We fo-
cus on two advanced interactions: virtual carving and col-
lision with simulated rigid bodies. Finally visualization is
done on a 4 x 4 multi-projectors display wall. Note that we
do not immerse the user in the environment but instead dis-
play his 3D image in the virtual world.

4.2. Input/Acquisition Modules

Retrieving 3D information from the user is done through
vision-based methods using multiple cameras. It is a compu-
tationally intensive process that requires several processing
steps. We describe in this section how each step is imple-
mented as a module. 3D modeling algorithms not being in
the scope of this paper, we do not detail the module imple-
mentations. For more details, refer to [ABF*04].

Images are first acquired on each PC driving a camera by
the Acq module (Fig. 6(a)). It is implemented as a FlowVR
loop retrieving, at each iteration, a new image from the cam-
era, transforming it into a message then sending the mes-
sage on its image port. Color images will then need to be
processed to extract the silhouette, i.e. the image region cor-
responding to the user. This process is implemented in a BG-
Sub module (Fig. 6(b)). For each frame, it reads on its image
port a color image and applies a background subtraction al-
gorithm [HHD99] on it. It results in the silhouette, a black
and white image sent on its silhouette port. This module

image
Acq BGSub
C fmage siThouette | _contour
(a) (b)

Figure 6: (a) Acquisition module retrieving color images
from a camera. (b) Silhouette extraction module in charge
of computing the silhouette and its vectorized contour from
a color image.

then vectorizes the contour of the silhouette and sends the
resulting message on its contour port.

Note here we use two different modules, Acq and BGSub,
where we could have used only one. Separating those mod-
ules presents two main advantages. The first one concerns
reusability. The Acq module can be used in other applica-
tions not requiring silhouettes. Second, both modules can
be mapped on two different hosts if the machine in charge
of the camera acquisition is computationally limited. Re-
versely, the overhead of running two modules on the same
host rather than a single one doing all the work, is limited as
a FlowVR message exchange is a simple pointer exchange.

As 3D user shape will be used in different contexts — visu-
alization and interaction — we use two vision technics, each
computing a different information with specific interests.
The first one, well suited for visualization, consists in com-
puting an approximation of the user surface (mesh). We im-
plemented the distributed algorithm presented in [ABF*04]
into a parallelized module, Rec (Fig. 7(a)). It takes vector-
ized silhouettes as input and outputs partial meshes. An-
other method, better suited for interaction, consists in ex-
tracting volumetric information by discretizing space in vox-
els. The Voxel module (Fig. 7(b)) reads at each frame the
new silhouettes and computes the occupancy grid. As some
other modules require distance-to-shape information, we im-
plemented the Euclidean Distance Transform [ST94] in the
module EDT (Fig. 7(c)). It computes for each cell of the grid
the distance vector to the user surface.

(c0Jcl[c2[c3) (c0]cl[c2]c3) (sO[sI[s2]s3) ( voxels
Rec/0 Rec/1 Voxel EDT
mesh J mesh ) L voxels. ] di
(a) (b) (o)
Figure 7: (a) Reconstruction module implement-

ing [ABF*04]. This module is distributed on several
hosts, each one computing its part of the mesh from
the silhouette contour of each camera. (b) Volumetric
reconstruction using a voxel grid. (c¢) Euclidean Distance
Transform computing the distance grid from the voxel grid.
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voxels ) i distances (mesh] octree [objects)
Carving Rigid Render

octree ) L objects L
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Figure 8: (a) Carving module implementing a virtual pottery
interaction. Voxels are used to detect which portion of space
should be altered (carved or painted for example). (b) Rigid
body simulator handling collision with the user thanks to the
distance grid. (c) Visualization module rendering the virtual
environment containing the terrain and the different objects:
user mesh, pottery octree and rigid objects.

4.3. Interaction and Visualization Modules

Using the acquired 3D information on the user, we can im-
plement user interactions. To this aim we developed two in-
teractive modules.

The first one, Carving (Fig. 8(a)), consists in a virtual
pottery application where the user carves/paints a virtual ob-
ject (octree) by using its full body. The program retrieves for
each iteration the voxel occupancy grid and uses it to update
the octree according to the interaction mode (carving, adding
or painting matter). At each iteration, it results in an octree,
a color being attached to each cell.

The second module, Rigid (Fig. 8(b)), consists in a phys-
ically based rigid body simulator. We use a publicly avail-
able implementation of the algorithm from Guendelman et
al. [GBFO03]. The program handles a set of rigid objects
and simulates their dynamics. To port this application into a
FlowVR module, we build at each iteration a message con-
taining the new positions and shapes of the simulated ob-
jects in the virtual world. This message is sent on the objects
output port. Support for external objects is done by reading
their distance grid information and adding those objects in
the simulation.

Finally the virtual environment is displayed through a
Render module based on VRJuggler 2t (Fig. 8(c)). It con-
tains 3 input ports: mesh for displaying the user recon-
structed surface, octree for visualizing the virtual sculp-
ture and objects for visualizing the rigid objects. We added
FlowVR functions to retrieve input data inside the VR Jug-
gler application class methods. Note that this module will
be replicated on several hosts for visualization on a dis-
play wall. Internal VR Juggler communications to ensure the
swaplock is transparent to FlowVR.

5. Application Design

Having constructed our pool of modules, building the appli-
cation consists in defining the Flow VR network. We describe

¥ http://www.vrjuggler.org
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Figure 9: FlowVR network graph for FIFO coupling of the
mesh reconstruction with the distributed visualization.

how to couple modules in order to obtain a good trade-off
between performance and coherency for the application.

Let us start by coupling the mesh reconstruction with the
visualization in order to display the 3D user shape in the vir-
tual world. Figure 9 presents the graph when using simple
connections between modules with 4 cameras and 2 projec-
tors. Note that modules are instantiated several times (4 Acq,
4 BGSub and 2 Render). This FIFO coupling raises a fre-
quent issue: visualization is constrained to run at the recon-
struction speed, around 30 frames per second, as it waits for
a new model at each iteration. This leads to jitters especially
when the user moves the rendering point of view. To cope
with this issue, we replace the FIFO strategy by a coherent
greedy broadcast strategy for visualization input data.

Figure 10 presents the network graph for the full appli-
cation with the two interaction modules. It uses a greedy
broadcast pattern for each visualized data. The FIFO cou-
pling raises another common issue: the simulations (rigid in
this case) run at the same frequency as the input data (cam-
eras). Here again, using a greedy filtering between the input
devices and the simulation allows the simulation to run at
a higher pace. This leads to more precise and more stable
simulations, as they are allowed to use smaller timesteps.

6. Results

The full application was tested in our experimental setup, the
Grimage platform§. It consists in 6 cameras and 4 X 4 pro-
jectors display wall. Those devices are driven by 2 intercon-
nected clusters: 11 dual-Xeon at 2.6 GHz for the vision part
of the application and 16 dual-Opteron at 2 GHz for the vi-
sualization part. Note that FlowVR supports heterogeneous
hardware in the same application.

The complete graph of the application used during the

§ http://www.inrialpes.fr/grimage/
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Figure 10: FlowVR network graph for the full application
graph. Simulations and input device are coupled by FIFO
connections. Coherent broadcast greedy patterns (Fig. 4),
represented with double horizontal bars, are used on each
visualized data as well as on Rec and Rigid inputs.

tests is presented in figure 12. It corresponds to the network
graph shown in figure 10 with additional rendering mod-
ules for the 16 projectors as well as an additional Main-
Control GUI module to activate each parts of the applica-
tion (through connection and control filters shown in red).
Figure 11 shows the interactions in the running application.
Videos are also available¥.

Figure 13 presents the frequency of each part of the appli-
cation during one execution of about 3 minutes where sev-
eral people where entering and leaving the interaction space.
Using the previously presented asynchronous coupling pat-
terns, FlowVR was able to execute each component at max-
imum speed. While the reconstruction speed is fluctuating
between 20 and 30 updates per second depending on the
complexity of the reconstructed mesh, the interaction mod-
ules (Voxel, EDT, Rigid) are able to maintain a constant
frequency, allowing for smooth interactions. After a short
warm-up phase, The rendering part is able to refresh the dis-
play at least 75 times per second. When a part of the appli-
cation is not useful the control mechanism can disactivate
it, thus freeing shared resources such as network bandwidth
to other tasks. This is used during this experiment when the
collision-related modules where disabled for a short time.

Our one year experience with FlowVR has demonstrated
its great usability and its efficiency for developing large and
complex VR applications. On the Grimage platform the most

l http://www.inrialpes.fr/grimage/gallery.php

(b)

Figure 11: (a) Carving interaction experiment, with the sil-
houette images displayed on top. (b) Rigid body simulation
with collision with the user’s body.

complex applicationﬂT (not presented due to its complexity,
but reusing most of the modules and patterns presented in
this paper) was developed by 4 persons in about 6 months.
It integrates around 50 modules from different persons and
teams. Using this module pool we obtain more than 200 pro-
cesses. Using about 2000 lines of Perl code we have gen-
erated a graph with more than 5000 objects (connections,
filters and synchronizers). While large, the application is
still performant as it efficiently uses the available computa-
tional ressources. This experience clearly demonstrates the
efficiency of FlowVR for developing large, distributed VR
applications.

7. Conclusion

We presented FlowVR and its advanced use for developing
parallel VR applications. FlowVR is based on an extended

(© The Eurographics Association 2005.
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Figure 12: Complete graph of the application with 6 cameras and 16 projectors.
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Figure 13: Frequencies of each part of the application during one execution.

data flow model. Developing an application is a two step
process. Modules are first developed. Modularity is enforced
by letting modules run in their native process or thread
and keeping modules unaware of the surrounding network.
The FlowVR network that connects modules is developed
in a second step. Specific network components, like routing
nodes, filters and synchronizers, can be used to implement
complex message handling functions. In particular, filters
enable to implement behaviors that cannot be programmed
at the module level due to the voluntarily restricted module
programming interface.

(© The Eurographics Association 2005.

FlowVR was used to develop several applications using
multiple cameras and multiple projectors as I/O devices. In-
teractive executions were achieved by distributing the acqui-
sition, computation and rendering tasks on a cluster. These
developments showed that FlowVR leads to modular and
high performance applications. In particular, we were able
to manage the complexity of the applications beside the
fact that several people were involved in code development,
and that some modules were encapsulating complex codes
that we did not develop (VR Juggler, rigid body simulation,
etc.). The development environment proved adapted to han-
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dle large applications. In particular, it enables compact net-
work descriptions and to manage application launching even
if modules require very different launching commands.

Beside VR Juggler, we are also using a shader-
based parallel rendering framework developed on top of
FlowVR [ARO5].

As the FlowVR use progresses, we expect to build public
libraries of modules and filters. On going work focus on a
library dedicated to image handling.
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