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Abstract— To achieve correct execution of peer-to-peer applications on
non-reliable resources, we present a portable and distributed algorithm
that provides fault tolerance and result checking. Two kinds of faults are
considered: node failure or disconnection and result forgery. This algo-
rithm is based on the knowledge of the macro data-flow dependencies be-
tween the application tasks. It provides correct executionwith respect to
a probabilistic certificate. We have implemented it on top ofAthapascan
programming interface and experimental results are presented.
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tion, Result Checking, Parallel Processing

I. I NTRODUCTION

LARGE scale distributed platforms, such as the GRID and
Peer-to-Peer computing systems, gather thousands of nodes

for computing parallel applications. At this scale, component
failures, disconnections or results modifications are partof oper-
ations, and applications have to deal directly with repeated fail-
ures during program runs.

In this paper, we consider a large scale distributed platform
where a system architecture such as Globus [5] provides strong
authentication and encrypted communications. Even on sucha
secured environnement, two kinds of failures are distinguished.
• Node failures and disconnections: to ensure resilience of the
application, fault tolerance mechanisms are to be used(see§IV).
• Task forgery: the program is executed on a remote resource
(also calledworker in the sequel) and its expected output results
may be modified with no control of the client application.

In all this paper, a task is saidforged(or faked) when its output
results are different than the results it would have delivered if
executed on an equivalent resource but under the full control
of the client. This may occur when the remote resource is the
victim of a trojan horse or if the client software is modified on
the remote resource, as experienced with SETI@Home [1], [9].

On peer-to-peer computing platforms, failures can be man-
aged only at the software level. Failed tasks are recomputedtill
correctness of the full execution. Since tasks in a peer-to-peer
parallel application are mobile and replicable, the macro data
flow that represents the tasks and their logical dependencies is
known at least implicitly or explicitly in environments such as
Athapascan [13].

Using the knowledge of the macro data-flow, we propose an
unified framework to tackle both node failures and tasks forgery
in a peer-to-peer parallel application. Assuming the existence
of at least one trusted machine (also calledoracle) and extend-
ing previous works in PORCH and MPICH-V (§II), we use the

macro data-flow to compute a distributed portable checkpoint
(§III). This checkpointing of the data-flow provides both the
asynchronous recovery in case of node failures (§IV) and the
results certification in case of task forgery (§V). The certifi-
cation algorithm we propose is probabilistic: it ensures that the
probability of non-detection of forgery is lesser than an arbitrary
thresholdε fixed by the user.

More precisely, we consider a peer-to-peer application com-
posed withn tasks (orjobs) with dependencies: the inputs of
those tasks can be produced by other tasks and their outputs can
eventually be consumed by other tasks. Since all workers are
anonymous in a peer-to-peer platform, we assume that the result
of a given task is forged with a probabilityq ∈]0, 1[ and the forg-
eries between two distinct tasks are assumed independent: this
hypothesis is reasonable as it introduces no restriction onthe
kind of sabotage that may be performed. Also, the distribution
of errors is modelled as a Bernoulli distributionB(n, q).

We propose in section V-A an algorithm that implements the
probabilistic forgery detection test introduced in [16]. This test
is based on duplication of randomly chosen tasks on trusted
machines (oracles); communications and computations on or-
acles are assumed as totally reliable. To ensure a probability of
non-detection of forgery lesser thanε, this test duplicates only
Nε,q = ln ε

ln(1−q) tasks which is quickly negligible ton.
Our certification algorithm improves previous works on fault

tolerance for peer-to-peer computations: it supports tasks depen-
dencies on heterogeneous nodes including symmetrical multi-
processors and provides results certification. We have imple-
mented it on top of Athapascan [13]; experimental measures
(§VI) exhibit a small overhead for a peer-to-peer parallel ap-
plication with middle-grain tasks.

II. RELATED WORK

In this section, we overview works on Fault-Tolerance and
Result Checking in the software framework, focusing on check-
point/recovery approaches.

To support addition and resilience of resources for appli-
cations with independent jobs, the fault tolerant mechanism
[7] developed in Condor consists in checkpointing each se-
quential process independently; To deal with message pass-
ing applications, and tasks with dependencies, MPICH-V[4]for
MPI applications and Egida[11] for PVM dump independently
each process at a given coordinated checkpoint; a consistent
global state is built by logging all communications. The check-



point/recovery algorithm consists in replacing a failure node by
a new node. This requires a memory space large enough to store
all communication events between two checkpoints.

Those approaches are based on a memory core of each pro-
cess and do not currently support neither restart on heteroge-
neous nodes nor checkpoint of concurrent multi-threaded pro-
cesses. To provide a portable checkpoint of a sequential pro-
gram on heterogeneous resources, Porch[15] consists in logging
the procedure call stack that describes a sequential consistent
state. We propose to extend this portable log mechanism from
a representation of the data-flow. Data-flow is used in [10] to
provide fault-tolerance by replication; however, for global com-
putations with many tasks, replication results in an inefficient
use of CPU resources. Also, we propose to use the data-flow to
compute a distributed and portable checkpoint.

Yet, the results of the application remain to be checked; since
certification is performed by software, there is no absoluteguar-
antee that results are correct. Then, the objective is to minimize
the certification cost while ensuring an arbitrary small probabil-
ity of certification error. Basically, software certification con-
sists in adding informations to the execution to accept/refuse the
result(s) of the jobs.

The“simple checkers”[2] approach consists in veryfing com-
puted results thanks to a post-condition. This approach is simple
and elegant when a post-condition is known that may be effi-
ciently verified. Though, it is often impossible to automatically
extract such post-condition on any program. Furthermore, if a
computation is performed on numerous peers, the detection of a
faked final result does not supply any information on the peer(s)
responsible for the forgery. To tackle this problem,“duplica-
tion” approach[14], [6] is based on several executions of each
task on various resources (workersthat are retracted to compute
tasks while reliable ones may also check results (oracles)). Du-
plicating all jobs would generate an important additional cost.
To limit it, C. Germain and N. Playez propose a probabilistic
certification based on a sequential test of Wald [17], only a few
randomly chosen tasks are checked. This approach is limitedfor
the case of independent tasks.

We extend this approach for the case of tasks with dependen-
cies. For both distributed recovery and certification, we use a
checkpoint of a portable representation of the tasks and alltheir
dependencies, such as the data-flow representation introduced in
the next section.

III. D ISTRIBUTED CHECKPOINT BASED ONDATA -FLOW

Our approach is based on the analysis of the dataflow. In that
framework, the application is represented by a bipartite direct
acyclic graphG : the first class of vertices is associated to the
tasks whereas the second one represents the parameters of the
tasks (either inputs or outputs according to the direction of the
edge). In the sequel, a leaf parameter inG is called aterminal
output. Associated to a set of terminal outputsS, the terminal
subgraphis the subgraphGS restricted to the ancestors of the
vertices inS. Figure 1 illustrates those notions. Note thatGS

can be computed fromG in linear timeO(|G|).
Furthermore, functional nature of data-flow enables both par-

allelism and fault tolerance [10]. In order to consider the current
state ofG as a portable checkpoint, we assume the following hy-
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Fig. 1. Instance of a data-flow graph associated to the execution of five tasks
{f1, ..., f5}. The input parameters of the program are{e1, ..., e4} whereas
the outputs (i.e the results of the computation) are{s1, ..., s4}.

pothesis (H1,2,3):
(H1) Any synchronization between tasks is explicitly described
in the data-flow graph.
(H2) A task is carried out until the end of its execution without
synchronization. Consequently, once ready, a task can be exe-
cuted non-preemptively; it does not wait the results of any of its
child task it has created.
(H2) Tasks are deterministic; any execution of a task with same
input delivers the same result.

Those hypotheses are verified by most peer-to-peer applica-
tions; they ensure that any correct execution of any task will
deliver the same output results.

Proposition 1. Assuming hypotheses (H1,2,3), the macro data-
flow graphG describes a consistent global state.

Our checkpoint mechanism is based on this proposition. It
consists in an asynchronous distributed systematic storage of
each task (identifier and parameters) and of their data depen-
dencies (identifier and related data value). Atomic events are
registered for each task declaration, start or completion.Those
events are stored on a checkpoint server (SC) which implement
atomic transactions.To ensure scalability, (SC) is hierarchic or
distributed. Each nodeN in the grid is related to a proper sta-
ble memory SCN . Then, the global state related toG can be
computed in a distributed way locally on each processor. Figure
2 presents the principle of the checkpointing method. On any
nodeN , each task is independently checkpointed and its track
is saved on the stable memory SCN related toN .

On a theoretical point of view, this checkpoint algorithm
avoids domino effects (e.g. the program is never restarted from
initial state). Indeed, if the MTBF (Mean Time Between Fail-
ure) is larger than the maximal execution timeτ of a task; then
it is ensured that at least one task has been successfully com-
pleted. Also, successfully completed tasks are garbaged, pro-
viding guaranteed bounds for memory space[3].

IV. FAULT TOLERANCE FROMDATA -FLOW

From the previous checkpoint of the macro dataflow, we pro-
pose in this section a recovery mechanism to resist to node
failures and disconnections: failing node are supposed in fail-
silent mode[12]. We consider the failures/disconnectionsas
node volatility[4]: a volatile node is no more reachable and, in
the case of a later reconnection, its future results will be ignored.
Fault-tolerance is managed by a module which is isolated in a
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Fig. 2. Checkpoint method for a data-flow graph.

secure environment, such as the oracles introduced in§I). This
module is responsible for: launching the program; reactingto
the addition or the resilience of nodes; recovering nodes that are
detected failed.

When a nodeN is detected failed, its related stable memory
SCN is marked to be eventually uncompleted. SCN contains
a set of events related to a subgraph (see§III) of the dataflow
graphG. The recovery from this stable memory consists in the
rebuilding of this subgraph: all objects inG have a unique logi-
cal identifier which is defined at their creation and registered in
the checkpoint server SC; this identifier remains the same until
the execution of the full application is completed.

RecoveringN then consists in recovering all tasks in SCN

that have not yet been completed while respecting data depen-
dencies. The successive atomic states of a taskt are described
in figure 3.A; they are checkpointed in SCN . After the starting
of t and before its termination, the current state oft is directly
related to the number of tasks successfully created byt and reg-
istered on SCN . The recovery ofN is then derived from this
automaton. Each taskt in SCN is restarted from its last success-
fully registered state (Figure 3.B).
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Fig. 3. A: State automaton of a taskt. B: Recovery of a taskt.

Under hypotheses (H1,2,3), this recovery algorithm verifies
that: modification events inG are registered once and only
once; every task correctly ends its execution once and only once.
Hence, the application is completed after a finite number of re-
executions.

In the next section, we extend this recovery algorithm to
check the computed results of the application from the check-
pointing ofG.

V. RESULT CHECKING FROM DATA -FLOW CHECKPOINTING

The execution provides a set of terminal outputsS =
{s1, ..., sm} to certify, and the associated terminal subgraphGS

can be computed thanks to the previous Data-Flow analysis.S
can contain all or part of the terminal outputs of the applica-
tion. The problem is then to decide whether or notGS contains
forged tasks, with a risk of second kind (false negative or non-
detection)β ≤ ε. ε is an arbitrary threshold fixed by the user.

A. Probabilistic Monte-Carlo algorithm for forgery detection

In this section, we provide a probabilistic certificate for de-
tection of forged tasks inGS . This test is inspired from the
Miller-Rabin Monte-Carlo test of composition (see [8] page
139) which considers that a number is prime if the probability
of non-detection of composition is small enough. Similarly, we
consider that the results to certify are correct if the probability
of non-detection of forgery results is small enough. Hence,our
test is aMonte-Carlo test of forgery.

Let H0 be the event ”GS does not contain any forged tasks”
andH1 = H0 (”GS contains at least a forged tasks”). LetG
be a subset ofk uniformly chosen tasks inGS . These tasks will
be submitted to oracles. Thetester, i.e the certification process,
takes one of the following decisions: ”ACCEPT” (no tested task
was detected forged) or ”REJECT” (at least one task was de-
tected faked).

The next proposition states that if the number of tasks is large
enough, then a partial duplication of onlyNε,q = ln(ε)

ln(1−q) tasks,
is sufficient to guarantee a given quality of certification (the risk
of second kind is bounded by the arbitrary thresholdε). Note
thatNε,q is a quantity independent from the numbern of tasks.

Proposition 2. Let consider an execution withn tasks and
a probability of tasks forgery lesser thanq. Then∀ε > 0,
∃n0/∀n > n0: it is sufficient to checkNε,q = ln(ε)

ln(1−q) tasks
uniformly chosen to haveβ = P(ACCEPT |H1) ≤ ε.

Proof. If Ti is the number of tasks that have been detected
forged in a setG after i tests, thenTi follows the binomial
law B(i, q). Let k be the number of tasks uniformly chosen
among then tasks of the program for checking. We have:
P(H1) = 1 − P(H0) = 1 − P(Tn = 0) = 1 − (1 − q)n

andP(ACCEPT ) = P(Tk = 0) = (1 − q)k. Now, if the
tester answers ”REJECT”, then at least one task ofGS is forged.

Hence, β = 1 − P(REJECT∩H1)
P(H1) = (1−q)k

−(1−q)n

1−(1−q)n .Then

β ≤ ε ⇐⇒ k ≥ ln[(1−q)n(1−ε)+ε]
ln(1−q) = fε,q(n). Now, for

n > 0, fε,q(n) is a non-decreasing and positive function, and

fε,q(n)
n→+∞
−−−−−→ Nε,q = ln(ε)

ln(1−q) . Consequently,β ≤ ε as long
ask ≥ Nε,q. Figure 4 exhibits the evolution offε,q(n) whenn
is increasing. We can see that it quickly tends to the valueNε,q,
constant relatively ton.
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total number of tasksn to haveβ ≤ ε.

Proposition 2 directly leads to a Monte-Carlo test of forgery:
either the test ends afterNε,q successful checks andGS is ac-
cepted; or else an error has been detected.

In practice for a peer-to-peer application, the total number n
of tasks is large enough and thusmin {Nε,q, n} = Nε,q = o(n)
tasks have to be checked. Thus, the additional cost requiredfor
the certification is quickly negligible. For instance, in a pro-
gram composed of at least 300 tasks with a probability of tasks
forgeryq = 1%, only Nε,q ' 298 tasks have to be checked if
the arbitrary certification rate is bounded toε = 5%.

In the previous algorithm, tasks have to be checked on secure
oracles. Thus, anelementary oracleis defined as a task checker
operating in a secure environment. Its running is illustrated in
figure 5. Thanks to the input parameters of a taskt (extracted
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task checker
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reject computation
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Fig. 5. Running of an elementary oracle

from the checkpoint of the data-flow), a re-execution oft can be
performed and its results have to match the previous output re-
sults already stored in the data-flow checkpoint; otherwise, the
task has been faked. In the sequel,Oe(t) indicates this opera-
tion.

B. Certification algorithm with forgery correction

In a certification with an arbitrary fixed thresholdε > 0, GS

is submitted to an oracleO which decides whether the values
of the terminal outputs included inS are correct or not, with re-
spect to the relationβ ≤ ε. Yet, if a forged taskt is detected, the
knowledge of the graph allows to invalidate the successor tasks
of t: the related sub-graph has to be replayed and the partial
certification of the other tasks can be continued in parallel.

Therefore, a dynamic parallel certification algorithm is de-
fined and allows tocorrect the forgeries. This algorithm is de-
tailed in Algorithm 1.

Algorithm 1: Dynamic parallel certification algorithm with
error correction

Data : GS : execution track to certify Result : O(GS)
Check(∅,GS);
ProcedureCheck
Input : GF : subgraph of forged tasks and their successors,

GC : the rest of the graph (GC ∩ GF = ∅)
G = GC ∪ GF , TasksChecked= 0;
repeat

Pick up a new taskt uniformly chosen amongn(G);
if (t ∈ GC) ORIsEndOfExecution(GF) then

if Oe(t) == 1 then
//Detection of a forgery;
GF = GF∪ Successors(t);
GC = G\GF ;
LaunchExecution(GF)//GF must be re-executed;
//Checking the tasks ofGC can be pursued;
//whileGF is being executed;
Check(GF ,GC);

else
TasksChecked+=1;

until TasksChecked ==min {Nε,q, n(G)};

Under hypothesisH1,2,3 defined in§III), we assume that the
relationGS = GC ∪ GF is satisfied along the recursive calls to
the procedure Check. The partial post-condition expoundedin
[16] can reinforce this assumption.

Let C be the certification cost i.e. the number of operations.
If no forgery is detected,C ≤ min {Nε,q, |GS |}. Otherwise, in
the case of error correction and if a certification is obtained after
d detections then the additional cost for the full certification is
≤ (d+1)min {Nε,q, |GS |}. Of course, if the tasks ofGF are to
be re-executed, the unavoidable cost of this duplication has to be
added toC. The memory cost of the certification isO(n), and
hence depends on the granularity of the graph. Moreover, there
is a trade-off between the operations number and the memory
space : weak granularity implies a large number of tasks. Con-
sequently, the memory cost increases but the certification time
(asymptotically bounded by the constant valueNε,q) is negligi-
ble.

VI. EXPERIMENTAL RESULTS

We have implemented this fault tolerant distributed mecha-
nism on top of Athapascan [13]. Athapascan is a macro data-
flow parallel language (C++ library) dedicated to distributed ar-
chitectures including SMP nodes. The program describes only
computations to be performed and their dependencies.

Figure 6 exhibits experimental results on theknary bench-
mark [3] for recursive tree computations (15000 tasks); thenum-
ber of nodes varies between 2 and 16 nodes. The failure scenario
is as follows: the execution starts on a cluster with 16 nodes
(Pentium III, 733 MHZ, 256 MB, 15 GB, Ethernet 100 Mb/s);
a failure occurs; recovery is performed from the files of check-
points. S0 is the execution time without checkpoints;S1 is the
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execution time with checkpoints;S2 presents the complete run
time with 1-fault execution. We remark that :

S1

S0
' 1.009;

S1 − S0

#tasks
' 1ms;

S2

S0
' 1.01

Thus, checkpoint overhead is constant too in this scenario.It
can be seen that for tasks of 1ms, overhead is about 10% com-
pared to a normal execution without fault tolerance; for longer
unit tasks (0.1s) the overhead becomes lesser than 1%.

Concerning result checking, experimental results are exhib-
ited in figure 7. In this experiment no error was introduced
during computation. In this context, we compare the certifi-
cation time required by complete duplication (all tasks arere-
executed) and by partial duplication ofNε,q tasks (withε = 0, 1
andq = 0, 01).

If the number of tasks is small, the second approach comes
down to the first one as all the tasks are checked. But an increase
of the number of tasks quickly favors the partial duplication ap-
proach in terms of certification time, even if the certification is
then probabilistic. Note that, ifn = 8000 (resp.32000), then
only 20% (resp.10 %) tasks have to be checked.
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VII. C ONCLUSION AND PERSPECTIVES

We have presented an execution algorithm for peer-to-peer
applications that ensures robustness both to resource failure or
disconnection and to result forgery. This algorithm is based on
the checkpointing of the macro dataflow related to the applica-
tion which describes both the tasks and their data dependencies.
The checkpointing of the macro dataflow on reliable resources is

asynchronous and distributed. It provides a portable mechanism
to support resource failure and disconnection.

Implementation of this algorithm on top of Athapascan sys-
tem exhibits a small computational overhead that can be amor-
tized for middle-grain tasks. Also, this algorithm is promising
on a practical point of view and we are currently investigating
its use for a medical application on a grid of resources in the
framework of the french RAGTIME project.

When many tasks are dynamically created, there is an inter-
esting tradeoff between the memory space required to store the
checkpoint and the number of task duplications to be performed.
On the one hand, the checkpoint/restart algorithm is distributed
and enables to garbage tasks once they are completed; this prop-
erty may be used to save memory space at the price of re-
executing all garbaged tasks in case of forgery detection. On
the other hand, the efficiency of the probabilistic result check-
ing algorithm directly depends on the number of tasks to be cer-
tified: the more the tasks, the more efficient their checking.The
certification algorithm we propose in this paper is motivated by
minimizing the number of tasks to be re-executed. Also, a per-
spective is a certification algorithm submitted to both timeand
memory space constraints.
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