
Eurographics Symposium on Parallel Graphics and Visualization (2007)

Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Work Stealing for Time-constrained Octree Exploration:

Application to Real-time 3D Modeling

Luciano Soares, Clément Ménier, Bruno Raffin, and Jean-Louis Roch.

INRIA, Laboratoire d’Informatique de Grenoble - LIG, Grenoble, France

Abstract

This paper introduces a dynamic work balancing algorithm, based on work stealing, for time-constrained parallel

octree carving. The performance of the algorithm is proved and confirmed by experimental results where the

algorithm is applied to a real-time 3D modeling from multiple video streams. Compared to classical work stealing,

the proposed algorithm enforces a relaxed width first octree carving that enables to stop computations at anytime

while ensuring a balanced carving.

Categories and Subject Descriptors (according to ACM CCS): C.1.2 [Processor Architectures]: Multiple Data Stream

Architectures (Multiprocessors) I.4.5 [Image Processing and Computer Vision]: Reconstruction

1. Introduction

Mastering parallelism is a major challenge when developing

computationally intensive interactive applications, but it can

enable to reach the targeted low latencies and high refresh

rates.

This article presents a dynamic load balancing algorithm,

based on work stealing, that enables to stop computations

at any time. This algorithm is applied to 3D modeling. 3D

Modeling consists in building a 3D model of people or ob-

jects being filmed by a set of calibrated cameras. This 3D

model must be computed in real time from the different

video streams before it is injected into the virtual world to

enable interactions [MP04, GWN∗03]. Many different al-

gorithms exist for 3D modeling. A classical approach, the

one our experimental results rely on, is to "carve" an oc-

tree [Sze93]. 3D modeling has been selected as it is an in-

teresting case study where interactivity is critical and the

amount of computations to perform can be significant.

Parallelizing such octree carving algorithm raises two

main isssues:

• load-balancing: the shape of the octree is irregular and

depends on the input data. Thus a static load balancing

scheme fails to guarantee an efficient use of the available

computing resources. An efficient dynamic load balanc-

ing is required.

• time-constraint: when the timeout occurs we expect the

octree to be balanced, i.e. that computing resources co-

ordinate their efforts to avoid having a branch deeply ex-

plored while an other is seldom tested. It requires extra

synchronizations between processors to enforce a relaxed

width first octree carving.

To achieve this goal we propose a modified work-stealing

technique. The efficiency of this approach is validated for-

mally and experimentally.

Our parallel algorithm dynamically balances the proces-

sor work load and ensures it can be stopped at anytime while

guaranteeing a balanced space carving. The implementation

on a 16 cores architecture (8 dual-core processors) speeds

up the computations up to 14.4 times in comparison to the

sequential execution. We also present early experiences us-

ing one GPU as a co-processor. The performance increases

by 30% compared to using only one CPU, and fades as the

number CPUs involved increases.

The paper is organized as follow. Section 2 presents the

octree based algorithm for 3D Modeling. Work stealing and

the associated theoretical results are detailed in Section 3.

The parallel octree algorithm is presented in Section 4, its

proof in Section 5, its implementation in Section 6 and the

experimental results in Section 7. Section 8 discusses the

GPU based tests before conclusions are draw in Section 9.

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

2. Octree Based Voxel Carving

We present in the following the sequential octree based

voxel carving algorithm. The algorithm takes as input data

video streams from a network of cameras (Fig. 1). To en-

sure a high quality modeling, cameras must be properly cal-

ibrated (brightness, color and position) and synchronized.

From each image a 2D silhouette is extracted by back-

ground substraction. Various methods exist [HHD99]. we

rely on [KGYS05]. Pixels outside the silhouettes are set to

white, while the others are set to black (Fig. 2). The octree

algorithm is executed on each set of silhouette images taken

at the same time. Starting from one initial voxel correspond-

ing to the acquisition space, the algorithm probes each voxel

to compute if it lies outside or inside the visual hull, i.e. if

the voxel projects at least outside one silhouette or inside all

silhouettes. Uncertain voxels (intersecting a silhouette con-

tour) are split in 8 smaller voxels. A stopping condition can

be set to bound the execution time, based on a timer or a

maximum depth level for instance.

Figure 1: 6 Cameras filming a user.

Figure 2: Silhouettes from 3 cameras.

There are several approaches to test if a voxel is full

(inside the visual hull) or not. We are using an exhaustive

method where a voxel is subdivided into a regular 3D grid.

The algorithm iterates on each grid vertex, projecting it into

the silhouette. Computations for this voxel are stopped as

soon as the voxel is known to be full, empty or uncertain.

The number of grid vertices contained in a voxel is propor-

tional to its size.

This algorithm is interesting on different aspects. First, as

all octree based approaches, it enables to reduce the amount

of computations, compared to a space partitioning with a

fixed voxel size. Second, it provides a volumetric model in

the form of a list of cubes, making it easy for computing col-

lisions with other objects. Finally, it easily enables to control

the amount of time allotted to carving by having the stop

condition waiting for a timeout or an external event. In this

case it is important to underline that the tree carving should

be performed width first rather than depth first. If performed

depth first, the octree will be very detailed in some areas,

while seldom tested in others (Fig. 3). For a sequential ex-

ecution, the only consequence of a width first carving is an

extra memory consumption.

Figure 3: A depth first(left) and width first(right) octree

carving with the same elapsed time. The former leads to an

unbalanced space carving, the latter to a balanced one.

3. Work Stealing

We recall the principle of work stealing, the main associated

results and analyze why work stealing is well adapted for

octree carving.

Work stealing is a classical approach for dynamic load

balancing. It has been used for various computations, includ-

ing parallel graphics [HA98, CD99]. It extends the Graham

list scheduling principle [Gra66] for programs that create

tasks recursively. The principle is simple. When starting the

execution, a first processor is assigned all source tasks (the

initial ready tasks). At runtime, each processor maintains a

local list where it stores the ready tasks it has locally created.

A task becomes ready when all its predecessor tasks, i.e. the

tasks it depends on, have been executed. The tasks are or-

ganized in the list according to a total sequential depth first

order. When a processor P completes a task, it pops the first

one t (according to depth first order) in its local ready list if

non empty. Else, P is idle and becomes a thief: it randomly

selects another processor until finding one victim processor

V that owns ready tasks. Then it picks-up the oldest ready

task t in the ready list of V . In both cases, P starts the execu-

tion of t.

Work stealing achieves a provable performance with re-

spect to the work and depth of the parallel algorithm. The

work W1 is the total number of elementary operations per-

formed during the execution of the algorithm. An instruction

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

may be a standard operation or a task creation. The depth W∞

is the critical path in number of operations for an execution

on an unbounded number of processors, i.e. the number of

instructions along the longest dependency path. Let Tp be

the execution time on p identical processors with execution

speed Π (in number of instructions per time unit). An ex-

ecution takes a time T1 = W1

pΠ
on a single processor and a

time T∞ = W∞

Π
on an unbounded number of processors. On p

processors, work stealing ensures that with a high probabil-

ity [ABP01]:

Tp ≤
W1

pΠ
+O

(

W∞

Π

)

(1)

and the number of steals is small, O(W∞) per processor.

Thus, if the depth W∞ is small compared to the total

amount of work W1 the parallel execution time is close to

the lower bound W1

pΠ
. This motivates the use of work stealing

to schedule parallel programs having a small depth W∞.

The octree shows properties making it very well adapted

to work stealing. We consider a task the computation asso-

ciated with one voxel. The dependency graph corresponds

to the octree graph, as a given voxel can be computed as

soon as its parent has been treated. In the worst case where

no pruning occurs, a tree of depth n leads to W1 = 8n+1−1
7

tasks, while the critical path is W∞ = O(n). Thus, having

W1 ≫W∞, work stealing should lead to optimal parallel exe-

cutions. Even when pruning occurs, the ratio is usually very

favorable to work stealing. For instance, our test data set,

consisting of a full human body (Fig. 4), has W1 = 162799

voxels when going up to depth level W∞ = 8. The follow-

ing properties also contribute to keep the overhead of work

stealing small:

• All tasks perform the same computation. The only dif-

ference between two tasks is the coordinates and size of

the considered voxel. Thus stealing work only consists in

stealing a list of a voxel coordinates and size. It leads to

light memory transfers.

• Task dependencies are simple: a task only depends on its

parent. When a processor splits a voxel, it can directly

add its 8 children voxels to its ready list. There is no other

dependency to be solved that could require to wait for an-

other processor.

Close to the octree root, the amount of parallelism is re-

duced (1 voxel at the root, 8 at depth 1, 64 at depth 2), and

the cost of projecting a voxel into the silhouettes is higher

(proportional to the voxel size). This can impair the perfor-

mance of work stealing. To soften this effect, usually octree

carving starts at a higher depth level (level 2 for our tests).

4. Adaptive Octree Algorithm

The goal of this work stealing algorithm is to dynamically

schedule the work load to better use the processors available.

We assume the target parallel machine supports a global ad-

dress space with a shared (or virtually shared) memory ac-

cess and manages data locality.

Each voxel is represented as a quadruple of its coordinates

and level (i, j,k,d). To manage the workload the voxels are

organized in ready lists. Each ready list consists of a vector

of voxels and pointers to the first, last and current voxel. We

call a task, the computations required to test a voxel status.

4.1. Initialization

The algorithm starts at depth level n with 8n initial voxels.

The number n is usually the smallest number to have more

initial voxels than processors. These voxels are split into p

ready lists, where p is the number of processors. The goal is

to avoid the performance bottleneck of the first depth levels

that do not provide enough parallelism.

The ready lists are organized in a singly-circularly-linked

list. There is one list of ready lists per depth level, called a

level list. All level lists, except the ones from the starting

depth level, are initially empty. Each processor is assigned a

first ready list from the starting level.

One processor has a manager role. It takes care of ini-

tializing the first ready lists and signal all other processors

when computations must be stopped (because the timeout

occurred).

4.2. Octree Level Computation Based on Work Stealing

Each processor tests the voxels of its ready list. If a voxel

needs to be split, its 8 child are inserted into the ready list of

the next level.

Each processor cycles twice through the level list. A pro-

cessor scans the level list from a randomly chosen position,

looking for a free ready list in the level list until it completes

one cycle. If it finds one, it takes it. Else, since there is no

more ready list to grab, it performs a second loop, but this

time the processor becomes a thief. It traverses the ready lists

trying to get part of the remaining voxels. For a target ready

list, the thief processor locks the current working pointer of

the victim processor (the owner of the list). It grabs half of

the remaining voxels, leaving a minimum number of vox-

els (fixed by a threshold) to avoid voxels to be stolen back

and forth. The thief creates a new ready list containing these

voxels. This operation just involves pointer settings and does

not lead to voxel copies. The working pointer of the victim is

unlocked as soon as it can safely restart processing its ready

list.

Finally, when a processor ends its second cycle through

the current level list, it starts working on the next level, pro-

cessing the voxels of its ready list if not empty.

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

4.3. Overlapping Level Synchronization

Let Li(t) be the level of the voxel being computed by pro-

cessor i at time t, and σ = maxt maxi6= j |Li(t)− L j(t)| be

the maximal level synchronization, i.e. the largest distance

in term of levels between two processors. To enforce a (re-

laxed) width first like octree carving it is required that σ is

always kept small. This is achieved by introducing extra syn-

chronizations. Setting a global barrier after each level guar-

antees a synchronization σ = 0 at any time, but it prevents

level overlapping and then restricts parallelism. A synchro-

nization σ ≤ 1 enables to overlap synchronization overhead

while limiting the octree unbalance. To ensure σ ≤ 1, we

implemented it as follows. To each level d corresponds a

shared counter C[d] initialized to the number of processors

p. When a processor completes all its ready tasks at level d

and if C[d−1] = 0, it starts stealing. If it does not succeed to

get voxels from other processors, then it decreases C[d] by 1

and starts the computation of its local voxels at level d + 1.

Once completed, it waits until C[d − 1] = 0 before starting

new steal requests.

4.4. Time Control

A time control routine was integrated in the algorithm to

bound the time spent to carve the octree. The main objective

is to enforce a real-time behaviour for the final application,

i.e. a minimum latency and maximum refresh rate.

The manager processor is in charge of checking the time

elapsed and signal other processors that the time is over.

One difficulty is to define the time check frequency, to

limit the overhead while being frequent enough to enable a

good time control. A good choice is to have the manager

control the time elapsed each time it completes a ready list.

Because synchronizations are present into the code to en-

force a width first tree traversal, it enables to stop the algo-

rithm at any time keeping a well balanced space carving.

5. Provable Performance of the Adaptive Octree

Algorithm

This section deals with the proof of the performance of

the adaptive octree algorithm. It is analyzed with respect to

the reference sequential algorithm.

For the sake of simplicity, we consider that the adaptive al-

gorithm implements a maximal level synchronization σ = 0,

with a synchronization barrier after each octree level. This

prevents level overlapping: level d is computed only when

level d −1 is completed, like in the sequential computation.

Then parallelism occurs only at each level. Furthermore, we

will consider that the sequential computation starts with the

same voxels as the parallel algorithm. So if we consider p

processors, we consider the sequential computation to be ini-

tialized at depth ⌈log8 p⌉ with 8⌈log8 p⌉ voxels.

Under those assumptions, when there is no time limit, the

following theorem states that the adaptive algorithm is al-

most p times faster than the sequential one if the depth of

the octree is small w.r.t. its number of voxels.

Theorem Let Ts be the time of the reference sequential

algorithm to compute an octree with n nodes and depth d on

a processor with speed Π. The adaptive algorithm running

on p identical processors with speed Π computes the same

octree in time:

Tp =n→∞

Ts

p
+O

(

d logn

Π

)

(2)

Proof. The state of each voxel being deterministically com-

puted, both algorithms compute the same octree. Let Ts(i)
(resp. Tp(i)) be the time of the reference sequential algo-

rithm (resp. adaptive algorithm) to compute level i, 1≤ d ≤ i,

and ni be its number of nodes. At each successful steal,

a processor steals half the ready voxels of a non idle pro-

cessor. Then, on an infinite number of processors, the par-

allel algorithm has critical depth W∞ = logni. The opera-

tions performed by the parallel algorithm are either voxels

computations, i.e. Ts(i).Π unit operations, or overhead in-

structions to manage parallelism (locks, steals, list manage-

ment). Due to work stealing, the number of steal requests is

O(W∞) per processor, i.e. O(logni). Except steals, the only

other overhead operations are when a processor access its

own local ready list to extract voxels. This requires a lock

to avoid contention with possible thieves. However, if there

are v voxels in the ready list, then logv voxels are extracted

at the price of only one lock. Then, following [RTB06],

the number of lock operations is O
(

ni

logni

)

. Then, from the

work stealing fundamental theorem (Section 1), we have

Tp(i)≤
Ts(i)

p + 1
Π

O
(

ni

p. logni
+ logni

)

=ni→∞
Ts(i)

p . Summing

for all the levels concludes the proof. △

However, due to real time interactive constraints, the

depth of the octree is truncated at a given unknown time

limit. The computation time of the algorithm is fixed and the

objective is to maximize the level of details, i.e. the number

of voxels computed. Indeed, taking benefit of parallelism,

the adaptive octree algorithm not only computes faster but

also more details. The next theorem states that in a fixed time

t, the adaptive algorithm on p processors computes almost

the same precision as the reference sequential algorithm in a

time p.t.

Theorem

Let np be the number of voxels computed by the adap-

tive algorithm in a time limit t on p identical processors. Let

ns be the number of voxels computed by the sequential ref-

erence algorithm in a time limit p.t on 1 processor. Let dp

(resp. ds) be the last fully completed level of the adaptive

(resp. sequential) algorithm.

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

Then:

np = ns −O(logns) and |dp −ds| ≤ 1 (3)

Proof. The proof is also based on the work stealing the-

orem, applied to each level. Let d be the maximal level

of a voxel computed by the adaptive algorithm. Since this

algorithm performs a barrier after each level, clearly d ≤
dp + 1. From previous theorem, in a time t, the adaptive al-

gorithm performs Wp = p.t.Π operations among which at

most O
(

d lognp +
np

lognp

)

are overhead instructions with re-

spect to voxels computation. Then, if Ts(np) denotes the se-

quential time to compute the corresponding voxels, p.t.Π =

Ts(np) + O
(

d lognp +
np

lognp

)

. Then, asymptotically for np

large enough w.r.t. d, p.t.π ≃ Ts(np). Moreover, all those

np nodes are at most on two levels, dp and dp + 1. Then,

since p.t.Π = Ts(ns), np ≃ ns and, due to barrier, ds = dp or

ds = dp +1. △

Asymptotically for a large number of nodes w.r.t. the

depth of the octree, both theorems generalize to the prac-

tical case where σ = 1 (then at most two levels may differ

between the sequential and the adaptive algorithm).

6. Implementation

The algorithm was implemented in C++ using Posix

Threads. As stated earlier, we target parallel computers sup-

porting a global address space with shared (or virtually

shared) memory. In this context Posix threads provide a well

adapted programming environment.

For a better performance the use of mutex like semaphores

was eliminated. Instead assembly atomic operations like

compare_and_swap "cmpxchg" and atomic_add_return

"xadd" combined with the LOCK prefix were used. These

atomic operations are supported by most modern CPUs. We

noticed a performance increase of about 20% compared to a

mutex based implementation.

The "yield" instruction("sched_yield" systems call) was

used to better manage waiting times. It improves the perfor-

mance in the waiting loops informing the kernel to schedule

other processes.

The application is launched with one thread per proces-

sor. The first thread is the manager. We consider we are

the only users of the computer and no other application is

running. To prevent the migration of threads during exe-

cution, which would impact performance, each thread was

locked on a given processor. For that purpose, we used the

"pthread_setaffinity_np" instruction. This technique also im-

proves the frame memory control, avoiding cache misses and

sparse memory allocations.

To better balance the work load into the initial ready lists,

the voxels are distributed in a round-robin fashion. The goal

is to give each working list voxels from different space re-

gions.

To reduce contention, a thread does not wait to steal from

a locked ready list. If one thief fails to lock a working list, it

does not try a second time. It just steps to the next ready list

in the chain. It avoids waiting for a lock release.

We relied on the GCC compiler to make an efficient use

of SIMD parallel instructions available on the processor. A

careful manual code optimization could probably further im-

prove performance.

7. Results

The computer used for the tests has 8 dual Core

AMDTM2.2GHz Opteron processors, 32 GB of mem-

ory, and is running Linux kernel 2.6.17. This is a CC-

NUMA (Cache coherency Non Uniform Memory Access)

architecture with a virtually shared memory using the

HyperTransportTMinter-processors communication layer.

7.1. Off-line Cameras

Tests were first performed with two off line series of im-

ages. The first one is a sequence of a full body person

filmed with 8 cameras, called the Ben benchmark, freely

available at https://charibdis.inrialpes.fr/.

Each camera image has a resolution of 780x582 pixels.

The second benchmark, called Al Capone, is a synthetic

3D model, from which we computed 64 images (resolution

of 300x300 pixels) from different view points. This model

enables to test our algorithm with a very large number of

silhouettes. Though today marker-less motion capture envi-

ronments have usually less than 64 cameras, the trend is to

increase this number as it improves the quality of the ob-

tained 3D model. Notice that both image sets fit in the 1MB

L2 cache available per core. Ben requires 456KB and Al

Capone 713KB.

We first compared a pure sequential implementation of

the octree carving algorithm with our parallel code launched

with only one thread. The overhead due to the extra code

introduced into the algorithm for work stealing is small. It is

about 4% for the Ben model and below 1.3% for Al Capone.

We ran the algorithm for both benchmarks with varying

numbers of CPUs, without time limit but with various max

depth levels. All results are averages over 100 runs. The exe-

cution times include the time to load the images from the lo-

cal disk. We plot (Fig. 6 and Fig. 7) the execution times (log-

arithmic scale on the y-axis) and the speed up (s = T1

Tn
). The

gain of using 16 CPUs is very significant with an efficient

use of the resources (high speed-ups). For instance Ben at

max depth level 8 is computed on 1 processor in about 234.2

ms. The same model takes only 16.82 ms on 16 processors.

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

Figure 4: Ben. Max depth level set to 8.

Figure 5: Al Capone. Depth level set to 5 (left) and 7 (right).

At max depth level 7, the Al Capone goes from about 441.1

ms with 1 CPU to about 31.15 ms with 16 CPUs. Notice

that the reconstruction at level 5 does not scale well, since

at this low level the execution time is dominated by the im-

age loading – sequential – step. As the amount of parallelism

increases while going deeper in the tree, the speed-up in-

creases with the max depth level. Al Capone was also tested

with work stealing turned off (Fig. 7). The performance is

significantly affected. A static load balancing is inefficient

as the shape of the octree, and thus the work load, cannot be

predicted.

The number of steals is low in comparison to the amount

of cells as predicted by the theory. Table 1 presents the av-

erage of all voxels computed against the number of full vox-

els, and the relative number of steals. About 60% of steal

attempts are successful. A side effect from this low number

of steals is the good space locality of voxel distribution. By

associating a color per CPU, we notice that large contiguous

area are processed by the same thread (Fig. 4 and Fig. 5).

Figure 6: Execution time and speed up for Ben.

Figure 7: Execution time and speed up for Al Capone, with

work stealing enabled or disabled (NA for Non-Adaptive)

We tested the time control routine with Ben (Fig. 8) and

a 30 ms deadline. The simulation is set to go up to depth

level 8. With just one processor it is not even possible to

complete level 5, making the model unrecognizable. The ex-

ecution time is significantly larger than 30 ms, because the

processor does not check the elapsed time before it com-

pletes the first ready list. Up to 8 processors, the time con-

trol is effective: the execution stops before all voxels of level

8 are computed. Notice that the measured execution time is

usually slightly higher than 30 ms because after the time-

out occurs all processors apply a fast test algorithm to guess

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

Voxels Steals/threads

Dataset Level Computed Full Tries Success

Ben 8 162799 67398 42.59 25.26

Al Capone 7 44840 34601 26.21 16.18

Table 1: For each data set computed up to a given max level,

the number of voxels computed is given with the number of

voxels identified as full, the number of steal attempts and

successful steals per thread.

if each pending voxel is full or empty. With 8 processors,

the 30 ms limit enables to reach the max depth level. Next,

as the number of processors further increase, the extra com-

puting resources available enable to decrease the execution

time, ending below 20 ms (the number of voxels computed

at level 8 stops to increase).

Figure 8: Ben modeling with a 30 ms time limit. The graph

plots the total execution time, the middle graph plots the

amount of voxels produced per level, and the lower graph

the percentage of voxels types.

7.2. On-line Cameras

We tested the algorithm in a live environment with 5

FireWire cameras (image resolution 780x580) filming a per-

son in real time. Cameras are genlocked through a specific

network. Each one is connected to one computer (dual xeon),

processing the incoming video stream to remove the back-

ground and compute the silhouette images. Then, the silhou-

ettes are forwarded to the 16 cores computer. It computes

the octree and sends the list of full voxels to 16 dual Opteron

computers powering a 16 projectors high resolution display

wall. These computers render the voxels. All computers are

connected through a gigabit Ethernet network.

This application was developed on top of FlowVR [AR06]

Figure 9: Live tests with 5 on-line cameras with max depth

level 6 (top) and 8 (bottom).

for coupling and distributing the different software compo-

nents. FlowVR Render [AR05] was used for the distributed

rendering on the display wall.

Refer to the video associated with the article for the re-

sults. Notice the resolution of the video is lower than the

display wall resolution, making it difficult to distinguish the

smaller voxels while they are clearly visible on the display

wall. When rendering, the voxels are colored according to

their depth level. Tests were performed with and without

time control, with various numbers of processors and differ-

ent levels of max depths. The quality significantly increases

with the max depth (Fig. 9). Fingers become visible at level

8. Some artifacts (ghost leg) are visible in some situations.

This is due to the accumulation of small errors from cam-

era calibration, background subtraction and voxel projec-

tion tests. The time control enables to keep the latency low

and the frame rate stable. Some momentaneous performance

drops are visible in the video. Though the cause of these

drops are not yet clearly identified, it is probably related to

network issues (we suspect the linux network driver).

8. Involving the GPU

The implementation was modified to use a GPU as a co-

processor for one thread. The work stealing algorithm is not

modified. The only difference comes from the way a GPU

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

processes a voxel. As stated earlier, to test a voxel, differ-

ent points contained in the voxel are projected back onto the

silhouettes. On a CPU, the result of each point projection is

probed to detect if the status of the voxel can be defined. If so

the CPU skips to the next voxel. Due to the SIMD nature of

a GPU, making so many probing tests is highly inefficient.

To bypass this limitation, the CPU provides to the GPU a

list of points to project back onto the silhouettes. The GPU

performs all these projections and the CPU gets back the re-

sults to define the status of the voxels. The GPU becomes

faster than the CPU (compared to the case where the CPU

performs all the projections) only if the number of points to

test is large enough to hide the overhead of transferring the

data back and forth between the CPU and the GPU. So the

use of the GPU is triggered only if the number of tests to

perform reaches a certain threshold. To reach that threshold

several voxels can be tested at once if available in the ready

list.

Figure 10: GPGPU x Pure CPU.

Experiments were performed on the 16 core machine

equipped with one Nvidia Geforce 7900 graphics card

(Fig. 10). Involving the GPU instead of relying only on the

CPU increases the performance by 30% from 234.20ms to

180.17ms. Using these numbers as the reference sequential

execution times (T GPU
1 = 180.17ms and TCPU

1 = 234.20ms),

we can compute a lower bound for the execution time when

p− 1 CPUs and one CPU/GPU couple are involved in the

computation:

Tideal(p) =
1

(p−1)
TCPU

1

+ 1
T GPU

1

(4)

Experimental results shows that our implementation usually

fails to stick to this ideal case, often a pure CPU based execu-

tion being more efficient. The CPU is in fact often faster than

the GPU because it can bypass many projection tests while

the GPU will always perform all tests even if the voxel status

can be defined after just a few tests. The main interest of this

early experiment is to show that a GPU can be involved in the

computation without having to deeply revisit the work steal-

ing algorithm. Future experiments will focus on involving

more GPUs and improving the GPU implementation, target-

ing a Nvidia G80 GPU programmed with the CUDA library.

Notice that the theoretical results (Section 5) does not ap-

ply to computing units running at different speeds. How-

ever we should be able to extend our result to this case by

relying on Bender and Rabint’s proof of work-stealing for

heterogeneous processors of different and possibly changing

speeds [BR02].

9. Conclusion

This paper introduced a work stealing algorithm for a

time-constrained octree carving. The algorithm enables to

dynamically balance the work load while ensuring a relaxed

width first octree carving, required to get a balanced octree

carving when the timeout occurs.

The algorithm was validated theoretically as well as ex-

perimentally by applying it to 3D modeling. The algorithm

is general enough to be applied to other problems, for in-

stance from computer graphics where octrees are common.

It can also be applied to different tree structures. Just notice

that the smaller the tree arity, the smaller the ratio W1

W∞
.

Future work will focus on improving the GPU implemen-

tation to efficiently involve multiple CPUs as well as multi-

ple GPUs into the computation.

10. Acknowledgements

The authors wish to thank Thomas Arcila, Everton Hermann

and Florian Geffray for their help with the experiments.

This work is partly funded by ANR grant

BGPR/SafeScale.

References

[ABP01] ARORA N. S., BLUMOFE R. D., PLAXTON

C. G.: Thread scheduling for multiprogrammed multi-

processors. Theory Comput. Syst. 34, 2 (2001), 115–144.

[AR05] ALLARD J., RAFFIN B.: A shader-based parallel

rendering framework. In IEEE Visualization Conference

(Minneapolis, USA, October 2005).

[AR06] ALLARD J., RAFFIN B.: Distributed Physical

Based Simulations for Large VR Applications. In IEEE

Virtual Reality Conference (Alexandria, USA, March

2006).

[BR02] BENDER M. A., RABIN M. O.: Online schedul-

ing of parallel programs on heterogeneous systems with

applications to cilk. Theory of Computing Systems Spe-

cial Issue on SPAA ’00 35, 3 (2002), 289–304.

[CD99] CLYNE J., DENNIS J.: Interactive direct volume

rendering of time-varying data. In Eurographics Data Vi-

sualization ’99 Conference (1999), pp. 109–120.

c© The Eurographics Association 2007.

L. Soares & C. Ménier & B. Raffin & J. Roch / Work Stealing for Time-constrained Octree Exploration: Application to Real-time 3D Modeling

[Gra66] GRAHAM R. L.: Bound for certain multiprocess-

ing anomalies. Bell System Tech. J. (1966), 1563–1581.

[GWN∗03] GROSS M., WUERMLIN S., NAEF M.,

LAMBORAY E., SPAGNO C., KUNZ A., KOLLER-

MEIER E., SVOBODA T., GOOL L. V., S. LANG K. S.,

MOERE A. V., STAADT O.: Blue-C: A Spatially Immer-

sive Display and 3D Video Portal for Telepresence. In

Proceedings of ACM SIGGRAPH 03 (San Diego, 2003).

[HA98] HEIRICH A., ARVO J.: A competitive analysis

of load balancing strategies for parallel ray tracing. The

Journal of Supercomputing 12, 1–2 (1998), 57–68.

[HHD99] HORPRASERT T., HARWOOD D., DAVIS L. S.:

A Statistical Approach for Real-time Robust Background

Subtraction and Shadow Detection . In IEEE ICCV’99

frame-rate workshop (1999).

[KGYS05] KARAMAN M., GOLDMANN L., YU D.,

SIKORA T.: Comparison of static background segmenta-

tion methods. In Visual Communications and Image Pro-

cessing (VCIP ’05) (Beijing, China, July 2005).

[MP04] MATUSIK W., PFISTER H.: 3D TV: A Scal-

able System for Real-Time Acquisition, Transmission,

and Autostereoscopic Display of Dynamic Scenes. In

Proceedings of ACM SIGGRAPH 04 (2004).

[RTB06] ROCH J.-L., TRAORE D., BERNARD J.: On-line

adaptive parallel prefix computation. In EUROPAR’2006

(Dresden, Germany, August 2006), Springer-Verlag L. .,

(Ed.), pp. 843–850.

[Sze93] SZELISKI R.: Rapid Octree Construction from

Image Sequences. Computer Vision, Graphics and Image

Processing 58, 1 (1993), 23–32.

c© The Eurographics Association 2007.

