FUNCTIONAL AND STRUCTURAL RECURSION IN SPREADSHEET
LANGUAGES

A Thesis

Submitted to the Graduate Faculty of the
University of New Orleans
in partial fulfillment of the
requirements for the degree of

Master of Science
in
The Department of Computer Science

by
Jérémie Allard
B.S., Université d Orléans, France, 2001

August 2002

ACKNOWLEDGMENT

During the preparation of thisthesis, | was honored to work with Dr. Markus
Montigel and Damon Hanchey. | thank them for their cooperation, help and comments.

| dso thank Dr. Golden G. Richard |11 and Dr. Eduardo Kortright for the time
they devoted to me and for accepting to be on my committee.

| would aso like to thank my friends here at UNO: Cyrille, Fred, Capu, Dennis,

Lisa, Paul, Minoo, and the others...

TABLE OF CONTENTS

ADSIFTBCE ...ttt b bbbttt e e bt e nenre s Vi
L1008 Tox 1 o o APPSO 1
Chapter 1 : WIZCEIl MOGEoceeeee ettt nne e 3
Chapter 2 : Program Architecture: Modularityccccooeieeiinenienie e 7
2.1 Definition Of @mMOAUIE.........cccoiiiiiie e e 7
P20 o L= SRS 8
2.3 INStaNCe (MOAUIE SEALE)ccveeeeeeeesieeie ettt nee e 10
Y AT SRS 12
2.5 MOAUIE REFEIENCES ..ottt bbb 12
Chapter 3: Callular MOGE!coouiiiieeee e 14
G I A O] 1 01070 01 o | OSSR 14
3.2 Formulas and Cell REFEIENCES.........coieeiiiierieee e 16
Chapter 4 FOIMUIBS.........coieieieieii ettt st te e sreesesneesseensesneeneen 17
A1 FOrMUIA SYNEBX ...ttt sttt st be e saeesbeetesneesneenee s 17
4.2 OPEIANA SYNEBX.....ecueeieeeieeeeeseeieseesseeseeseesteseeseesseseesseessesseessesssesseessessesssenssesseens 18
Chapter 5: Time and IEIatiON.........cccvieeieriesiee e 21
5.1 CyCliC REFEIENCE.ccueeee ettt ettt esre e e 21
5.2TIMEMOUE ...ttt b e s beeeesneen 22
5.3 LErationN CONCEPL......cceeireeieeiesieeiesee st eaesreesteeeese e s e eaessaesseeseeseesseeseeneesseensesnenns 24
5.4 Example: Exponential APProXimationccoceeeeereerieseerienseeseesessee e seesssesneens 29
(@ gF= 0] (= QST AN £ = VAR T o] o S 32
6.1 Array SPECITICALION......ccueiieiiieiiesieeie ettt sre e 32
6.2 ACCESSING AN GITAY ..eeuveeueeeeeeireeieeseesseeeeseesseesesseesseesesseessesseesseessesssessesssessesssenseans 33
6.3 EXample: REVEISING @N ATTAYc.coiiieerieiesieesie et ee s e sre e ssesneesree s 33
6.4 OPEratioNS ON @ITAYS ...ccveeveeeesreerieeeeseesseeeesseesseseesseesseaseesseessesseessesssssseesssssesssennes 34
6.5 IMPIEMENTALION ... et 34
Chapter 7 : Cell REFEIENCESceeceee et sre e enes 36

Chapter 8 : FUNCLIONAl RECUISIONcoviiiiiiiiiesiesieee et 40

8. L DEFINITION ...ttt bbbt 40
8.2 IMPIEMENEALTION ...ttt r e e 41
8.3 EXaMPIe L: FIDONACCHvecuveieieieceesieee ettt e sttt 41
8.4 EXample 2: QUICK SONT........oiiiieiierieeie ettt st ne e 43
Chapter 9 : StruCtural RECUISION.........cccueiierieeie e et eae et ae e e esae e snee s 45
9.1 Datatype SPECIHTICALION........eieerieeiieiesee ettt s re e sneens 45
0.2 DAlA Y PO USE.....eeieiieee it siee e sitee sttt sttt e st sbe e st e s san e s sbe e e ebe e e sbe e e snbeeennneeennes 46
Q.3 FINal XAMPIE..... e e 47
Chapter 10 : FOrmal PrOOfS.......cuocieie et 50
0 80 I oo = 4o TP 50
00220 o o] o= 1 o] o PSR 51
(000 070t (115 T o SRR 56
REFEIENCES......ceeeeee et b bbb e 58
LY = PP RRRRR 59

TABLE OF FIGURES

Figure 1. Graphical representation of some of Wizcell's cell types.ccevvecvevecncneenee. 14
Figure 2: Implementing memory with a self-reference.........cccccoveveeccevecceccececcecee, 21
Figure 3: Implementation of the approximation of the exponential function................... 29
Table 1: calculation StePS fOr EXP(L).....veveieereeeerierieseesieeeesee e e e e see e e seeeeesreeeeeneens 31
Figure 4: REVEISING @N @ITAYcceiuerieeieeeesieeeesseesseeeesseesseesesseessesseesseessesssessesssessessses 34
Figure 5: Implementation of the Fibonacci functionccccccvvveveececese e 42
Figure 6: Implementation of the recursive QuickSort algorithm.........c.cccceevvevvrierncnenee. 44
Figure 7: Definition of a Bank Operation data StruCture............cceceveeveeceeceeseseeseeeenes 46
Figure 8: Definition of a Binary Tree data StrUCUIE..........c.ocveveveeviecce e 46
Figure 9: Instantiation of abinary tree..........cccvevieiicie e 47
Figure 10: BuildTree sorted binary tree creation module............cccovveveveereeceneesnseene 48
Figure 11: Infix binary tree infix conversion to array module...........cccceeevveevveceeseeseeenn. 49
Figure 12: Main PrOgraM.......cecueeueieeseeeeeseesseeeesseesseeeesseesseessesseessesssssseessesssnssesssessssses 49

ABSTRACT

Without any programming knowledge, many users are able to use spreadsheet
languages, which combine a simple cellular based model with a visual interface.
However these languages suffer from several limitations: lack of loop or recursion
support, limited structure (two dimensional matrix), no debugging support. Thisthesis
presents several solutions to overcome these limitations. Wizcell, a spreadsheet language
currently in development, is used for the concrete implementation.

While the focus of the thesisin on functional and structural recursion, several
other crucial concepts are considered first. To support memory constructs, loops and
time-based computations, a time model is added, and circular references are introduced.
Array support adds the possibility of manipulating data sequences.

Recursion provides afacility to include amodule inside itself. Thisvery simple
concept leads to functional recursion, in which the module uses the recursively-
referenced module to solve a part of the problem. Recursion aso supports the definition
of structured recursive data structures (for example lists and trees).

Finally, the integration of these concepts enables Wizcell usersto visualy create
programsin asimple manner. To illustrate correctness proofs of programs the example

of aquick-sort program is presented.

Vi

INTRODUCTION

The family of programming languages is quite rich. However, only few major
types of languages are extensively used: mainly object-oriented languages (C++, JAVA),
older structured imperative languages (C, FORTRAN), and some declarative languages
on very speciaized field (artificial intelligence, mathematical programming).
Spreadsheet languages form an intriguing family. While they are not generally accepted
asagenera programming language, they are the most used paradigm if we refer to the
number of “programmers’. Thisisthe basis of the research project on Wizcell, a
programming language derived from spreadsheet |anguages, adding several important
concepts: modularity, time, iteration, recursion, and data structures.

In thisthesis | present my work on several additions to the Wizcell language:

. Time concept: support for real-time delays and iterative computations

. Functional recursion: support for recursive computations, using a concept of
an module containing itself

. Array support: possibility of using multidimensional arrays

. Structural recursion: addition of the concept of adatatype, which isan
abstract module only containing input cells, and reuse of the functional recursion

mechanism to support recursive data structures (structural recursion).

The presentation of these concepts will concentrate on their application to the
Wizcell language, but the methods devel oped are usable in other spreadsheet languages
aswell.

The first four chapters present the main architecture of the Wizcell language,
including the important modularity concept. Then in chapters 5 to 9 each of the above
concepts is discussed and compared to other possible solutions, some examples are
shown and the current implementation is presented. Chapter 10 presents a correctness

proof of a quick-sort Wizcell program.

CHAPTER 1: WIZCELL MODEL

Wizcell can be defined as a visual spreadsheet-based language. It uses the same
programming paradigm as spreadsheet |anguages (declarative, cell based), while the
program is designed and displayed visually.

The spreadsheet paradigm, as defined by Burnett [1], states that computations are
defined by cells and their formulas. This notion is based on Kay's value rule [2], which
expresses that acell'svalue is exclusively defined by aformula.

A Wizcell program is a set of named cells organized in a hierarchical structure.
The program defines the model of each cell, e.g. its name, attributes, and possibly its
formula. The most important types of cells are CellGroup, FormulaCell, and InputCell.
A CelGroupisacell containing other cells. A FormulaCell isacell whosevalueis
defined by aformula. An InputCell isacell whose value is externaly defined (e.g. it
doesn’t have any formula). An important attribute of a cell isthe OutputCell attribute. A
cell can be externaly accessed if and only if it isan OutputCell (e.g. it has the OutputCell
attribute). The set of InputCell and OutputCell define the external interface of the
program (see Chapter 2 for more details).

The value of acell can be of several kinds: integer, real, boolean, string, or array.

The value' stypeis not specified in the model of the cell.

The state of the program is the set of the states of each cell, which include the
current value and possibly other information (depending on the update algorithm used).
The Wizcell Virtual Machine computes the transitions between each state of the program,
observing the language rules (Kay’ s value rule and other rules presented later).
Depending on the update model used, these transitions can have different properties. In
thiswork, | will only consider amodel where all cells are updated simultaneously. This
means that the values of the cells at step | will be computed by using the values of the
cells at the previous step 1-1. Other possibilities include sequentially recal culating each
cell, but this requires defining an order of the cells, which doesn't fit well to the visual
representation (thereis no order asin atext-based source code). The formulas
themselves use a quite standard syntax, with the usual arithmetic, comparison, and
conditional operators (see Chapter 4 for more details). They must follow 2 important
properties:

. A formula has no side effect. This meansthat its only result is the computed

value.

. A formulaexclusively depends on the current value of the cells (e.g. given
the values of all the cells of the program, the formulawill always result in
the same value).

The main consequence is that it doesn’t matter how often the virtual machine uses
the formula, aslong asit is recomputed often enough to update the value of the cell when
itisneeded. Thisallow usto use a simple mathematical model where each cell is
updated at each step, and a more optimized practical model where the value of acell is

only recomputed when needed. As formulas have no side effect, the two models are

strictly equivalent in terms of correctness; but the second one is much more efficient in
terms of time complexity. To implement the second model we define 2 properties of
each cell:
. The set of referenced cells, containing al the cells used to compute the
value of the cell.
. The set of dependant cells, containing all the cells using the value of the
current cell (thisisthe inverse relation)
The optimization isto recalculate a cell’ s value if and only if one or several
referenced cells' value changed in the previous step.
Another consequence of the second property is that no history needs to be stored,
only the current value of each cell.
This leads to the following update a gorithm:
Qut datedCel | List = all cells
do
Next Qut dat edCel | Li st = enpty
/1l first calculate all the new val ues
for all cell Cin QutdatedCellList do
C. Next Val ue = Cal cVal ue(Q)
if (C. NextValue !'= C. Val ue)
Next Qut dat edCel | Li st += dependant (C)
end if
end for

/! then activate the new val ues

for all cell Cin QutdatedCellList do
C. Val ue = C. Next Val ue

end for

Qut dat edCel | Li st = Next Cut dat edCel | Li st

while (QutdatedCellList = enpty)

Thelast but not least important aspect of a Wizcell program is the visual
representation. Each cell can be graphically represented, allowing the user to see (and
construct) the model of program, and the current value of each cell (and change
InputCells’ value).

The extension of this model to support the concepts of modularity, time, iteration,

recursion, array and data structures will occupy the remaining chapters.

CHAPTER 2: PROGRAM ARCHITECTURE:
MODULARITY

In order to be useful, a programming language must be able to interact with other
languages, sometimes using atotally different paradigm (like the omnipresent procedural
languages). Thisis one of the reasons why Wizcell isvery modular. A program is
defined by a set of modules. Theses modules can use different programming languages.
Currently cellular-based and Java based modules are supported but severa other models
could be added (e.g. state-graph, CORBA). A module can contain other modules. In
fact, the program is a module only containing other modules. In order to achievethis, a
clean interface must be defined so that these modules can exchange information. This
chapter defines thisinterface and how it works for cellular-based modules.

Note that in the other chapters only the cellular-based module paradigm is
described. However, when aModule is used, itsinternal paradigm is unknown, and only
the programming interfaces defined here are available to interact with it.

2.1 Definition of amodule

A module is an opague entity, which communicates with other modules using a
set of input cells and output cells. The module structure and behavior are defined by its

model. During the execution of the program, a module can have several instances, each

of which has a specific state, and possibly a different view. Those components are
described in the following sections.

A moduleisused asfollow. First the model is created (loaded from afile), then it
isinitialized (the compilation phase). From this point several instances can be created
and used (the execution phase).

2.2 Model

The model defines the structure of the module, which —from an outside point of
view —isthelist of names of the “public” cells. A cell is“public” if it iseither an
InputCell or an OutputCell. The model also specifiesthe “internal” (e.g. non public)
cells and the behavior of the module (e.g. the way to recompute the modul€’ s state, which
is defined by the formulas in a cellular-based module).

The cells are accessed by their names. Since searching for acell given its nameis
not avery efficient operation, cells are stored in an array and referred by their index in
thisarray. In some cases, one index is not sufficient. Thereforealist of indicesis
returned instead. Thislist indicates the path from the initial group to the final cell by
specifying the indices of each cell on the path. Thisis used, for example, to implement
arrays and sub-modules. In order to access acell in amodule, we must trandlates its
nameinto an indiceslist IDS, then ask for the cell with index IDS[0], then its sub-cell
IDS[1], ..., up to thefinal cell. We can then query the cell about its type and attributes
(most importantly if it is an input/output cell), or store the indices list for future
references. So the name lookup operation is performed only during the “compilation”
phase of the module. Asthe model is shared by all the instances of the module, it doesn’t

store the value itself of the cells. Thisisimportant for the efficiency in the case where

there are many instances of the same module, asit is often the case when recursion is

used.

The following operations can be performed on a module mode!:

Load the model from afile/url (note that this operation is not implemented
by the module but by a ModuleFactory, which is a component of the
Wizcell Virtual Machine).

init: This method is called by the ModuleFactory to initialize the newly
loaded module.

getName: Get the name of the model.

resolvePath: Get the indices list of acell given its name.
getSubcelIModel: Get the model of a sub-cell given itsindex.

instantiate: Create anew instance of the module. This creates anew state
structure. Thisisthe only operation used during the execution phase so it
must be as efficient as possible (e.g. not copy the whole model for each

instance).

When a module contains another module, it must first load the sub-modul€’' s

model using the ModuleFactory. Then it should search for the public cellsit uses, check

the permissions, and store the obtained index.

The following operation can be done on a cell model (obtained by the

getSubcelIModel operation on the module):

getName: Get the name of the cell.

getSubcelIModel: Get the model of a sub-cell given itsindex.

10
. resolvePath: Get theindiceslist of acell given its name (relative to this

cdll).

2.3 Instance (Module State)

When amoduleisinstantiated, the state of the new instance is created and used by
the Wizcell VM to manage the module. The instantiated modules form atree, with the
program as the root module and the sub-modules as leafs. Once the instance is created,
public cells can be accessed given their indices list. The value of the InputCells can be
set, and the value of the OutputCells can be queried.

When a module wants to set the value of a sub-module’s InputCell, it must use the
bind operation of the cell, which means that the InputCell is now programmatically
controlled by this module and is not alowed to be externally modified anymore.

If an external component needs to change the value of an InputCell (e.g. the GUI,
or an external software or hardware), it should use isBound before calling setValue to
ensure that the operation is allowed. Similarly the container module must call bind to
prevent any external component from modifying the cell.

In order to support the optimized update mechanism, the value of an OutputCell is
never queried directly, but the dependant cell must first register a CellLink, indicating to
the OutputCell which cell to notify when its value changes. Thisregistration procedureis
also used for lazy instantiation (see Chapter 8). A CedllLink isasmall data structure
containing areference to the referenced cell and the dependant cell, aswell asfast
facilities to be added and removed dynamically at runtime (two CellLink references

forming adouble linked list, see Chapter 5 for ajustification of this approach).

11

Also, amodule state can have an associated graphical representation (see next

section).

A module state supports the following operations:

init: initialize the newly created instance (instantiating the sub-modules for
example).

getContainer: get the container module (or null if thisisthe root module).
getSubcell: get asub-cell given itsindex.

getModel: get the model associated with this module instance.

A cell state supports the following operations:

addLink: register alink to this cell (specifying the dependant cell).
getValue: get the current value.

removeLink: unregister alink.

notifyChange: notify of a change from areferenced cell (e.g. acell with an
active link from this cell).

setView: set the view associated with this instance (or null if none).

getView: get the graphical representation associated with this instance.

The operation addLink must always be called before getValue.

Note that one can only add alink to and get a value from an OutputCell.

An InputCell state additionally supports the following operations:

bind: bind the cell (e.g. no more external value modifications allowed)
setValue: set the value of the cell
unbind: unbind the cell (e.g. the cell's value is not programmatically

controlled anymore)

12
. isBound: test if the cell is bound or not

2.4 View

To each module instance one or more views can be associated. A view isa
graphical window displaying the value of the cells and enabling the user to type the value
of the unbound InputCells. A module must notify itsview when acell’svaueis
changed.

A module view supports the following operations:

. Load the view from afile/url (note that this operation is not implemented by

the module but by a ViewFactory, which is a component of the Wizcell
Virtual Machine).

. init: initialize the view after it has been associated with a module (creating

the graphical components.

. setShow: temporarily hide or show the view

. close: permanently close the view.

2.5 Module References

Using a module inside another doesn’t only require specifying the path/url of the
file where the module’ s model is stored; but the appropriate references of public cells
must be established with the containing module so that the modules can be linked
together.

For each module we can define a public interface, which isaversion of the
modul e containing only the declaration of the public cells. Thiscell group should be

cloned wherever this module must be instantiated. This enables the containing module to

13
optionally bind the InputCells to the needed formulas, and use the results computed in the

OutputCells.

This referencing mechanism offers several advantages:

The public interface is clearly defined, and it is the only information needed by a
client.

The interface can be placed in a palette containing other modules, thereby
building a set of useful readily usable components by only dragging the interface
anywhereit is useful.

Also, the implementation of the module can be modified or extended, aslong as
the public interface still includes the cells contained in the previous version. On the other
hand, if the implementation involves radical changesto the public interface, the error will

be detected and reported cleanly.

CHAPTER 3: CELLULAR MODEL

Wizcell modules considered in this work mainly use the cellular model. This

chapter presents the practical aspect of this model, from the point of view of the

user/module developer.

3.1 Component

We use MacOS X Cocoatool as a prototype environment to quickly develop

Wizcell modules. The palette of componentsis presented in Figure 1.

(& (&) Cocoa-Wizcell =3
OO0 o | O =0 == [Tey S c=u
= [Text] =m0 Tes fmm

r Entity ‘ r ConstCell ‘ Fr.FnrmuluEell.1_
A

A

f TnputCel | 1 f

formula \

A

A

formula

Cel lGraup
{- r OutputCell 1 Ff-FDrmuluEellﬁ_

A

formula

e

Figure 1: Graphical representation of some of Wizcell's cell types.

14

15

The basic work surface is a graphical window representing a Module.

The cell types available are:

InputCell: get values from users or from external sources (other modules
OutputCells). Aninitial valueis specified. It isrepresented in green.
ConstantCell: store a constant value.

FormulaCell: the most used cell type. It containsaninitial value and a
formula.

CelGroup: basic container. Group cells together in a hierarchical manner.
Entity: a CellGroup meant to represent, in areusable way, some real-world
entity.

Module: aindependent CellGroup. It hasits own graphical window. Itis
generally used to compose the final program, but can also be nested using a
ModuleRef (e.g. a module can have sub-modules).

Program: a“top-level” module. It is generally meant to be used as-is by the
end-user, but can also be linked with other modules (e.g. for testing
purposes).

ModuleRef: A special group referring to another module and containing a
copy of the “public” cells of the module that can be modified (for
InputCells), or referenced (for OutputCells). Thisisthe mechanism to link
modules together. Thetitle of the group consists of the name itself followed
by either ref or lazyref, followed by the path to the module’ s model file. A
lazyref ModuleRef only instantiates the sub-module when the first reference

toitself or to one of its sub-cellsis used (see Chapter 8).

16
InputCells, FormulaCells, ConstantCells, CellGroups, Entities and Modul eRefs

can be placed in any container.

Modules and Programs are top-level groups. Their model can’t be placed in
another container (only a ModuleRef and not aModule can). A Module instance can be
in acontainer, a Program can't.

A Wizcell program is either a Program or a Module.

FormulaCells and InputCells have a boolean property “ Output” indicating
whether the cell’ s value can be queried by another Module. A FormulaCell where this
property istrue is sometimes referred as an OutputCell.

3.2 Formulas and Cell References

FormulaCells contain aformula defining its value.

These formulas manipulate values of type number, string, boolean, or complex
data structures (which will be discussed later). Constants and cell’ s values are combined
using the usual arithmetic operators. Conditional construct of the following formis
available:

(conditionl) ? expressionl ; expression2

References to cells are composed by a base specification, indicating the start of
thereference. Thiscanbea'$ meaning the base of the module, or a*‘.” meaning the
base of the entity, or a possibly empty list of ‘" indication the number of groups to walk
up from the container group of the current cell. Then a series of cell names separated by
period specify which sub-cell must be used, ending by the actually referenced cell.

These concepts will be detailed and expanded in the following chapters.

CHAPTER 4: FORMULAS

In cellular-based modules, acell’svaueis exclusively defined by its formula.
Therefore, the details of the formulalanguage used are quite important. This chapter
presents the syntax of the formulas.

4.1 Formula Syntax

AsWizcell isavisua language, most elements stem from graphical objects or
XML files, not regular source files. However, formulais a string containing some
expression.

We use Right-Recursive formal grammar to define the syntax. Thisallowsto

easily implement the parser without needing any specific tool. The syntax for an

expression is:
Expr = DelayExpr | DelayExpr ? DelayExpr ; Expr
DelayExpr ‘= LogExpr | LogExpr @ Delay
Delay =() | (Redtime) | (Reatime, Number)
| (Realtime, Number , Number)
Resaltime = Number | Number Ident
LogExpr := LogFactorExpr

| LogFactorExpr ‘| LogExpr

| LogFactorExpr # LogExpr

17

18
LogFactorExpr :=LogOperand | LogOperand & LogFactorExpr

LogOperand :=RelExpr | ! LogOperand
RelExpr := ArithmExpr

| ArithmExpr < ArithmExpr | ArithmExpr > ArithmExpr

| ArithmExpr = ArithmExpr | ArithmExpr !'= ArithmExpr
ArithmExpr := FactorExpr

| FactorExpr + ArithmExpr | FactorExpr — ArithmExpr
FactorExpr = ExpExpr | EXpExpr* FactorExpr

| ExpExpr/ FactorExpr | ExpExpr % FactorExpr
ExpExpr :=Operand | Operand ™ EXpExpr
In this formulation several elements are used but not defined:
Number: astring beginning with a digit and representing avalid real value
(0-9+ [. 0-9+][E[+]] 0-9+])
|dent: an identifier beginning with an alphabetic character or * _’ and
continuing up to the first non-alphanumeric character (a-zA-Z_(a-zA-Z0-9)*).
Operand: defined below.

4.2 Operand Syntax

An operand can be of several types. anumber, a boolean, a string, or an array.

To support the advanced features (arrays, recursion, data structure) the operand
syntax is quite complicated, particularly concerning cell references. See Chapter 7 for
more details on cell references.

A CellGroup can have avaue, and areference to a cell can contain array indices,

and maybe values, for example we can allow formulas like (arrayl+array?2)[i] .celll

19
This meansthat the ‘.’ is now an operator, taking a value and one of its sub-cells

name and resulting into the value of thiscell. Also the array operator [] is added, taking a
group and an index and returning the cell with the specified index. Ranges of indices are
also allowed.

An array can be specified asalist of expressionsenclosed by ‘{* and ‘}’.

This syntax also supports the specification of functions. A function has a name
and takes alist of arguments enclosed by parenthesis.

The operand syntax is:

Operand =true | false

| “string” | Number

| +Operand | - Operand

| Array
| Function
| CellPath
Array ={} | {ExprList} | { ExprList} Subcell
Function =ldent () | Ident(ExprList)
ExprList ‘=Expr | Expr, ExprList
CellPath :=BaseCell | BaseCell Subcell

| (Expr) | (Expr) Subcel

BaseCedll := ldent
| $BaseCell | : BaseCell
Subcell =.ldent | . Ident Subcell

| [Expr] | [Expr] Subcell

[Expr .. Expr]
[Expr..] |
[..Expr] |

. length

[Expr .. Expr] Subcell

[Expr ..] Subcell

[.. Expr] Subcell

20

21

CHAPTERS5: TIME AND ITERATION

5.1 Cyclic Reference

A consequence of the Wizcell's update mechanism is the possibility of using
cyclic references, e.g., a cell references its own value either directly or through other
cells. Incommercia spreadsheets, this mechanism is disallowed, preventing the
programmer from implementing cal culations involving loops and memory-like structures.

A simple example illustrates this concept:

A cell can memorizeits previous value by referencing itself in itsformula. This
can be used to create memory-like structures, as shown in Figure 2. When Memorize cell
IS set to true, the value of IN will be stored in Memory, and will persists after Memorize

changesto false.

f N 1 Hemorize

a false

B
Memorize?IN ;Memory

i

Figure 2: Implementing memory with a self-reference

22

Unfortunately, thisis not enough to support the iteration concept. Even if cells
playing the role of loop variables can be created, it is not trivial to coordinate the loop
increment with al calculations of the current iteration inside the loop. Interestingly, it
turns out that iteration has a very close relationship to the employed time model. In fact,
the loop coordination will be accomplished by delaying the evaluation of certain cells by
infinitesimally small amounts of time. The next section will present thisideain
conjunction with a concept for real-time support.

5.2 Time Mode

The time model serves to include areal-time clock and a so another clock, the
VM time, for iteration support. Further, we need to add some kind of delay in the cells
evaluation. Severa solutions are possible:

. Delayed output: the actual output of the cell's value of the cell is delayed,
meaning that a queueis contained in the cell which holds the previous
output values for a certain amount of time.

. Delayed input: in aformula, a dependency on the value of another cell can
include a certain delay, meaning that some past value of the referenced cell
IS used.

. Delayed update: a delayed cell changesits value only if the formula s result
has been stable during the specified time delay, so that the cell is guaranteed
to be stable during this specified period of time.

Each solution seems appropriate to some applications. The first two solutions

seem useful for ssimulation purpose, when latency must be modeled. However, the last

23
solution is more intuitive for programming mechanisms such as loops and sequential

calculations, where some cells must be stable while others are updated. As Wizcell is
more targeted to general calculations, it uses the delayed update solution.

Another important advantage of the delayed update solution isits overhead.
Because it doesn’t require the maintenance of several queues, it involves much less
overhead in the implementation than the other methods. Only a modification of the
propagation mechanism for updates among cellsis required.

The resulting values of a Wizcell program that are visible to its environment
should always be correct. In other words, when aloop is used to perform a calculation,
the environment should only see the result once the loop has stabilized, and not all the
intermediate (invalid) values. Thisleadsto the requirement that the real time
(environment) clock of the virtual machine isincremented only when the non-delayed
cellsare stable. A real-time delayed cell is not updated until the current calculation is
complete, e.g., al other non-delayed cells are stable. This ensuresthat areal time
delayed cell will not change its value in the middle of a calculation, leading to
indeterministic results.

In the following approach of integrating iteration with real-time support, two time
scales will be distinguished:

The previously mentioned restrictions ensure that the VM time granularity is
always infinitely small compared to the one of the real time, e.g. any real time step will
always be larger than any number of VM time step. This concept isvery similar to the
hyper-real based time introduced by [3]. Thisideawill be extended in the following

section to include the proposed iteration concept.

24
5.3 lteration Concept

Many algorithms or mathematical functions are based on iterative loops. This
construct is very important for the usability of alanguage. In Wizcell, aloop can be
implemented using a circular reference.

The iteration construct must ensure that:

. Each iteration leads to a stable result. In other words, the loop variableis

incremented only if the calculation for the current iteration is finished.

. Nested loops must be supported.

. During each iteration step, a sequence of calculations can be enforced in a

particular order.

Thelast point isimportant for complex calculations.

The time concept introduced in the previous section will be extended to suit these
needs. This concept isbased on ahierarchica set of time scales, in which the VM
iteration update scale is the infinitely smallest scale, and the real time clock isthe largest

scale. Thisschemeis extended by adding an infinite number of intermediate time scales

h(i) defined by:
h(0) =VM time
h(e) =real time

Oi Oa,b a*h(i) <b*h(i +1)

where h(i) are infinitesimally small hyper-real numbers, i is anatural number
including 0, and a, b are positive real numbers. The current time value can be
represented by alist of numbers{to,ty,...,rt}, wheret; is the clock value of time scale h(i).

In the implementation the hyper-time values are stored only up to the last non-zero value.

25
A timevaluev; islessis defined as before another time value v, if and only if

virt<vartor (virt=vart and Oi Ost. voti <votiand O] > vitj = va.t)).

The use of this representation of time isto delay the update of cells that need to
wait until the end of another cal culation before proceeding (such as aloop variable).

Using thistime concept, adelay is defined as atriple (R,H,S) where:

. R =real time delay (delay on the h() time scale)

. H = hierarchical time scale of this cell (meaning that the cell is updated only

on h(H) time scale increments)

. S = sequence number of this cell

Thisdelay isintegrated into Wizcell formula syntax as an option at the end of
each conditional branches and preceded by an ‘@' sign. Note that absent delays are
considered to be (0,0,0).

R isused for real-time related cells (such as controlling a delay before the
activation of an alarm).

H is used to control loops.

S means that the cell will be updated when h(H) clock’s value equalsto S.

Each branch of a conditional expression (cond?br1;br2) can have adifferent
delay, enabling to specify for example alight timer cell, with adifferent “ON” (short)
delay that the (long) “OFF" delay.

When acell’svalueisrecalculated, the current timet and the delay d (d.R, d.H,
d.S) isused to compute the timet’ when the new value will be set as the value of the cell

using the following algorithm:

if dR>0
t’.realtime = t.realtinme + d.R
t’.hypertine = all zeros
t'.hypertinme[d.H = d.S
el se
t’.realtime = t.realtine
for all 0 <i < d.Ddo
t'. hypertine[i] =0
end for
if d.S ==
t'.hypertinme[d.H = t.hypertinme[d. H +1
for all i > d.Hdo
t’.hypertine[i] = t.hypertinme[i]
end for
el se
t’.hyperting[d.H = d.S
for all i > d.Hdo
t’.hypertinme[i] = t.hypertine[i]

if t.hypertinme[d.H < d.S

t’.hypertine[d. H+1] = t. hypertinme[d. H+1] +1

end if

end for

end if

26

Each cell’ s state contains in addition the following information to the current

value:

. nextTime: time when the new value of the cell will be activated

. nextValue: new value of the cell

. delay: last computed delay

Aninfinite value for nextTime means that no update is necessary
(currentValue=nextValue).

When anew value v and adelay d is calculated for acell, its state is updated as
follows:

if v == currentVal ue
/1 no nore update necessary
next Val ue = current Val ue
nextTime = infinity
else if v != nextVvValue or d != delay
/'l new update
next Val ue = v
next Time = current Ti ne+del ay //using previous
/1 al gorithm
/'l else v!=currentVal ue and v==next Val ue and d==del ay
/1 not hing changes

end if

27

28
The current time starts with al zeros. The new update algorithm sets the time as

the lowest next update time of all cells and only updates cells such that nextTime =

currentTime:
nextTime = | owest nextTinme of all cells
while nextTime !'=Infinity and nextTine.realtine <

Real Ti meCl ock do

currentTime = nextTi nme

/'l First activate the new val ues

Qut dat edCel | Li st = enpty

for all cell C where C nextTinme == currentTime do
C. Val ue = C. Next Val ue
CQut dat edCel | Li st += dependant (C)

end for

/'l Then recal culate all the outdated val ues

for all cell Cin QutdatedCellList do
newal ue = Cal cVal ue(Q)
/'l updat e nextVal ue and next Ti me according
/1l to the previous algorithm

end for

nextTinme = | owest nextTime of all cells

end whil e

29
5.4 Example: Exponential Approximation

To illustrate this concept, the exponential function is approximated using the

following formula:

n i

exp() =1+ 2

In this example, the calculation is simple enough that it could be implemented
with one cell, but to better illustrate the time concept it will be decomposed into severad
steps.

The exponential approximation function isimplemented as shown in Figure 3.
This modul e approximates the exp function of X using N iteration. Inthis
implementation, the loop index cell | has adelay of (0,1,1), meaning it is updated on h(1)
increments where the second hyper-time clock isequalsto 1. Theinternal loop’s

calculations are updated sequentially between these increments. Their activation order is

controlled by the delay’ s sequence number S.

expl
= = ’ i 1 r Factl 1
’ s 1 "N 1
———— - = A.8 a.8
: 14 (C1N) 7 %15 (C1-N) 7 Factl;
(1=8) 7 1.8; {1=8) 7 1.8;
r"F'rest ’1 r--I ’1 H_T*E) FactI*I)
e i, Y —_— @a,1,2) @e,1,23
-1 14 _ _
%@ (\,1,2) (AChanged 7 B; B
{IHY 7 I+1;
= = W 6.8
= . S TN (1) 7 B
false (1=8) 7 1;
Exp + ¥_I/Factl)
% 1= Preve ae,1,3)

Figure 3: Implementation of the approximation of the exponential function

30
A loop iteration occurs within each h(2) step, so the exponential valueis

completely calculated at each h(3) increment. If the input/output values are directly
linked with the user interface, which only works on real time steps, then the user will
always see coherent results, because h(3) steps are infinitely small from his point of view.
The steps of calculation of exp(1l) aredetailed in Table 1. The “Time” column
shows the first three hyper time counters hypertime[2] .hypertime] 1] .hypertime[0] . Time
0.0.0 corresponds to the initial values of the cells, and the following time steps show only

the modified values.

Time

PrevX

XChanged

X_|

Fact |

Exp

0.0.0

=X

false

10

0.0

0.0

0.0

0.0.1

true

0.1.0

0.2.0

1.0

1.0

021

false

110

1.3.0

2.0

2.1.0

2.2.0

2.0

2.3.0

2.5

3.1.0

3.2.0

6.0

3.3.0

2.66667

4.1.0

4.2.0

24.0

4.3.0

2.70833

5.1.0

5.2.0

120.0

5.3.0

2.71667

6.1.0

6.2.0

720.0

6.3.0

2.71806

7.1.0

7.2.0

5040.0

7.3.0

2.71825

8.1.0

8.2.0

40320.0

8.3.0

2.71827

9.1.0

9.2.0

362880.0

9.3.0

2.71828

10.1.0

10

Table 1: calculation steps for exp(1).

31

32

CHAPTER 6: ARRAY SUPPORT

Arrays are used quite often in programming languages. In basic spreadsheet
languages a 2 dimensional array isthe only available structure for the data and the
program itself. In thischapter, | will concentrate on one-dimensional arrays, but
extensions to more dimensions should be easy (expect for the graphical point of view
with more than two dimensions).

6.1 Array specification

In Wizcell an array isaspecial CellGroup with afirst cell named “length”
containing the length of the array, and a set of cells of size length accessible by an index
from 1 to length. Arrays can either be defined cell by cell or with asingle formula.

Cell by cell specification includes:

. A length cell specifying the length of the array, containing either an initial

constant and possibly aformula.
. A set of cells, also containing an initial constant and possibly aformula.
The cdll i specify the formulafor the array’s cell i, if this cell exist inthe
array
(e.g. 1<i <length).

. A last cell specifying the remaining cells of the array if the length of the

array is greater than the number of specified cells.

33
A formula can specify an array using either:

. A direct specification { e;,e,,...,e,} of an cellsarrays with the indicated
values.

. A reference to an existing array, which will copy the value of the array.

. A concatenation of severa arrays, using the ‘+' operator

. The result of afunction returning an array. (see the select function is section
6.4

6.2 Accessing an array

An array can be accessed using either:

. name = the entire array named name

. name.length = length of array name

. namefindex] = cell index of array name

. namefindex1..index2] = range of array name from index index1 to index
index2. If index1 is unspecified it equals 1 by default. If index2 is
unspecified it equals length by default.

. (expr) instead of namein all previous cases

Any accessto an invalid index will result in an exception.

6.3 Example: Reversing an Array

In the following example, an array A is specified astheinput, and an array B is
computed containing the values of array A isreverse order. Thelength of B isthe same
asA, and theformulaof all B’scell isA[length-ID+1]. The resulting module is shown in

Figure 4.

Reverse
A B
length: 4 length: [0 A.length
0 Allength-

ID+1]

AIWN|F

Figure 4. Reversing an array

6.4 Operations on arrays

In addition to the previously described access methods, two basic operations are
available on arrays: concatenation and selection.

Using the '+’ operator two arrays can be concatenated. The length of theresult is
the addition of the length of both array, and the content is the cells of thefirst array
followed by the cells of the second array.

Another important operation is the select function, which filters the value of an
array. Thisfunction takes as parameters an array and a conditional expression of a
variable x. Thisconditional expression is applied to all cells of the specified array,
replacing x by the value of the cell, and the cells for which the expression is true are kept
in the resulting array.

6.5 Implementation

Arrays are implemented similarly to sub-modules. The cell with ID Oisthe

length of the array; other cells have the same ID as their index in the array.

35
To refer to an array as awhole, avalue containing the array of all the cell values

isconstructed. This operation isonly performed if the array is ever referenced. Inthis
case, the array itself depends on the value of each of its cells, so that any cell that depends
on thisarray is notified as soon as one of the array's cells of the array has changed. The

same mechanism will be used for other data structures (see Chapter 9).

36

CHAPTER 7: CELL REFERENCES

Cdll references are a very important element of Wizcell. They are used in most
formulas and determine how a cell can access another thereby determining modularity
and accessrights. Asreferences are used very often, their implementation must be as fast
as possible, while still allowing for al the required features, mainly modularity, recursion
and arrays.

Asexplained in Chapter 1, each cell inamoduleis given an ID, corresponding to
itsindex in the array of cells of the module. Thisalows fast referencesto cells using
simple array lookup.

After the parsing phase, each reference is constructed by a base group and alist of
sub-cell specifications. The base group can be either:

* A specific group: either the cell itself, or one of its containers (parent
group, parent module, or parent program).

* Anexpression: in this case the group is dynamically constructed. Note
that the result must be a group.

Each sub-cell specification gives access to one of the current group's cells, given
itsname or itsindex (in case of an array). A reference resolution phase takes place at the
end of the parsing, whose role isto find the IDs that correspond to the specified names

and to set up the static reference lists (see below).

37
In order to improve the efficiency of this mechanism we can use the fact that the

groups inside of amodule are static, e.g., cell | of group Jislocated at index 1+J0, where
JO istheindex of thefirst cell of group J. Thus, instead of storing sub-cell “1” of sub-cell
“J" we can directly store sub-cell “1+J0" .

| distinguish two different kinds of references: static references and dynamic
references. Static references are references that aways exist. For example, if acell A
contains the formula“B+C”, then the reference to B is static. The other kind is dynamic
reference. A referenceisdynamic if it can't be statically defined during compilation.
Thisincludes:

» references containing an array index;
» referencesinside a conditiona expression (e.g. not used all the time); and
» referencesto acell in another module.

This distinction is very important for the optimized update mechanism of Wizcell.
When acell’svaueis changed, all dependant cells must be notified. In the static case,
the list of dependant cellsis computed during the compilation phase, but in the dynamic
case thislist cannot be completely precomputed.

Functional recursion also depends on this reference mechanism. It isbased on
lazy instantiation, meaning that a recursive module is not instantiated until it isrealy
needed, and the number of dependant cells of the modul€’ s output cells determines this
(see Chapter 8).

To justify this approach, the example shown in the previous chapter will be used

again (see Figure 4): In asimple module we have two arrays A and B each of size N

38
(where N is possibly dynamic). A isaninput array. B isreversed copy of A, meaning

that the formulafor cell B[i] is A[N+1-i].

Let us assume that we store only one cell description for each array. Thus, each
cell of the same array has the same formula and — more important — the same list of
dependencies and dependant cells. Asaconsequence, all cells of array B depend
staticaly on al cellsof array A. If dynamic references are neglected all cells of array B
will be updated each time one cell value of array A is modified, resulting in possibly
O(N?) calculations each time the whole array A is modified. Thisis very inefficient and
shows the need to manage these dependencies in a more intelligent way.

One quite simple solution is to specify the index of the modified cell in the
notification call, so that the notified cell can easily compare it with the currently used
index and ignore the message if it is different. Thiswill still require O(N?) notifications
but only O(N) calculations.

A better solution isto notify only the cells that really use the modified cell. This
requires storing the list of dependant cells on each instance of the array’s cell.

The data structure used to store this dynamic dependency list must implement the
following operations as fast as possible:

. Moving a dependency from alist to another

. Iterating through the list

A double-linked list is able to support these operations with O(1) complexity to
move a dependency and O(n) complexity for iterating through the list, where n isthe
number of elementsin thelist. Another possibility would be adynamic array, but this

solution seems |l ess efficient.

39
In the implementation, a reference consists of two lists of cell 1Ds, specifying the

path from one cell to another. These arrays contain the path to each cell starting from the
first common cell group. This means that to reach the second cell from the first one, we
must move N1 levels up, where N1 isthe length of thefirst array, and then move to the
sub-cellswhose ID is stored in the second array. The reverse path is specified by
swapping the arrays. The reverse path is needed for finding the cell to be notified when
the destination cell is modified. Note that anegative ID for an array means al the cells
from the opposite index to the length of the array. It isused because the cells at the end
of an array can share the same formula, and so the same cell reference (thisis only the
case when the reference is static).

We could argue that the references across modules could be statically determined
during the compilation phase. This approach would definitely be more efficient but it
would introduce a dependency between the container module and the contained module.
Thisin turn would require managing different versions of the same module depending on
the module containing it and would make the initialization much more complicated,
especially in the presence of recursion. The overhead of having dynamic referencesin

this case should be quite small, asit is only slower when the instances are initialized.

40

CHAPTER 8: FUNCTIONAL RECURSION

8.1 Definition

In thiswork, functional recursion is defined as the ability to use amodule as a
sub-module of itself in order to perform arecursive calculation. We do not consider
circular references (when the graph of dependency contains aloop) as a functional
recursion. Also, functional recursion differs from structural recursion (which will be
discussed in Chapter 9) by the fact that the recursive module is not used as a data
structure, but as a computation module.

The modularity mechanism is modified to support functional recursion. In
Wizcell, amodule can refer to another module using input/output cells mechanism. In
the recursive case, the referred module is the same as the referring module. This defines
apotentially infinite tree, which cannot be fully instantiated. In order to avoid
instantiating thisinfinite tree, | use the concept of lazy instantiation, meaning that the
module will only be instantiated if it isreally needed, i.e. it is used by one or more cells.
Thisisthe point where the previously discussed dynamic cell references mechanismis
used.

A lazy module isinstantiated only when a cell referstoit, and it is deleted when
the last reference is removed.

Thisisthe only addition required to support recursion.

41
8.2 Implementation

Recursive references introduce several difficulties for the implementation and
some care must be taken.

When the moduleisinitialized, it will call the load operation on the
ModuleFactory. This factory must return the module itself as aresult, which means that
it must be added in the table of loaded modules before calling theinit function. If this
rule were not respected then severa versions of the same module would be repeatedly
loaded and initialized. Secondly, the load operation would return a module which is not
fully initialized, astheinit operation is not finished. It isthe responsibility of the module
toinitialize itself properly for the support of the public operations before trying to load
any sub-module (sinceit is always possible that one of the sub-modules recursively refers
to the original module).

8.3 Example 1: Fibonacci

This module computes the Fibonacci function defined by:

_d 1 if n<2
(=0 _g)ri(n-1) ese

The implementation is a direct mapping of the mathematical definition, as shown

in Figure 5. Itisarecursive module FIB calculating the fibonnaci function F of an input

value N, using two recursive references F1 and F2 to compute f(N-1) and f(N-2).

42

FIB
F1 lazyref FIB
N N
1
1 :
'‘N-1
F
1
N<1:_2 ? F2 lazyref FIB
F2.F+FLF N -
1 1
‘N-2

Figure 5: Implementation of the Fibonacci function

This example shows how a recursive mathematical function can be implemented
using the functional recursion facility of Wizcell nearly directly. Even if the Fibonacci
function can be implemented more efficiently using aloop, the main advantage of the
recursive implementation is the direct mapping of the mathematical definition. We could
implement a“cached reference” for F1 and F2 storing the already computed results. This
would require a data structure containing the last computed instance of the FIB modulein
the format (N,F) so that optimally each f(n) is computed only once for each value of n,
resulting in the same time compl exity than the iterative implementation. Note that this
will only work when the result of the module only depends on the current value of the

input cells (e.g., no time-based mechanisms such as loops are used).

43
8.4 Example 2: Quick Sort

The Qsort module sorts an array contained in the InputCell IN, giving theresult in
the OutputCell OUT.

Two cases occurs:

1. The array isless than two elements. Theresult istheinput array array (end of
recursion).

2. The array istwo elements or more. A root (pivot) e ement is chosen (the first
element in thisimplementation), and the module is recursively applied to the Left and
Right part of the input array (e.g. the elements less than the pivot and the elements greater
than or equal to the pivot). The result is computed by concatenating the Left result with
the root element and the Right resullt.

The Wizcdll implementation is shown in Figure 6, where the input array is
specified in the cell IN, and the result is calculated in the OUT cell.

A very interesting property of this approach isthe fact that all created cell
structures are kept in memory after the computation and can be reused later on. Thiscan
be very efficient in cases in which the input change is only partial. For instance, the same
sub-array doesn’'t need to be re-sorted.

Note that al the root cellsimplicitly create a sorting tree. In fact the difference
between this implementation of QuickSort and a Binary Sorting Tree implementation is

quite small. Seethe final example at the end of the next chapter for a comparison.

QSort

IN Left lazyref QSort
1
3
IN
2 0 ouT
2 select(:IN[2..], X < :root) U
isSorted :
e Right lazyref QSort
IN.length<2
IN ouT
{} i}
root select(:IN[2..], x >= :root)
isSorted ?
IN[EL] ouT

isSorted ? IN ; Left. OUT+{ root} +Right. OUT

Figure 6: Implementation of the recursive QuickSort algorithm

45

CHAPTER 9: STRUCTURAL RECURSION

Structural recursion support is pretty straightforward by now. We have the array
mechanism that already gathers the values of multiple cells into one data structure ready
for operations, and the functional recursion concept that defines self-containing modul es.
The structural recursion mechanism derives from both to define a smple way to provide
complex unbounded data structuresin Wizcell.

The only difficulty concerns the specification of the data type of each cell. If we
want an efficient manipulation of the data, we must enforce the type of structure used, so
that we can resolve the textual names into indexing IDs during the compilation phase for
fast access |ater on.

9.1 Data type specification

A specia type of Module, which only contains InputCells, defines a data type. It
is equivalent to structured data structures in procedural languages.
For example, a structure storing a banking operation is defined in Figure 7. It

contains several cells, each one defining an attribute and its default value.

BankOperation
Account Credit Debit
0 0 0
Comment
“NO COMMENT”

Figure 7: Definition of a Bank Operation data structure

9.2 Datatype use

All cells using a data type must specify the name of the type asthe initial value,

preceded by the character ‘# .

The sub-cells of adata structure can themselves refer to a data type, even the

parent data type, allowing for recursive data structure. For example, a binary tree data

structure is defined in Figure 8.

BinTree
Root
0
Left Right
#BinTree #BinTree

Figure 8: Definition of a Binary Tree data structure

When acell refersto adatatype using the ‘# operator, itsinitial valueis null,

46

which isaspecia constant designating an empty data structure. To instantiate a data type

we must use a module reference identical to the one used for functional recursion. For

example, Figure 9 defines the instantiation of the tree (1, (2), 3).

Treel ref BinTree

Root

2

Left ref BinTree

Right ref BinTree

Root

1

Left

Right

#BinTree

#BinTree

Root

3

Left

Right

#BinTree

#BinTree

a7

Figure 9: Instantiation of a binary tree
Note: we could remove the empty Left and Right sub-modules, as they are empty
by default. Thiswould lead to a quite clean representation of the tree.

9.3 Fina example

Asafinal example, a sorting algorithm will be presented using a binary sorting
tree as intermediate data structure. Three modules are used. The BuildTree module
(Figure 10) takes the array as input and produces the sorted binary tree. The Infix module
(Figure 11) takes the sorted binary tree as input and produces an array with the elements
of thetreein infix (sorted) order. Finally the Main module (Figure 12) is the program
itself. The datatype used isthe BinTree presented earlier (Figure 8).

This example shows how structural recursion can be used to communicate
complex data structures between modules. Processing arecursive data structure is quite
straightforward using functional recursion. The Main program shows how a program is

constructed by referring to the used modules and linking their public cells.

BuildTree

IN Left lazyref BuildTree
1
3 IN ouT
4 {} {}
2 select(:IN[2..], x < :root)
isEmpty) .
true Right lazyref BuildTree
IN.length=0 IN ouUT
{} {}
root select(:IN[2..], X >= :root)
iISEmpty ?
IN[’l] Temp lazyref BinTree
Root
ouT =
#BinTree Left -root Right
IsEmpty ? #BinTree #BinTree
null ; Left.OUT ‘Right.OUT
Temp

Figure 10: BuildTree sorted binary tree creation module

Infix
Tree ouT
#BinTree {}
isEmpty ?{} ; Left. OUT+{ Tree.Root} +Right.OUT
iISEmpty
true
Tree=null
Left lazyref Infix Right lazyref Infix
Tree OouT Tree OouT
#BinTree {} #BinTree {}
‘Tree.Left :Tree.Right

Figure 11: Infix binary tree infix conversion to array module

Main

IN Build ref BuildTree
1
3 IN ouT
4 {} #BinTree
2 JIN
Iter ref Infix
Tree ouT
#BinTree {}
:Build.OUT

[ter.OUT

Figure 12: Main program

49

50

CHAPTER 10: FORMAL PROOFS

10.1 Foundations

One of the goals of Wizcell isto obtain alanguage where formal correctness
proofs are easier to obtain than in other programming paradigms (e.g. procedural and
object-oriented languages). Thisis due to the presence of Kay'svaluerule [2], which
expresses that a cell'svalueis exclusively defined by aformula. Therefore, an invariant
is associated with each cell, which isthe formula of the cell itself. One particularity of
Wizcdll isthat contrarily to “regular” spreadsheet languages, cells values are not
constant through time, and so the update mechanism must be taken into account. The
update model | used in this work is the simultaneous update model, where each cell is
calculated using the values from the previous step (see Chapter 1). Thisleads to the first
rule, derived from Kay’srule:

Wizcell Value Rule: The value of the cell is equal to the value of its formula

applied to the values of the previous step.
Thisrule reduces to Kay' s rule when the program has stabilized, which means
when the values of all the cells are stable (in a sense this corresponds to the termination

of aWizcell program).

51
10.2 Application

| will reuse the example presented in section 9.3 as a proof example. Thisisthe
most advanced example presented so far, so it should be the most interesting to prove.

The goal isto prove the correctness of the program (if the program terminates,
then theresult is correct). The termination itself is not proved.

We need to prove the following proposition:

P1: when the Main program is stabilized, the Main.OUT array is a sorted
combination of the IN array (in increasing order).

Aswe only consider the stable case, we can use Kay’svaluerule.

Proof 1. the OUT tree of module BuildTree exactly contains the el ements of the
IN array.
Let us prove this by induction on the size n of the IN array:

. n=0: IN is empty, we have:

IN.length=0 asIN isempty
O iSEmpty = true from Kay’svauerule on cell isEmpty
O OUT =null from Kay’svaueruleon cell OUT

So OUT contains exactly the elements of IN (e.g. no element).
. n>0 and [0 n’< n the proposition istrue. We have:
IN.length >0 asIN is not empty
O isEmpty = false from Kay’svauerule on cell isEmpty
Q) root = IN[1] from Kay’svalue rule on cell root

(2 OUT = Temp from Kay’svalue rule on cell OUT

52
Left.IN contains the elements of IN[2..] lessthan IN[1] (from Kay’svalue rule on

cell Left.IN).

O

3

(4)

Left.IN.length <n asitisat most al the (n-1) elements of IN[2..]

So from the induction hypothesis we have:

Left.OUT contains the elements of IN[2..] lessthan IN[1]

Using the same arguments, we also have:

Right.OUT contains the elements of IN[2..] greater than of equal to IN[1].

From Kay’ s value rule on cells Temp.Left, Temp.Root, and Temp.Right, and from

(2), (3), and (4), we have:

Temp.Left contains the elements of IN[2..] less than IN[1]

Temp.Right contains the elements of IN[2..] greater than of equal to IN[1].
Temp.Root contains IN[1]

So Temp contains:

{ elements of IN[2..] lessthan IN[1]} U { elementsof IN[2..] greater than of

equal to IN[1]} U {IN[1]}

IN[2..] U IN[1]

IN

So Temp exactly contains the elements of IN

From this result and (2) we proved that OUT exactly contains the elements of IN.

By induction the proposition is proved for al n.

53
Proof 2: in module BuildTree, OUT is asorted binary tree, i.e. al nodes of the tree

verify that the Left elements are all less than Root and the Right elements are all greater

than or equal to Root.

(1)
)

This proof use similar arguments as the first one.

Using the same recursion on the length n of IN:

. When the IN array is empty, the OUT treeis null, so it doesn’t have any
node and directly verify the proposition.

. When the IN array is not empty, and the proposition is true for all smaller
arrays, we have:

Left. OUT isasorted binary tree.

Right.OUT is a sorted binary tree.

iISEmpty = false

OUT = Temp

From Proof 1 we know that in this case we can deduce:

OUT.Left contains the elements of IN[2..] lessthan IN[1]

OUT.Right contains the elements of IN[2..] greater than of equal to IN[1].

OUT.Root contains IN[1]

Combining these three properties leads to the fact that all elements of OUT.Left

elements are less than OUT.Root and all elements of OUT.Right are greater than or equal

to OUT.Root.

From this result, (1) and (2) we obtain the proposition to be proved.

Proof 3: in module Infix, if Treeisasorted binary tree, then the OUT array
contains the elements of Tree sorted in increasing order.

This can be proves by induction on the number of elements of Tree

. n=0: Treeisnull.

We have:

iISEmpty = true
0 OouUT ={}

This verifies the proposition.

This can be proves by induction on the number of elements of Tree

. n> 0 and the proposition istruefor all " <n.

We need to prove that all consecutives elements of OUT are sorted.

From the induction hypothesis, we know that thisistrue for the elements of
Left.OUT and of Right.OUT. Thuswe must only verify that the last element if Left. OUT
islessthan or equal to Tree.Root and the first element of Right.OUT is greater than or
equal to Tree.Root.

All elements of Left.OUT come from Left. Tree = Tree.Left. AsTreeissorted all
elements of Tree.Left are less than Tree.Root. So the last element of Left.OUT isless
than Tree.Root. Using the same argument on Tree.Right we obtain that the first element
of Right.OUT is greater than or equal to Tree.Root so we can conclude that OUT is
sorted.

We also know from the induction hypothesis that Left. OUT contains the elements

of Tree.Left and Right.OUT contains the elements of Tree.Right.

So from the definition of the array concatenation operation OUT contains the

elementsof Tree.

So OUT contains the elements of Tree sorted in increasing order.

By induction the proposition is verified for al n.

Conclusion:

From Kay’s value rule on cell Main.Build.IN, we have:

(1) Main.Build.IN = Main.IN

From Proof 1 we know that:

(2) the tree Main.Build.OUT contains the elements of Main.Build.IN
From Proof 2 we know that:

(3) the tree Main.Build.OUT is a sorted binary tree

From Kay’svaluerule on cell Main.Iter.Tree, we have:

(4) Main.lter.Tree = Main.Build.OUT

From Proof 3 we know that:

(5) Main.Iter.OUT contains the elements of Main.Iter.Tree in increasing order
From (3),(4),(5) we know that:

(6) The elements of Main.Iter.OUT are sorted in increasing order
From Kay’srule on cell Main.OUT we have:

(7) Main.OUT = Main.lter.OUT

Combining (1), (2), (4), (5) and (7) we have:

(8) Main.OUT contains the elements of Main.IN

Propositions (6) and (8) forms the proposition P; which was to be proved.

55

56

CONCLUSION

In this thesis several concepts were presented and included in the Wizcell
language: modularity, time, recursion, array, functional recursion and structural
recursion. Their combination leads to language with improved features, usable for both
fast software prototyping and complex software engineering.

Currently, the Wizcell virtual machine implementation supports al the presented
concepts except structural recursion, which should be added very soon. The graphical
tools (program development and execution) needs also to be modified to support arrays
and recursion.

Several issues are till unresolved. Integrating aloop in amodule adds alot of
complexity in the code and seems not feasible for all potential users. Graphical
representation of complex data structures (structured types, array of structures containing
cells and maybe other arrays) also needs to be improved.

As afuture extension, support for more object-oriented like features in structural
recursion (inherence, formulas) can be added. The current design should allow this
addition, but this kind of features may be too advanced and confusing for the user.

The primitive ideas on formal proofs presented at the end of thisthesis are
promising. It seemsthat at least for simple cases (no delay involved) invariants from

cells formula are really helpful to prove the correctness of the program. Thisisavery

57
important advantage of this paradigm. It may even be possible to create semi-automatic

theorem provers to help the user in this domain. Proofs of termination as well as

efficiency/complexity analysis are still an open area.

58

REFERENCES

[1] Burnett, M. et al.: Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm. Journal of Functional Programming,
vol. 11, no 2. (2001) 155-206

[2] Kay, A.: Computer Software. Scientific American 251(3), September (1984) 52—
59

[3] Rust, H.: Modeling the generalized Railway Crossing with Hybrid State
Machines. Transportation 2000, June (2000) 138-145

VITA

Jérémie Allard was born in Chatenay, France. He received his License and

Maitrise in Computer Sciences from the Université d’ Orléans, France in 2001.

59

	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	TABLE OF FIGURES
	ABSTRACT
	INTRODUCTION
	WIZCELL MODEL
	PROGRAM ARCHITECTURE: MODULARITY
	Definition of a module
	Model
	Instance (Module State)
	View
	Module References

	CELLULAR MODEL
	Component
	Formulas and Cell References

	FORMULAS
	Formula Syntax
	Operand Syntax

	TIME AND ITERATION
	Cyclic Reference
	Time Model
	Iteration Concept
	Example: Exponential Approximation

	ARRAY SUPPORT
	Array specification
	Accessing an array
	Example: Reversing an Array
	Operations on arrays
	Implementation

	CELL REFERENCES
	FUNCTIONAL RECURSION
	Definition
	Implementation
	Example 1: Fibonacci
	Example 2: Quick Sort

	STRUCTURAL RECURSION
	Data type specification
	Data type use
	Final example

	FORMAL PROOFS
	Foundations
	Application

	CONCLUSION
	REFERENCES
	VITA

