Grenoble, France July 21-23, 2010

Association for Computing Machinery

Advancing Computing as a Science & Profession

PASCO'2010

Proceedings of the 2010 International Workshop on Parallel Symbolic Computation

Sponsored by:

INRIA, CNRS & Grenoble University

In cooperation with: **SIGSAM**

Edited by: Marc Moreno Maza & Jean-Louis Roch

Proceedings of PASCO 2010: Parallel Symbolic Computation 2010 Editors: Marc Moreno Maza and Jean-Louis Roch ©PASCO 2010 ISBN 978-1-4503-0067-4/10/0007

Foreword to the PASCO 2010 Conference

The International Workshop on Parallel and Symbolic Computation (PASCO) is a series of workshops dedicated to the promotion and advancement of parallel algorithms and software in all areas of symbolic mathematical computation. The pervasive ubiquity of parallel architectures and memory hierarchy has led to the emergence of a new quest for parallel mathematical algorithms and software capable of exploiting the various levels of parallelism: from hardware acceleration technologies (multicore and multi-processor system on chip, GPGPU, FPGA) to cluster and global computing platforms. To push up the limits of symbolic and algebraic computations, beyond the optimization of the application itself, the effective use of a large number of resources (memory and specialized computing units) is expected to enhance the performance multi-criteria objectives: time, energy consumption, resource usage, reliability. In this context, the design and the implementation of mathematical algorithms with provable and adaptive performances is a major challenge.

Earlier meetings in the PASCO series include PASCO'94 (Linz, Austria), PASCO'97 (Maui, U.S.A.), PASCO'07 (London, Canada). PASCO 2010 is affiliated with the 2010 International Symposium on Symbolic and Algebraic Computation (ISSAC) in Munich, Germany. Immediately prior to the ISSAC 2010 meeting, PASCO is held in Grenoble, France.

The workshop PASCO 2010 is a three-day event including invited presentations and tutorials, contributed research papers and a programming contest. The call for papers solicited contributions from areas including:

- Design and analysis of parallel algorithms for computer algebra
- Practical parallel implementation of symbolic or symbolic-numeric algorithms
- High-performance software tools and libraries for computer algebra
- Applications of high-performance computer algebra
- Distributed data-structures for computer algebra
- Hardware acceleration technologies (multi-cores, GPUs, FPGAs) applied to computer algebra
- Cache complexity and cache-oblivious algorithms for computer algebra
- Compile-time and run-time techniques for automating optimization and platform adaptation of computer algebra algorithms

In response, 27 submissions (full papers and extended abstracts) were received, The program committee collected 88 referee reports. After careful consideration, 21 submissions were accepted for presentation and inclusion in the proceedings. In addition, we are grateful that the majority of the invited speakers contributed full papers as well. We are grateful to all who contributed to the success of our meeting:

• the invited speakers and their co-authors:		
Claude-Pierre Jeannerod (France)	Hervé Knochel (France)	
Christophe Mouilleron (France)	Christophe Monat (France)	
Jean-Michel Muller (France)	Erich L. Kaltofen (USA)	
Guillaume Revy (France)	Stephen Lewin-Berlin (USA)	
Christian Bertin (France)	Jeremy R. Johnson (USA)	
Jingyan Jourdan-Lu (France)	Daniel Kunkle (USA)	

• the authors of full papers and extended abstracts;

• the members of the program committee:		
Daniel Augot (France)	Anton Leykin (USA)	
Jean-Claude Bajard (France)	Gennadi Malaschonok (Russia)	
Olivier Beaumont (France)	Michael Monagan (Canada)	
Bruce Char (USA)	Winfried Neun (Germany)	
Gene Cooperman (USA)	Clément Pernet (France)	
Gabriel Dos Reis (USA)	Nicolas Pinto (USA)	
Jean-Christophe Dubacq (France)	Manuel Prieto-Matias (Spain)	
Jean-Guillaume Dumas (France)	Markus Pueschel (USA)	
Jean-Charles Faugère (France)	Nathalie Revol (France)	
Matteo Frigo (USA)	David Saunders (USA)	
Thierry Gautier (France)	Éric Schost (Canada)	
Pascal Giorgi (France)	Wolfgang Schreiner (Austria)	
Stef Graillat (France)	Arne Storjohann (Canada)	
Jeremy Johnson (USA)	Sivan Toledo (Israel)	
Erich Kaltofen (USA)	Gilles Villard (France)	
Herbert Kuchen (Germany)	Yuzhen Xie (Canada)	
Philippe Langlois (France)	Kazuhiro Yokoyama (Japan)	

- the local organizers, all from Grenoble University or the INRIA Grenoble: Daniel Cordeiro Clément Pernet
 Jean-Guillaume Dumas Christian Séguy
 Thierry Gautier Ahlem Zammit-Boubaker
 Daniele Herzog
- the anonymous reviewers;

• the supporting organizations:	
ACM SIGSAM	University Joseph Fourier
INRIA	Grenoble Institute of Technology
CNRS	LIG and LJK
Grenoble University	ENSIMAG.

Marc Moreno Maza Jean-Louis Roch London Grenoble July 4, 2010

CONTENTS

Invited Talks

Techniques and tools for implementing IEEE 754 floating-point arithmet	ic on
VLIW integer processors	1
Christian Bertin, Claude-Pierre Jeannerod, Jingyan Jourdan-Lu, H Knochel, Christophe Monat, Christophe Mouilleron, Jean-Michel M Guillaume Revy	
15 years after DSC and WLSS2: what parallel computations I do today $Erich \ Kaltofen$	10
Exploiting Multicore Systems with Cilk Steve Lewin-Berlin	18
Automatic Performance Tuning Jeremy Johnson	20
Roomy: A System for Space Limited Computations Daniel Kunkle	22

Contributed Papers

Generic design of Chinese remaindering schemes 2 Jean-Guillaume Dumas, Thierry Gautier, Jean-Louis Roch 2
A complete modular resultant algorithm targeted for realization on graphic hardware 3 Pavel Emeliyanenko
Parallel operations of sparse polynomials on multicores - I. Multiplication an Poisson bracket 4 Mickaël Gastineau
Parallel Computation of the Minimal Elements of a Poset Charles E. Leiserson, Liyun Li, Marc Moreno Maza, Yuzhen Xie
Parallel Disk-Based Computation for Large, Monolithic Binary Decision Dia grams 6 Daniel Kunkle, Vlad Slavici, Gene Cooperman
Parallel arithmetic encryption for high-bandwidth communications on mult core/GPGPU platforms 7 Ludovic Jacquin, Vincent Roca, Jean-Louis Roch, Mohamed Al Ali

Exact Sparse Matrix-Vector Multiplication on GPUs and Multicore Archite tures Brice Boyer, Jean-Guillaume Dumas, Pascal Giorgi	ec- 80
Parallel Gaussian Elimination for Gröbner bases computations in finite fields Jean-Charles Faugere, Sylvain Lachartre	89
A Quantitative Study of Reductions in Algebraic Libraries Yue Li, Gabriel Dos Reis	98
Parallel Sparse Polynomial Division Using Heaps Roman Pearce, Michael Monagan	105
A high-performance algorithm for calculating cyclotomic polynomials 1 Andrew Arnold, Michael Monagan	112
Accuracy Versus Time: A Case Study with Summation Algorithms <i>Philippe Langlois, Matthieu Martel, Laurent Thévenoux</i> 1	121
Polynomial Homotopies on Multicore Workstations Jan Verschelde, Genady Yoffe	131
Parallel computations in modular group algebras 1 Alexander Konovalov, Steve Linton	141
Cache-Oblivious Polygon Indecomposability Testing Fatima K. Abu Salem	150
On Sparse Polynomial Interpolation over Finite Fields 1 Seyed Mohammad Mahdi Javadi, Michael Monagan	160

Contributed Extended Abstracts

SPIRAL-Generated Modular FFTs	169
Lingchuan Meng, Jeremy Johnson, Franz Franchetti, Yevgen Voroner	nko,
Marc Moreno Maza, Yuzhen Xie	
High performance linear algebra using interval arithmetic	171
Hong Diep Nguyen, Nathalie Revol	
Parallel Computation of Determinants of Matrices with Polynomial Entries for	
	173
Kinji Kimura, Hirokazu Anai	
Cache Friendly Sparse Matrix-vector Multiplication	175
Sardar Anisul Haque, Shahadat Hossain, Marc Moreno Maza	
Parallelising the computational algebra system GAP	177
Reimer Behrends, Alexander Konovalov, Steve Linton, Frank Lübeck, 1	Max
$Neunh\"offer$	