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Abstract. This paper presents a new checkpoint/recovery method for dataflow
computations using work-stealing in heterogeneous environments as found in
grid or cluster computing. Basing the state of the computation on a dynamic
macro dataflow graph, it is shown that the mechanisms provide effective check-
pointing for multithreaded applications in heterogeneous environments. Two meth-
ods,Systematic Event LoggingandTheft-Induced Checkpointing, are presented
that are efficient and extremely flexible under the system-state model, allowing
for recovery on different platforms under different number of processors. A for-
mal analysis of the overhead induced by both methods is presented, followed by
an experimental evaluation in a large cluster. It is shown that both methods have
very small overhead and that trade-offs between checkpointing and recovery cost
can be controlled.

1 Introduction and Background

Grid and cluster architectures are gaining in popularity for scientific computing appli-
cations. The distributed computations, as well as their underlying infrastructure consist-
ing of a large number of computers, storage and networking devices, pose challenges in
overcoming the effects of node and communication link failures. Since the computation
times are often significant, effective fault-tolerance mechanisms are required to recover
from faults in a fashion that avoids costly restarts.

Fault-tolerance is an effective method to address the possibility of faults in large
systems. This is especially important in the case of grids and clusters since in the ab-
sence of fault-tolerance the probability of failure, and thus the unreliability of such
architecture, increase with the number of components that can fail [21]. Recovery from
faults imply the existence of redundancy, e.g. time, information, or spatial redundancy.
In the case of large heterogeneous environments, redundancy mechanisms must address
the specific requirements associated with recovery mechanisms, taking into account a
dynamic number of possibly dissimilar computational nodes.
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Many possible solutions based on fault-tolerance have been studied in the litera-
ture. Approaches based on duplication [15] can only tolerate a fixed number of faults.
All other protocols are based on saving the state of the processes and on constructing
a consistent global state [11], i.e. log-based and checkpoint-based protocols [5]. The
various protocols can be compared based on three fundamental criteria. The first crite-
rion is coordination, where processes coordinate each other in order to build a consis-
tent global state at the time of checkpointing or recovery. The second isheterogeneity,
which implies that the checkpoint state can be restored on a variety of platforms, e.g.
node architecture or operating system. In the contrary, one speaks of homogeneity. The
last criterion addresses thescope of the recovery, i.e. global or local recovery. If a single
fault causes the roll-back of all processes in the application, one speaks of global recov-
ery. Local recovery implies that only the roll-back of the crashed process is necessary.

We focus on roll-back strategies under consideration of crash faults and present two
major mechanisms:log-basedandcheckpoint-basedrollback-recovery.

1.1 Log-based protocols

Message logging [12] is based on the fact that a process can be modelled by a se-
quence of interval states, each one representing a non-deterministic event [16]. Under
the hypothesis that each non-deterministic event can be identified, their logging allows
a crashed process to be recovered by (1) restoring it to the initial state and (2) replaying
messages to it in the same order they were delivered before the crash. To avoid a roll-
back to the initial state of a process and to limit the amount of messages that need to be
replayed, each process periodically saves its local state. Examples of systems based on
this method include MPICH-V2 [4], and FTL-Charm++ [18]. For applications with ex-
tensive inter-process communication, log-based protocols are burdened with the possi-
bly large overhead, with respect to space and time, induced by the logging of messages.

1.2 Checkpoint-based protocols

Checkpointing methods are based on periodically saving a global state [11] of the com-
putation to stable storage. In case of a fault, the computation is restarted from one of
these previously saved states. Checkpointing-based methods differ in the way processes
are coordinated and on the interpretation of a consistent global state.

Coordinated checkpointingrequires the coordination of all processes for building a
consistent global state before writing the checkpoints to stable storage. The disadvan-
tage of coordinated checkpointing is the large latency due to coordination in order to
achieve a consistent checkpoint. Its advantage is the simplified recovery without roll-
back propagation and minimal storage overhead, since there is only one checkpoint per
process. This protocol is included in [6,19].

Uncoordinated checkpointingassumes that each process independently saves its
state and a consistent global state is achieved in the recovery phase [5]. The advan-
tage of this method is that each process can make a checkpoint when its state is small.
However, there are two main disadvantages. First, there is a possibility of rollback prop-
agation which can result in a domino effect, i.e. rollback to the beginning of the compu-
tation. Second, the possibility of rollback propagation requires the storage of multiple
checkpoints for each process.



Communication-induced checkpointingis a compromise between coordinated and
uncoordinated checkpointing. To avoid a domino effect that can result from indepen-
dent checkpoints of different processes, a consistent global state is achieved by forcing
each process to take additional checkpoints based on some information piggybacked on
the application messages [2]. The disadvantage of this approach is the possibly large
number of forced checkpoints and the overhead associated with storing them.

There are only few approached supporting portability, multi-threading, local recov-
ery and cost models [4,13,20]. However, portability of existing checkpointing tools is
achieved by using portable languages like Java or by re-compilation to support hetero-
geneity [20], but not by the checkpointing mechanism itself.

2 Dataflow Work-Stealing for Grid Computations

Dataflow graphs [9] allow for a natural representation of a parallel execution, and they
can be exploited to achieve fault-tolerance [1]. At runtime, ready-to-execute instruc-
tions are executed depending on the availability of data. Formally, a dataflow graph is
a directed graphG = (V, E), whereV is a finite set of vertices andE is a set of edges
representing precedence relations between vertices. The vertex set consists of compu-
tational tasks, as seen in the traditional context of task scheduling, and the edge set
represents the data dependencies between the tasks. Within the context of this research
G is a dynamic dataflow graph, generated at runtime, as described in [7].

We adopt an efficient online scheduling algorithm called work-stealing [14]. The
principle is simple, when a processor becomes idle it tries tosteal work from other
processors. In Cilk [14], a theoretical upper bound on the makespan is given for the
case ofmultithreaded computation. This result was extended in [7] to our dynamic
dataflow graph, and in [3] to consider heterogeneous systems.

2.1 Dataflow and Work-Stealing in KAAPI

The Kernel for Adaptive, Asynchronous Parallel Interface (KAAPI) used in this research
is a C++ library that allows to program and execute multithreaded computations with
dataflow synchronization between threads. The library is able to schedule programs at
fine or medium granularity in a distributed environment.

In the KAAPI execution model a multi-processor system is viewed as a collection
of so-calledK-processors, which can be thought of as kernel threads. A process may
consist of severalK-processors. AK-processor in turn executes so-calledK-threads,
which can be thought of as application-level user threads. On aK-processor only oneK-
thread is active at a given time. The thread of control is a sequence of non-interruptible
tasks. AK-processor becomes idle if there are no ready-tasks, i.e. either all tasks have
finished execution or they are waiting for data as the result of synchronization. Under
the work-stealing strategy, an idleK-processor tries to steal a task of aK-thread from a
randomly selectedK-processor calledvictim.

2.2 KAAPI Model Analysis

The KAAPI cost model will be the frame of reference for the analysis in Section 4. The
time of a sequential execution of a program is denoted byT1. It is the total time to



execute all the operations in the computation on a single processor, with no scheduling
overhead. Furthermore, letT∞ be the execution time of the application as executed on
an unbounded number of processors. ThusT∞ represents the execution time associated
with the critical-path.

For the execution of a KAAPI program onp identical physical processors, the cor-
responding execution timeTp is affected byT1, T∞ as well as the overhead associated
with loading and managing the data-structures and scheduling using work stealing. We
will adopt the simplified model of Cilk-5 [14], which utilizes Graham’s bound [8], and
is also valid for KAAPI. Then,Tp is bounded by (see Equation 2 in [14]):

T1

p
≤ Tp ≤

T1

p
+ c∞T∞ (1)

The constantc∞ defines a bound on the overhead associated with the critical-path. In
the remainder of the text, we assume that each physical processor executes only one
K-processor.

3 Checkpoint/Recovery Model

Before describing the two fault-tolerance mechanisms we have integrated into KAAPI

we need to define thestate of an execution. This definition is perhaps the most important
difference between this work and the related works (see Section 1) and is the basis for
allowing checkpointing in a heterogeneous environment with the flexibility of recovery
on any type or number of processors.

3.1 Definition of Execution State

We use a macro dataflow graph to define the state of the application’s execution. The
graph is a representation of the computational tasks to be carried out along with the
associated data, which constitute the inputs and outputs. The dataflow is dynamic,
changing during execution of the program, e.g. at the invocation of a task, and it is
platform-independent. As a result the graph or portions of it can be moved across plat-
forms during execution. Formally, at any instance of timet, the macro dataflow graph
G describes a platform-independent, and thus portable, consistent global state of the
execution of an application.

Whereas graphG is viewed as a single virtual dataflow graph, its implementation is
in fact distributed. Specifically, each processi contains and executes a subgraphGi of
G. Within this representation lies the flexibility of restarting individual processes: in the
case of a single fault, one does not have to perform a global roll-back. This is due to the
fact thatGi, by definition of the principle of macro dataflow, contains all information
necessary to identify exactly which data is missing. Note that this also includes the
information associated with dependencies betweenGi andGj , i 6= j.

The instant of time at which a checkpoint can be taken is either before or after the
execution of an application task. The checkpoint itself is a snapshot ofG, which consists
of tasks, specifically their function IDs, and their associated inputs. It does not consist
of the task execution context itself. Understanding this difference between the two con-
cepts is crucial.Checkpointing a taskand its inputs simply requires to store the task’s



function ID and its input data.Checkpointing the execution of a taskusually consists of
storing the context of the processor, i.e. processor registers (such as program counters
and stack pointers) and data. In the first case, it is possible to move a task and its inputs,
assuming that both are represented in a platform-independent fashion. In the latter case
the fact that the process context is platform-dependent requires a homogeneous system
in order to perform a restore operation.

The checkpointed macro dataflow graph contains only the future of the execution,
i.e. the tasks to be carried out and the necessary data. Certain temporary data associated
with the execution of the task are not necessary to the future of the execution and are
not checkpointed. The result is a reduction of the checkpoint size.

3.2 Systematic Event Logging

Systematic Event Logging(SEL) is derived from a log-based method [12]. Only the
state-change events, i.e. additions and deletions of nodes in the macro dataflow graph,
are logged. A recovery consists of simply loading and rebuilding subgraphGi asso-
ciated with the failed processi from the respective checkpoint file. The advantage of
this approach is that during recovery it allows the re-execution of single tasks, which is
interesting for applications requiring the certification of computations and results [10].

In the implementation ofSEL, the events that trigger the change of the state of the
macro dataflow graph are either the creation or deletion of tasks or the data dependen-
cies they produce. Recall that tasks and data dependencies constitute the two principal
components of the graph. These events, together with a uniquely assigned identifier
allowing their association with the node in the graph, are stored in stable storage.

3.3 Theft-Induced Checkpointing

Theft-induced checkpointing(TIC) is based on the method presented in [2]. The cre-
ation of checkpoints can be initiated (1) at specific checkpointing periods or (2) by the
theft of a task. In the first case, checkpoints of the macro dataflow graphG, i.e.Gi on
processi, are stored periodically1 at pre-defined periodsτ . In the second case, the state
of the macro dataflow graph is checkpointed as the result of communication between
processes. In the presence of work stealing, each theft will cause such communication,
thus resulting in a so-calledforcedcheckpoint. The communication due to work stealing
accounts for the only communication of the application. The checkpoint is generated at
the time of a theft operation. A recovery consists of loadingGi from the checkpoint file
related to the crashed process.

Recall that in KAAPI a process executes on a collection ofK-processors, which in
turn execute a certain number ofK-threads. In the implementation ofTIC in KAAPI

the checkpoint of a process is implemented by checkpointing its associatedK-processor.
EachK-processor generates incremental checkpoints for each associatedK-thread. At
the expiration of periodτ , each process checkpoints its state represented byGi. In case
of a task theft, only theK-processor from which the task was stolen forces a checkpoint.

1 Recall that checkpointing is performed at the task level. This should not be confused with
preemptive periodic scheduling, where the context of the preempted tasks are stored.



4 Model Analysis

In the analysis of the overhead associated withSEL andTIC we differentiate between
executions without and with faults. Furthermore, we assume thatT1

p � c∞T∞, which
will be referred to as theparallel slackness assumption[14]. In the presence of work-
stealing this leads to a linear speedup ofTp ≈ T1

p .

4.1 Analysis of Fault-free Execution

If we add a checkpointing mechanism, it is of special interest to analyze its overhead
associated with fault-free execution, since the occurrence of faults is considered to be
the rare exception rather than the norm.

Analysis ofSEL: In SEL a log is initiated for each node created. Thus the overhead
associated with logging depends on dataflow graphG. Let TSEL

P denote the execution
of a KAAPI program onp processors under consideration of logging overhead. Then,

TSEL
P ≤ TSEL

1

p
+ c∞TSEL

∞ . (2)

TSEL
∞ denotes the critical-path underSEL, whereT∞ ≈ TSEL

∞ . Furthermore,TSEL
1

denotes the time of a sequential execution of a program under consideration of the
overhead induced by logging, i.e.TSEL

1 = T1+ logging overhead. This overhead is a
function of two parameters. First, it depends on the size ofG. Specifically, it depends
on the number of tasks and data dependencies, as well as the size of the latter. Second, it
depends on the time of an elementary access to stable storage, denoted byts. Therefore,

TSEL
1 = T1 + fSEL

overhead(|G|, ts). (3)

The real measure ofSEL overhead is thusTSEL
1 −T1, which in turn allows the deriva-

tion of the overhead in the parallel execution, i.e.TSEL
P − Tp.

Analysis of TIC: In theft-induced checkpointing, a checkpoint is performed period-
ically for each process, as dictated by periodτ , and as the result of task stealing. Let
TTIC

P denote the execution of a KAAPI program onp processors underTIC. Thus,

TTIC
P ≤ Tp + max

i=1,...,p
{CheckpointOverheadi}, (4)

whereCheckpointOverheadi denotes the total checkpointing overhead on proces-
sor i. This overhead depends on the total number of checkpoints taken on processor
i and the overhead of a single checkpoint. The maximal number of checkpoints per-
formed by a processor is[TTIC

P /τ + Ntheft], whereTTIC
P /τ indicates the number of

checkpoints due to periodτ andNtheft is the maximal number of thefts performed by
any processor.

The overhead of a single checkpoint inTIC is different from that inSEL, since
now the checkpoint constitutes the collection of tasks inGi, rather than a single task.



The number of tasks inGi has an upper bound ofN∞, which denotes the maxi-
mum number of tasks in a path ofG [14]. The checkpoint overhead is thus bound
by maxi=1,...,p{CheckpointOverheadi} ≤ [TTIC

P /τ + Ntheft] fTIC
overhead(N∞, ts).

Note that functionfTIC
overhead(), which indicates the overhead associated with a single

checkpoint, depends only onG, or more preceislyN∞ andts. Thus, the checkpointing
overhead is

TTIC
P ≤ Tp + [TTIC

P /τ + Ntheft] fTIC
overhead(N∞, ts). (5)

Under the parallel slackness assumption, it is important to note that the number of
thefts,Ntheft, resulting in forced checkpoints is bound and small for many applications
[14,17]. Then, by selecting an appropriateτ the number of local checkpoints can be
adjusted in order to obtainTTIC

P ≈ Tp.

4.2 Analysis of Executions Containing Faults

The overhead associated with fault-free execution is the penalty one pays for having
a recovery mechanism. It remains to be shown how much overhead is associated with
recovery as the result of a fault and how much execution time can be lost under different
strategies.

The overhead associated with recovery is due to loading and rebuildingG. This can
be effectively achieved by loadingGi of the affected processes. The time depends on
the size ofGi and is dominated by the size of the data representing the task inputs.
Thus, the time of recovery of a single processi, denoted bytirecovery, depends only
on the size of its associated subgraphGi. Therefore,tirecovery is of the order of the
size of the subgraph, i.e.tirecovery = O(|Gi|). Note that for a global recovery, as the
result of the failure of the entire application, this translates tomax(tirecovery) and not
to

∑
tirecovery.

The advantage ofSEL is that, due to its fine granularity, the maximum amount of
execution time lost is that of a single task. Furthermore, the rollback only requires the
recovery overhead of a single task. However, this comes at the cost of higher logging
overhead, as was addressed in Equation 3.

For TIC the maximum amount of lost execution time is generally higher than for
SEL and is bound by periodτ . The recovery overhead depends on the size of the graph
that need to be loaded and rebuilt. However, note that by appropriately selectingτ one
can exercise control over the recovery overhead. The trade-off between lower check-
pointing overhead and slower recovery will need to be determined by the application.

It should be noted that we do not consider the time lost due to fault-detection.
Whereas the fault-detection time is an important issue, its impact is not the subject
of this research; any detection mechanism may be used.

5 Experimental Results

The performance and overhead of theSEL andTIC mechanisms were experimentally
determined for theQuadratic Assignment Problem(instance2 NUGENT 22) which was

2 see http://www.opt.math.tu-graz.ac.at/qaplib/



parallelized in KAAPI. The experiments were conducted on the iCluster23. The clus-
ter consists of 104 nodes interconnected by a 100Mbps Ethernet network. Each node
features two Itanium-2 processors (900 MHz) and 3 GB of local memory.

In order to take advantage of the distributed fashion of the checkpoint, i.e.Gi, each
processor keeps a local copy of its checkpoint. To eliminate this single source of failure,
it is assumed that the checkpoint of eachGi is replicated on other nodes [6]. This
configuration has two advantages. First, it reflects the theoretical assumptions of the
previous section and second, the actual overhead of the checkpointing mechanism is
measured, rather than the overhead associated with a centralized checkpoint server.

Fig. 1. Impact of threshold of parallelism Fig. 2. Checkpoint overhead

The application recursively generates tasks and the degree of parallelism can be ad-
justed. After a given depth of recursion no more tasks are generated. The sequential ex-
ecution time without KAAPI was 34,695 seconds. With KAAPI, at fine grain (threshold
≥ 10), the execution on a single processor generated 225,195 tasks and ran in 34,845
seconds. The impact of the degree of parallelism can be seen in Figure 1 and 2. The
number of parallel tasks generated for different thresholds of parallelism is shown in
Figure 1. The degree of parallelism increases drastically for threshold 5 and approaches
its maximum at threshold 10.

The number of tasks has direct implications on the cost of the checkpointing mech-
anism. Figure 2 shows that the cost ofSEL is very susceptible to the total number of
tasks, as predicted by Equation (2) and (3), which showed the overhead as a function of
the number of tasks.

Figure 2 also shows the impact of parallelism on the overhead ofTIC for period
τ equal to 1 and 20 seconds. As shown in Equation 5, the overhead is dependent on
the critical-path, i.e.T∞, andN∞. As parallelism increases, and thus bothT∞ andN∞
drastically decrease, the checkpointing overhead is reduced. As predicted, the longer
period results in lower cost.

3 http://www.inrialpes.fr/sed/i-cluster2



Figure 3 demonstrates that the checkpoint mechanisms as well as the application
are scalable. As the number of processors increase, the different protocols show little
change in cost. The impact of the number of faults on the cost of recovery forSEL can

Fig. 3. Scalability of the checkpointing Fig. 4. Recovery cost forSEL

be seen in Figure 4. In fact, the overhead due to restart increases linearly. The recovery
times are derived from two measures. The first is the computation time averaging 0.25s
per computational task. The second is the overhead due to loading the checkpoint file,
averaging 7 MBytes, for rebuilding eachGi. Since single process roll-back was hardly
measurable, the experiment shows faults and restarts of all processors.

6 Conclusions

Two portable fault-tolerance mechanisms, systematic event logging and theft-induced
checkpointing, have been introduced for heterogeneous multithreaded applications. The
flexibility of macro dataflow graphs has been exploited to allow for a platform-independent
description of the application state. This description resulted in flexible, portable, recov-
ery strategies. Systematic event logging allowed for rollback at lowest level of granular-
ity, with a maximal computation loss of one task. However, its overhead was sensitive to
the size of the application graph, i.e. the number of tasks. Theft-induced checkpointing
has lower overhead, related to work-stealing, which was shown bound to the critical-
path. The experimental results demonstrated low overhead of both approaches and con-
firmed the theoretical analysis.
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