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Abstract—To achieve correct execution of peer-to-peer applicatimon macro data-flow to compute a distributed portable checkpoin
non-reliable resources, we present a portable and distribied algorithm (§11). This checkpointing of the data-flow provides both the
that provides fault tolerance and result checking. Two kind of faults are p b
considered: node failure or disconnection and result forgs. This algo- asynChronqu r_eco‘{ery in case of node failuf@¥)(and the
rithm is based on the knowledge of the macro data-flow dependeies be- results certification in case of task forgevj. The certifi-
tween the application tasks. It provides correct executiorwith respect to  cation algorithm we propose is probabilistic: it ensurex the

a probabilistic certificate. We have implemented it on top ofAthapascan probability of non-detection of forgery is lesser than dsitaary
programming interface and experimental results are preseted. .
thresholdk fixed by the user.

Keywords— Fault Tolerant, Checkpoint Recovery, Certificate of execu ) ; . i
tion, Result Checking, Parallel Processing More preC|ser, we consider a peer-to-peer appllcatlon-com

posed withn tasks (orjobs) with dependencies: the inputs of
those tasks can be produced by other tasks and their ououts ¢
eventually be consumed by other tasks. Since all workers are
ARGE scale distributed platforms, such as the GRID arghonymous in a peer-to-peer platform, we assume that thé res
Peer-to-Peer computing systems, gather thousands of nagfesgiven task is forged with a probability<]0, 1] and the forg-
for computing parallel applications. At this scale, com@oin eries between two distinct tasks are assumed independiésit: t
failures, disconnections or results modifications are@eoper- hypothesis is reasonable as it introduces no restrictiothen
ations, and applications have to deal directly with repeéd#-  kind of sabotage that may be performed. Also, the distraputi
ures during program runs. of errors is modelled as a Bernoulli distributitin, q).

In this paper, we consider a large scale distributed platfor \We propose in section V-A an algorithm that implements the
where a system architecture such as Globus [5] providesgstr@robabilistic forgery detection test introduced in [16hiJ test
authentication and encrypted communications. Even on aucts based on duplication of randomly chosen tasks on trusted
secured environnement, two kinds of failures are distisiged. machines (oracles); communications and computations on or
« Node failures and disconnectian® ensure resilience of theacles are assumed as totally reliable. To ensure a protyadfili
application, fault tolerance mechanisms are to be used(8¢e non-detection of forgery lesser thanthis test duplicates only
« Task forgery the program is executed on a remote resourceé. , = ]n(li’—jq) tasks which is quickly negligible ta.

(also calledvorkerin the sequel) and its expected output results Our certification algorithm improves previous works on faul
may be modified with no control of the client application. tolerance for peer-to-peer computations: it supportstdspen-

In all this paper, atask is safdrged(orfaked when its output dencies on heterogeneous nodes including symmetrical-mult
results are different than the results it would have defidaf processors and provides results certification. We haveeimpl
executed on an equivalent resource but under the full contmeented it on top of Athapascan [13]; experimental measures
of the client. This may occur when the remote resource is t(f/I) exhibit a small overhead for a peer-to-peer parallel ap-
victim of a trojan horse or if the client software is modified o plication with middle-grain tasks.
the remote resource, as experienced with SETI@Home [1], [9]

On peer-to-peer computing platforms, failures can be man-
aged only at the software level. Failed tasks are recompilited In this section, we overview works on Fault-Tolerance and
correctness of the full execution. Since tasks in a pegrer Result Checking in the software framework, focusing on khec
parallel application are mobile and replicable, the maatad point/recovery approaches.
flow that represents the tasks and their logical dependeigie To support addition and resilience of resources for appli-
known at least implicitly or explicitly in environments duas cations with independent jobs, the fault tolerant mectmanis
Athapascan [13]. [7] developed in Condor consists in checkpointing each se-

Using the knowledge of the macro data-flow, we propose gnential process independently; To deal with message pass-
unified framework to tackle both node failures and tasksdorg ing applications, and tasks with dependencies, MPICH-Y44]
in a peer-to-peer parallel application. Assuming the exise MPI applications and Egida[11] for PVM dump independently
of at least one trusted machine (also caltedcle) and extend- each process at a given coordinated checkpoint; a consisten
ing previous works in PORCH and MPICH-¥I(), we use the global state is built by logging all communications. The dhe
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point/recovery algorithm consists in replacing a failuczla by el e/ . terminal subgraph
a new node. This requires a memory space large enough to store I v, sseerediosaand:
all communication events between two checkpoints. task
Those approaches are based on a memory core of each pro-
cess and do not currently support neither restart on heterog
neous nodes nor checkpoint of concurrent multi-threaded pr

cesses. To provide a portable checkpoint of a sequential pro terminal output
gram on heterogeneous resources, Porch[15] consistsgimipg )
the procedure call stack that describes a sequential ¢ensis s1 2 es

state. We propose to extend this portable log mechanism from
a representation of the data-flow. Data-flow is used in [10] t@y. 1. Instance of a data-flow graph associated to the erecaf five tasks
provide fault-tolerance by replication; however, for ghbbom- {f1, ..., fs}. The input parameters of the program &g, ..., e4} whereas
putations with many tasks, replication results in an inaffic 1 outputs (i.e the results of the computation) &g, .., sa }.
use of CPU resources. Also, we propose to use the data-flow to
compute a distributed and portable checkpoint. pothesis {; 2 3):

Yet, the results of the application remain to be checkedsesin 7, ) Any synchronization between tasks is explicitly described
certification is performed by software, there is no absajui@- i the data-flow graph.
antee that results are correct. Then, the objective is timiie (f7,) A task is carried out until the end of its execution without
the certification cost while ensuring an arbitrary smallg@iil- - synchronization. Consequently, once ready, a task can ée ex
ity of certification error. Basically, software certificati con- cyted non-preemptively; it does not wait the results of drigso
sists in adding informations to the execution to acceptéethe child task it has created.

result(s) of the jobs. o _ (H) Tasks are deterministic; any execution of a task with same
The*“simple checkers[2] approach consists in veryfing com-inpyt delivers the same resut.
puted results thanks to a post-condition. This approadimisle  Those hypotheses are verified by most peer-to-peer applica-

and elegant when a post-condition is known that may be effions; they ensure that any correct execution of any task wil
ciently verified. Though, it is often impossible to autornatly deliver the same output results.

extract such post-condition on any program. Furthermér, i N ]
computation is performed on numerous peers, the detedtian ¢ TOPOSItion 1. Assuming hypothese#/( ,3), the macro data-
faked final result does not supply any information on the gerlOW graphG describes a consistent global state.

responsible for the forgery. To tackle this probl€fuuplica- Our checkpoint mechanism is based on this proposition. It
tion” approach[14], [6] is based on several executions of eagbnsists in an asynchronous distributed systematic stoofig
task on various resourcesgrkersthat are retracted to computeeach task (identifier and parameters) and of their data depen
tasks while reliable ones may also check resulta¢leg). Du-  dencies (identifier and related data value). Atomic evergs a
plicating all jobs would generate an important additionadtc registered for each task declaration, start or complefidrose
To limit it, C. Germain and N. Playez propose a probabilistigvents are stored on a checkpoint server (SC) which implemen
certification based on a sequential test of Wald [17], onlgva f atomic transactions.To ensure scalability, (SC) is hiiaror
randomly chosen tasks are checked. This approachiis lifiateddistributed. Each nod& in the grid is related to a proper sta-
the case of independent tasks. ble memory SG. Then, the global state related € can be

We extend this approach for the case of tasks with dependgdmputed in a distributed way locally on each processourgig
cies. For both distributed recovery and certification, we &@s 2 presents the principle of the checkpointing method. On any
checkpoint of a portable representation of the tasks antléil node NV, each task is independently checkpointed and its track
dependencies, such as the data-flow representation iciddiu js saved on the stable memory $@elated toN.
the next section. On a theoretical point of view, this checkpoint algorithm

avoids domino effects (e.g. the program is never restarted f

IlI. DISTRIBUTED CHECKPOINT BASED ONDATA-FLOW jjitia| state). Indeed, if the MTBF (Mean Time Between Fail-

Our approach is based on the analysis of the dataflow. In thi) is larger than the maximal execution timef a task; then
framework, the application is represented by a bipartiteadi it is ensured that at least one task has been successfully com
acyclic graphG': the first class of vertices is associated to theleted. Also, successfully completed tasks are garbagesd, p
tasks whereas the second one represents the parametees ofiding guaranteed bounds for memory spacel[3].
tasks (either inputs or outputs according to the directibthe
edge). In the sequel, a leaf parameteéins called aterminal
output Associated to a set of terminal outpdistheterminal From the previous checkpoint of the macro dataflow, we pro-
subgraphis the subgrapldrs restricted to the ancestors of thepose in this section a recovery mechanism to resist to node
vertices inS. Figure 1 illustrates those notions. Note tkia¢ failures and disconnections: failing node are supposediln f
can be computed fror® in linear timeO(|G). silent mode[12]. We consider the failures/disconnectiags

Furthermore, functional nature of data-flow enables both paode volatility[4]: a volatile node is no more reachable and
allelism and fault tolerance [10]. In order to consider tberent  the case of a later reconnection, its future results wilgomied.
state ofG as a portable checkpoint, we assume the following hirault-tolerance is managed by a module which is isolated in a

IV. FAULT TOLERANCE FROMDATA-FLOW



V. RESULT CHECKING FROM DATA-FLOW CHECKPOINTING

The execution provides a set of terminal outpdis =
{s1, ..., $m } to certify, and the associated terminal subgréfzh
can be computed thanks to the previous Data-Flow analgsis.
s can contain all or part of the terminal outputs of the applica
tion. The problem is then to decide whether or 6@t contains
forged tasks, with a risk of second kind (false negative ar-no
detection)d < e. e is an arbitrary threshold fixed by the user.

‘PUT@A-Node, 1, Event-T)

Fig. 2. Checkpoint method for a data-flow graph.
A. Probabilistic Monte-Carlo algorithm for forgery detémn

secure environment, such as the oracles introducgl.ithis ' this section, we provide a probabilistic certificate fe-d
module is responsible for: launching the program; reacting tection of forged tasks iti7s. This test is inspired from the

the addition or the resilience of nodes; recovering nodessate  Miller-Rabin Monte-Carlo test of composition (see [8] page
detected failed. 139) which considers that a number is prime if the probapbilit

. . . of non-detection of composition is small enough. Similanke
Wh.en anodeV is detected failed, its related stable MEMONYsnsider that the results to certify are correct if the plolig
SCy is marked to be eventually uncompleted. x5€ontains

of non-detection of forgery results is small enough. Heoce,

a set of events related to a subgraph (¢l of the dataflow : I gery resufts | U9
. .~~~ testis aMonte-Carlo test of forgery

graphG. The recovery from this stable memory consists in the _
rebuilding of this subgraph: all objects @i have a unigue logi- ~ Let Hy be the events does not contain any forged tasks”
cal identifier which is defined at their creation and regisen andH; = Ho ("Gs contains at least a forged tasks”). L@t
the checkpoint server SC; this identifier remains the santie ufpe a subset of uniformly chosen tasks itv's. These tasks will
the execution of the full application is completed. be submitted to oracles. Thester i.e the certification process,
¢ takes one of the following decisions: "ACCEPT" (no testeskta

Recoverin then consists in recovering all tasks in
9N g ® "REJECT” (at least one task was de-

that have not yet been completed while respecting data dep\ﬁ(ﬂs 3itekCt§d forged) or
dencies. The successive atomic states of ata@sk described [€cted fake )-

in figure 3.A; they are checkpointed in JC After the starting  The next proposition states that if the number of tasks gelar
of ¢ and before its termination, the current state &f directly enough, then a partial duplication of oni. , = lnl(nl(i)q) tasks,
related to the number of tasks successfully createtdnd reg- js syfficient to guarantee a given quality of certificatidme(tisk

istered on S&. The recovery ofV is then derived from this of second kind is bounded by the arbitrary threshgldNote
automaton. Each tagkn SCy is restarted from its last successiyat v, ¢ IS a quantity independent from the numineof tasks.
fully registered state (Figure 3.B). ’

Taskt Toske i Reant Proposition 2. Let consider an execution with tasks and
a probability of tasks forgery lesser than ThenVe > 0,

Re—execution In(e)

P Ing/Vn > ng: itis sufficient to checkVe , = 7= tasks
Q/ uniformly chosen to havgé = P(ACCEPT|H;) < e.
! ! Re—execution
v v
&> ST
o Proof. If T; is the number of tasks that have been detected
forged in a setG after i tests, thenl; follows the binomial
A B law B(i,q). Letk be the number of tasks uniformly chosen

among then tasks of the program for checking. We have:
P(H) =1—-PHy) =1-PT, =0) =1—-(1-¢)"
andP(ACCEPT) = P(T, = 0) = (1 — ¢)*. Now, if the
tester answers "REJECT”, then at least one task ofs forged.

Fig. 3. A: State automaton of atask B: Recovery of a task

Under hypothesesH » 3), this recovery algorithm verifies _ _ P(REJECTNH,) _ (1-¢)*—(1-g)"
ypotf 2,3) / Hence, = 1 ) = “Hian —-Then
that: modification events iz are registered once and only In[(1—q)" (1— )] !
once; every task correctly ends its execution onceand ordgo 7 = € <= k = Tgimeym = feq(n). Now, for
Hence, the application is completed after a finite numbeeof m > 0, fc 4(n) is a non-decreasing and positive function, and
executions. fe.q(n) notoo, Ny = m](“l(j)q). Consequently3 < ¢ as long

In the next section, we extend this recovery algorithm sk > N, ,. Figure 4 exhibits the evolution gt ,(n) whenn
check the computed results of the application from the chedk increasing. We can see that it quickly tends to the valug,
pointing of G. constant relatively ta. O



600 — Therefore, a dynamic parallel certification algorithm is de
fined and allows taorrectthe forgeries. This algorithm is de-
tailed in Algorithm 1.

400 - - - — - -
Algorithm 1: Dynamic parallel certification algorithm with

feqn) m1 error correction

200 L Data : Gs : execution track to certify Result: O(Gs)
Check(,Gs);
ProcedureCheck

"5 T Input: G : subgraph of forged tasks and their successors,

010 100 1000 10000 Gc : the rest of the graptGc N Gr = )

G = Gc UGF, TasksChecked 0;
repeat

Pick up a new task uniformly chosen among(G);

Fig.tglt.a| El\;rc;:gteicr)r;fc;;g;(z ?;ir;]iglté? Qu:wber of tasks to check treddy to the if (t c Gc) ORI sEndOf Execut i on( G) then
- if O.(t) ==1 then

//Detection of a forgery

#tasksg=5%,n; = N

Proposition 2 directly leads to a Monte-Carlo test of foyger Gr = GpU Successors(t);

either the test ends afté¥. , successful checks ar@s is ac- Go = G\Gr;

cepted; or else an error has been detected. LaunchExecut i on( Gr) //Gr must be re-executed
In practice for a peer-to-peer application, the total numbe //Checking the tasks @f - can be pursued

of tasks is large enough and thus$n { N, 4, n} = N, 4 = o(n) /lwhile G is being executed

tasks have to be checked. Thus, the additional cost reqfared Check( Gr,G¢) ;

the certification is quickly negligible. For instance, in eop else

gram composed of at least 300 tasks with a probability ofsask TasksCheckeg-1;
forgeryq = 1%, only N, , ~ 298 tasks have to be checked ifuntil TasksChecked =min {N, 4, n(G)};
the arbitrary certification rate is boundedte- 5%.
In the previous algorithm, tasks have to be checked on secur&nder hypothesi#l; » 3 defined in§lll), we assume that the

oracles. Thus, aalementary oraclés defined as a task checkerelationGs = G¢ U G is satisfied along the recursive calls to
operating in a secure environment. Its running is illusian the procedure Check. The partial post-condition expounaed
figure 5. Thanks to the input parameters of a tagéxtracted [16] can reinforce this assumption.

Let C be the certification cost i.e. the number of operations.

o check xmeted fom If no forgery is detected;’ < min {N, 4, |Gs|}. Otherwise, in
; A R . the case of error correction and if a certification is obtdiafter
r !\ ELEMENTARY ORACLE . .y . .
HE} DT sk checker ! d detections then the additional cost for the full certifioatis
Cn ) S |} eatoachecking funtion: | | < (d+1)min{N,,, |Gs|}. Of course, if the tasks ¥ are to
S e | be re-executed, the unavoidable cost of this duplicatisritvae
1979) i L _— | . .
m | [ [dopticatiop anc comparison | added toC. The memory cost of the certification ¥(n), and
2 ) T, (e;(r;;u’][\; """ hence depends on the granularity of the graph. Moreoveg the
4 A N [ucccpl campumuonj [rc]cu Cmnpulal\unj

is a trade-off between the operations number and the memory
space: weak granularity implies a large number of tasks.- Con
sequently, the memory cost increases but the certificaitios t
(asymptotically bounded by the constant valvig,) is negligi-

from the checkpoint of the data-flow), a re-execution oén be ble.

performed and its results have to match the previous ougut r VI. EXPERIMENTAL RESULTS
sults already stored in the data-flow checkpoint; othervtse
task has been faked. In the sequ®l,(¢) indicates this opera-
tion.

(V] )

Fig. 5. Running of an elementary oracle

We have implemented this fault tolerant distributed mecha-
nism on top of Athapascan [13]. Athapascan is a macro data-
flow parallel language (C++ library) dedicated to distrdmliar-
chitectures including SMP nodes. The program describas onl
computations to be performed and their dependencies.

In a certification with an arbitrary fixed threshald> 0, Gs Figure 6 exhibits experimental results on tkeary bench-
is submitted to an oracl® which decides whether the valuesnark [3] for recursive tree computations (15000 tasks)nilna-
of the terminal outputs included ifl are correct or not, with re- ber of nodes varies between 2 and 16 nodes. The failure socenar
spect to the relatiof < e. Yet, if a forged task is detected, the is as follows: the execution starts on a cluster with 16 nodes
knowledge of the graph allows to invalidate the successista (Pentium lll, 733 MHZ, 256 MB, 15 GB, Ethernet 100 Mb/s);
of ¢: the related sub-graph has to be replayed and the paridhilure occurs; recovery is performed from the files of ¢hec
certification of the other tasks can be continued in parallel  points. Sy is the execution time without checkpoinis; is the

B. Certification algorithm with forgery correction



Parallel execution of knarry: 15000 tasks

asynchronous and distributed. It provides a portable nrésima
e to support resource failure and disconnection.
" Implementation of this algorithm on top of Athapascan sys-
tem exhibits a small computational overhead that can be-amor
® tized for middle-grain tasks. Also, this algorithm is praimg

‘ on a practical point of view and we are currently investigati
its use for a medical application on a grid of resources in the
framework of the french RAGTIME project.

When many tasks are dynamically created, there is an inter-
esting tradeoff between the memory space required to dtere t
checkpoint and the number of task duplications to be peréorm
On the one hand, the checkpoint/restart algorithm is disteid
and enables to garbage tasks once they are completed;dbis pr
erty may be used to save memory space at the price of re-
executing all garbaged tasks in case of forgery detection. O
execution time with checkpointsi, presents the complete runthe other hand, the efficiency of the probabilistic resubait
time with 1-fault execution. We remark that : ing algorithm directly depends on the number of tasks to be ce

S, S, — S S tified: the more the tasks, the more efficient their checkire
S . & < ~1.01 certification algorithm we propose in this paper is motiddg
0 H#tasks So L
minimizing the number of tasks to be re-executed. Also, a per

Thus, checkpoint overhead is constant too in this scenHriospective is a certification algorithm submitted to both tiamel
can be seen that for tasks of 1ms, overhead is about 10% cenemory space constraints.
pared to a normal execution without fault tolerance; forgien
unit tasks (0.1s) the overhead becomes lesser than 1%.

Concerning result checking, experimental results arebexhii]
ited in figure 7. In this experiment no error was introduc
during computation. In this context, we compare the certifi-
cation time required by complete duplication (all tasks r&re [3]
executed) and by partial duplication 8t , tasks (withe = 0, 1
andq = 0,01).

If the number of tasks is small, the second approach coniéls
down to the first one as all the tasks are checked. But an iserea
of the number of tasks quickly favors the partial duplicatip-
proach in terms of certification time, even if the certifioatis
then probabilistic. Note that, it = 8000 (resp.32000), then
only 20% (resp.10 %) tasks have to be checked.

100

Il
0 2 4 6 8 10 12 14 16 18
Number of nodes

Fig. 6. Experimental performances with the applicationdbemarkknaryfor a
parallel execution on 16 nodes.

~ 1.009;

ms;
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