
Algorithm-based Fault Tolerance Applied to P2P Computing Networks

Thomas Roche
CS, Communication&Systems
Le Plessis Robinson, France
Email: thomas.roche@imag.fr

Mathieu Cunche
INRIA EPI Planete

Grenoble University, France
Email: mathieu.cunche@inria.fr

Jean-Louis Roch
INRIA EPI Moais / LIG

Grenoble University, France
Email: jean-louis.roch@imag.fr

Abstract—P2P computing platforms are subject to
a wide range of attacks. In this paper, we propose a
generalisation of the previous disk-less checkpointing
approach for fault-tolerance in High Performance
Computing systems. Our contribution is in two di-
rections: first, instead of restricting to 2D checksums
that tolerate only a small number of node failures,
we propose to base disk-less checkpointing on linear
codes to tolerate potentially a large number of faults.
Then, we compare and analyse the use of Low Density
Parity Check (LDPC) to classical Reed-Solomon (RS)
codes with respect to different fault models to fit P2P
systems. Our LDPC disk-less checkpointing method
is well suited when only node disconnections are
considered, but cannot deal with byzantine peers.
Our RS disk-less checkpointing method tolerates such
byzantine errors, but is restricted to exact finite field
computations.

Keywords-ABFT; P2P; distributed computing;
SUMMA; linear coding; fault-tolerance

I. INTRODUCTION

Gathering thousand of resources, global plat-
forms such as peer-to-peer (denoted P2P) provide
large scale computing systems for both data storage
and computational power (e.g. BOINC [1]). How-
ever, such a platform may be subject to various
kinds of faults: in this paper we focus on fail-
stop (e.g. peer disconnection) and by value er-
rors [2]. In specific contexts, the possible byzantine
behaviour of a peer may be statistically modelled.
However, since a P2P platform usually operates in
an unbounded environment, it may be the victim
of orchestrated attacks against widespread vulner-
abilities of specific operating systems. Therefore,
in the worst case, malicious attacks have to be
considered [3] that make invalid any quantified

model about the attack. Fault-tolerance in such
contexts has been widely studied and most of the
results are dedicated to Byzantine Agreement and
Leader Election algorithms [4], [5], Although our
results enjoy less generality we investigated a more
efficient way to tolerate byzantine peers based
on coding theory ideas instead of classical voting
methods. Nevertheless our results are not dedicated
to specific overlay networks, the network geometry
and peers hierarchy is not considered here as the
our study stays at the application level. Algorithm-
based fault tolerance (ABFT), introduced by K.H.
Huang et al [6], was originally dedicated to matrix
operations, for which it provides an efficient solu-
tion to fault tolerance in terms of time, space and
complexity. It is based on the joint design of a cod-
ing technique together with a suited algorithm; due
to linear algebra composition, ABFT for matrix op-
erations is based on linear codes. Matrix operations
are especially of interest in the context of large
scale simulations. The use of ABFT in the context
of global computing platforms has been proposed
by J.L. Roch et al. [3] for exact computations.
For high-performance computing (HPC) of matrix
multiplication, G. Bosilca et al. [7] propose a new
ABFT method for matrix multiplication based on a
parity check coding of rows and columns coupled
to a SUMMA [8] algorithm. It is presented in Sec-
tion 2; its major interest is to consistently perform
the computation with disk-less checkpointing of
intermediate results. But, this technique is suited
to a medium scale HPC machine: the use of parity
check tolerates at most either one by-value or
three fail-stops errors. Focusing on large scale and
P2P platforms, the first contribution of this paper

(Section 3) is to generalize this technique to any
linear code to efficiently tolerate a large number
of errors. Two linear codes are then proposed: low
density parity check (LDPC) codes [9] for floating
point computations (Section 4) and Reed-Solomon
codes that resist to malicious attacks for exact
computations (Section 5). To our knowledge this
paper is the first application of LDPC based ABFT
for P2P platforms.

II. RELATED RESULTS ON ALGORITHMS-BASED
FAULT TOLERANCE (ABFT) FOR HIGH

PERFORMANCE COMPUTING

A ”consistent” ABFT scheme for matrix multi-
plication: Let us recall the ABFT scheme proposed
in [7] for matrix-matrix multiplication. It is based
on two ideas: when the input matrices contain
checksum rows and columns then, in absence of
error, the output matrix possesses the valid check-
sum rows and columns; besides, at any point during
the multiplication computation, the checksums are
consistent (i.e. the intermediate matrices also pos-
sess valid checksum rows and columns). Hence, if
A and B are the two input matrices and CR and CC

be the checksum matrices, the respective encoded
matrices AF and BF are :

AF =

(
A ACR

CT
C

A CT
C

ACR

)
and BF =

(
B BCR

CT
C

B CT
C

BCR

)
The equation 1 proves the consistency of check-

sums for the whole multiplication:(
A

CT
C

A

)
×

(
B BCR

)
=

(
AB ABCR

CT
C

AB CT
C

ABCR

)
︸ ︷︷ ︸

(AB)F

(1)

Moreover, the multiplication is performed in its
outer product version (for k=1:n, Ck = Ck +
A:,kBk,: end): so the intermediate matrices Ck

are consistent with respect to the checksum matri-
ces CR and CC . Figure 1 details the product with
consistent checksum on 3× 3 matrices.

The Scalable Universal Matrix Multiplication
Algorithm (SUMMA, [8]), is an efficient parallel
matrix-matrix multiplication: it is widely used (e.g.
in ScaLAPACK [10]).
Let us consider p processes performing the matrix-
matrix multiplication as a square grid of

√
p-by-

√
p

processes. Let n×k (resp. k×m) be the size of AF

(resp. BF). Columns of AF (resp. lines of BF) are
treated by blocks of size nb, where nb is a tunable
parameter. The matrix AF (resp. BF) is divided in
blocks of size

√
p-by- k

nb (resp. k
nb -by-

√
p). So, at

the i − th step of the multiplication (as described
on Figure 1), ∀j the (j, i) − th block of AF is
broadcasted to the j− th row of processes and the
(i, j)−th block of BF is broadcasted to the j−th
column of processes. Then each process performs
a local matrix-matrix multiplication of size n√

p -
by-nb-by- m√

p that it adds to its local block. The
computation ends after k

nb iterations.
After each of the nb outer product iteration a
global synchronisation is performed to assure data
consistency. The nb parameter can be tuned from
1 (one consistent state after each computed row)
to n (only one consistent state at the end of the
computation).
Note that all the redundant computations are per-
formed by the processes related to the last row of
blocks in AF and the last column of blocks of
BF since they contain only checksums data. Hence
the fault tolerance cost in number of processes
is 2 × √

p − 1. Furthermore, if a process crashes
during the i−th iteration of the algorithm, its state
can be recovered from the redundant information
computed by those processes. Actually, due to the

C1 ×

BFAF

C3

=

=

=

×+

+ ×

C2 C1

C2

CF or columns
Matrix data

Checksums rows

Figure 1. Checksum consistent outer product

2D checksum, up to 3 process crashes during the
same iteration can be recovered.
An interesting remark is the strong scalability of
this scheme with respect to the fault-tolerance
overhead : the proportion of processes used for
fault-tolerance (2×√p−1

p) decreases when the total
number of processes increases.

Result certification: It is important to note
here that matrix-matrix multiplication enjoy an
efficient post-condition check. Whereas working in
finite field or floating-point arithmetic, it is always
possible to verify the result C = AB with high
probability by randomly choosing a vector x and
checking if Cx = A × Bx. The complexity of
this check is equal to three matrix-vector prod-
uct (O(n2)) which is negligible compared to the
cubic complexity of matrix-matrix multiplication.
Furthermore, any of the intermediate Ck of the
SUMMA algorithm can be certified the same way
since Ck = AkBk, where Ak (resp. Bk) is the
matrix A (resp. B) only composed of the first k
blocks of nb columns (resp. blocks of nb rows).

Limitations: As the size of the computing
platform increases, the number of processes errors
and crashes increases as well. However, the de-
scribed ABFT scheme is limited by the correction
capability of the 2D checksums : 3 processes
crashes and 1 bit-flip error. As a consequence, it
is not suited to P2P networks that are subject to
frequent process failures and/or disconnections.

III. GENERALISATION TO LINEAR
CODES-BASED CONSISTENT ABFT, EXTENSION

TO P2P COMPUTING NETWORKS

To fit to P2P platforms we propose a general-
isation of the previous ABFT scheme. Observing
that the checksum is in fact a particular linear block
code, we propose to generalize this system by using
more flexible linear code in order to increase the
number of errors and failures that can be tolerated
by the system.

A. Linear block codes and consistent matrix mul-
tiplication

Linear block codes are a class of codes used for
error detection and correction. By adding redun-
dancy to the source data they are able to detect

and correct errors and/or erasures. A linear block
code C of dimension n and length n+ r is a linear
subspace of dimension n of the linear space Fn+r,
where F is a field. The quantity R = n/(n + r)
is called the code rate. The elements of F are
called symbols, and the elements of C are called
codewords.

The correction capabilities of a linear code
are usually estimated by a characteristic called
minimum distance. The minimum distance (noted
dmin) of a linear block code is the minimum
number of non null symbols in a codeword (ex-
cluding the zero codeword). A code with a minimal
distance dmin will be able to detect dmin − 1
and correct bdmin−1

2 c errors. More generally, a
codeword corrupted with t errors and e erasures
can be recovered if dmin ≥ 2t + e + 1. Maximum
Distance Separable (MDS) codes are such that
dmin = r + 1: their distance is maximum with
respect to the number r of redundant symbols.

The coding scheme proposed in [7] can be easily
generalised with any linear code whose symbols
field F is compliant with the matrix entries arith-
metic. The 2-dimensional parity check CC and CR

are replaced by the generator matrices of chosen
linear code. Thanks to the algebraic structure of
a linear code, the product (as well as the sum)
of encoded matrices is still a consistent encoded
matrix. In all the sequel, for the sake of simplicity,
we consider only the coding of the columns by CC ;
the coding of the rows by CR is symmetric.

B. A linear code-based consistent ABFT

Thanks to the previous generalisation, a consis-
tent matrix multiplication can be built to tolerate a
large number of errors, by tuning the redundancy
of the chosen linear code.

Scheme extension for HPC: We consider a
matrix product over a large scale HPC platform.
Let’s consider the product of A and B with
SUMMA as presented in Section II and a linear
code of dimension n and length n + r, its code
rate is therefore R = n/(n + r). The n× k matrix
A is encoded into a (n + r)× k matrix AF .

Like in Section II, let us consider p resources
viewed as a

√
p-by-

√
p grid. The number of faults

that can be tolerated between each iteration of
the SUMMA algorithm depends on the amount of
redundancy added by the code. In the case of an
MDS code, by adding a redundancy of r symbols,
the system will be able to correct e erasures and
t faults while r = dmin − 1 ≥ 2t + e. Since a
process is in charge of (n + r)/

√
p symbols of

a column, a single node failure (fail-stop error)
will cause the erasure of the same amount of
symbols, and a single byzantine node (by-value
error) will corrupt up to this number of symbols.
In order to tolerate E node failures (represented
by erasures) and T Byzantine nodes we need to
have: r ≥ 2T (n + r)/

√
p + E(n + r)/

√
p; so

r ≥ n(2T+E)√
p−(2T+E) .

Thus the proportion of processes used for fault-
tolerance is: (r

√
p/(n+r))

√
p

p = r/(n + r) = 1−R.
It depends only on the code rate. This system is
therefore weakly scalable, but as opposed to [7],
has a constant code rate, which is critical to tolerate
errors on P2P computing platforms.

Adaptation to P2P computing networks: Yet,
when considering matrices of high dimensions, lin-
ear code based-ABFT is very attractive to be able
to correct bit-flip errors, to recover lost data and
to certify intermediate computations. All these op-
erations are performed in Õ(n2) operations when
the overall product needs O(n3). The outer product
version of matrix-matrix multiplication will give us
a chance to do all this by allowing an efficient fault-
tolerant checkpoint scheme sketched in figure 2.

Let consider a user U proposing a matrix-
matrix multiplication to a P2P computing network.
The property of disk-less checkpointing, which is
based on a global synchronization of all partic-
ipating resources, is not suited to P2P networks
where all data (AF , BF and the matrices Ck) are
shared among the peers. After the data distribution
through the whole network by peers downloading
and uploading part of the input matrices data
and tasks (which are, of course, linked to blocks
of data), peers will work on the local data they
possess. A fault-tolerant checkpoint is assured by
sending the intermediate computations of block to
the user U (after each iterations or after a fixed
number of iteration). When U has received enough

blocks corresponding to matrix Ck of iteration k,
he can decode Ck thus recovering the potentially
missing blocks and/or bit-flip errors. Then U per-
forms a post-condition checking on the decoded
value in order to certify this state Ck. If, for any
reason, the post-condition is not passed, he can
send a stop message to the peers and resume the
computation from the last certified state.
Note that the outer product integrates nicely in this
P2P protocol. Indeed, due to the highly parallel
algorithm, coarse grain tasks can always be divided
in smaller tasks up to the finest grain (elements
addition or multiplication), hence allowing a very
flexible online task division and repartition (suit-
able to work stealing for instance [3]). Moreover,
there is no need for the user to divide the input
matrices in blocks with respect to the number of
resources (which would be impracticable in P2P
context anyways): for instance an online recursive
splitting of the matrix by work-stealing will auto-
matically load balance the computation among the
peers.

IV. LDPC-CONSISTENT ABFT ON TRUSTED
P2P COMPUTING NETWORKS

We consider a P2P network where peers can
leave before completing their tasks or return er-
roneous results. This case can be addressed by the
use of Low density parity check (LDPC) codes [9]
which name comes from the small number of non-
null entries in the related parity check matrix. Even
if their minimal distance is small, those codes
show error correction capabilities close to channel
capacity when decoded with a linear complexity
message passing algorithm.

Since LDPC codes are in fact a concatenation of
several simple parity check as used in [7], the nu-
merical properties of the floating point checksums
are still valid for LDPC codes when recovering
from erasures. Yet, to deal with fault values, LDPC
codes are restricted to exact arithmetic.

Using an LDPC-based ABFT enables to toler-
ate a number of peers disconnections and non-
malicious by-value errors close to the optimal with
a high probability (see Table.I). The algorithm used
for error correction runs in O(n) [9], so in the same

Certification

STOP

Certification

C Ck−1

Ck

A B

A B

C

U

U

Decoding of the k − th step

P2P computing Network

U

U

BA

Ci

Decoding of the i− th step

BA

A B

C

C

C

U

Figure 2. Fault tolerant checkpoint protocol

order of complexity as the 2D checksums scheme
of [7]: decoding the whole matrix requires the
decoding of n codewords with a O(n2) complexity.

V. RS-CONSISTENT ABFT ON UNTRUSTED P2P
COMPUTING NETWORKS

We now consider the byzantine fault model in
the context of P2P networks that are subject to

malicious attacks. Indeed in a P2P Network, the
peers cannot be trusted. This limits the confidence
in the outputted result. While the matrix-matrix
multiplication possesses an efficient post-condition
(see Section II), one has yet to be sure the post-
condition checking was not forged by a malicious
peer. Furthermore, assuming the post-condition
checking can be trusted, using the fault-tolerance
studied in the previous section would allow very
cheap Denial of Service attacks. The small minimal
distance of LDPC codes means that one can forge a
valid codeword with only few modified coordinates
(i.e. few peers controlled by an attacker). Codes
with large minimum distance will better fit to this
case (e.g. MDS codes). Let us assume a part of the
available computing platform can be trusted. The
size (so the computational power) of this trusted
platform is expected to be very small compared
to the untrusted platform. The trusted part should
be used for decoding and, more importantly, post-
condition checking (e.g in figure 2 user U is trusted
and the P2P computing network is not).

Reed-Solomon: Reed-Solomon (RS) are MDS
codes introduced in 1960 by I. Reed and G.
Solomon. RS codes are always able to correct
r/2 errors (when it’s only under a certain prob-
ability of error for LDPC codes) while having
a decoding complexity barely higher than LDPC
(O(nlog2n) [11], see Table I). RS codes are well
suited to tolerate Byzantine (so malicious) errors
with exact arithmetic. Thus, with large enough
redundancy, the use of RS-based ABFT for con-
sistent matrix multiplication with exact arithmetic,
prevents non massive malicious attacks [3]: forging
a wrong result would require the attacker to control
many peers. However, the non compatibility of
underlying arithmetic makes RS-based ABFT not
suited to floating point computations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a generalization of
consistent ABFT matrix multiplication based on
linear codes which is suited to P2P computing. The
proposed protocol enables to tolerate the potential
erratic behaviour of the P2P network. Considering
exact arithmetic, the use of RS code provides

RS LDPC
Overhead r/n r/n
Recovery
complexity O(nlog2(n)) O(n)
(per column)
Recovery
complexity O(n2log2(n)) O(n2)
(whole matrix)
Fault tolerance 15% of n + r
(errors br/2c confidence 1− 10−6

per column) n = r = 0.5× 106

[12]
Fault tolerance 49% of n + r
(erasures br/2c confidence 1− 10−4

per column) n = r = 0.25× 107

[13]

Table I
COMPARISON OF RS AND LDPC CODES FOR ABFT

efficient fault tolerance not only in case of peer
disconnection but also in case of byzantine errors
(even considering malicious peers). For floating
point arithmetic computations, the use of LDPC
codes supports an arbitrary number of fail-stop
errors with efficient coding and decoding.
Our perspective is to use this protocol for an
effective challenge in exact arithmetic computation.

REFERENCES

[1] D. P. Anderson, “Boinc: a system
for public-resource computing and stor-
age,” 2004, pp. 4–10. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2004.14

[2] A. Avizienis, J.-C. Laprie, and B. Randell, “De-
pendability and its threats - a taxonomy,” in
IFIP Congress Topical Sessions, R. Jacquart, Ed.
Kluwer, 2004, pp. 91–120.

[3] J.-L. Roch and S. Varrette, “Probabilistic certifi-
cation of divide & conquer algorithms on global
computing platforms. Application to fault-tolerant
exact matrix-vector product,” in Parallel Symbolic
Computation’07 (PASCO’07), A. publishing, Ed.,
London, Ontario, Canada, July 2007.

[4] V. King, J. Saia, V. Sanwalani, and E. Vee, “To-
wards secure and scalable computation in peer-to-
peer networks,” in FOCS ’06: Proceedings of the
47th Annual IEEE Symposium on Foundations of
Computer Science. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 87–98.

[5] B. Kapron, D. Kempe, V. King, J. Saia, and
V. Sanwalani, “Fast asynchronous byzantine agree-
ment and leader election with full information,” in
SODA ’08: Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms.
Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2008, pp. 1038–1047.

[6] K.-H. Huang and J. Abraham, “Algorithm-based
fault tolerance for matrix operations,” IEEE Trans-
actions on Computers, vol. 33, no. 6, pp. 518–528,
1984.

[7] G. Bosilca, R. Delmas, J. Dongarra, and J. Lan-
gou, “Algorithmic based fault tolerance applied
to high performance computing,” CoRR, vol.
abs/0806.3121, 2008.

[8] R. A. van de Geijn and J. Watts, “Summa: scalable
universal matrix multiplication algorithm,” Concur-
rency - Practice and Experience, vol. 9, no. 4, pp.
255–274, 1997.

[9] R. G. Gallager, “Low density parity check
codes,” Ph.D. dissertation, MIT, Cambridge, Mass.,
September 1960.

[10] J. Dongarra, K. Madsen, and J. Wasniewski,
Eds., Applied Parallel Computing, Computations
in Physics, Chemistry and Engineering Science,
Second International Workshop, PARA ’95, Lyngby,
Denmark, August 21-24, 1995, Proceedings, ser.
Lecture Notes in Computer Science, vol. 1041.
Springer, 1996.

[11] R. E. Blahut, Theory and Practice of Error Control
Codes. Addison-Wesley.

[12] T. J. Richardson, M. A. Shokrollahi, and R. L.
Urbanke, “Design of capacity-approaching irregu-
lar low-density parity-check codes,” IEEE Trans-
actions on Information Theory, vol. 47, no. 2, pp.
619–637, 2001.

[13] H. D. Pfister, I. Sason, and R. Urbanke, “Capacity-
Achieving Ensembles for the Binary Erasure Chan-
nel with Bounded Complexity,” in Fourth ETH–
Technion Meeting on Information Theory and
Communications, 2004.

