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ABSTRACT
We propose a generic design for Chinese remainder algo-
rithms. A Chinese remainder computation consists in re-
constructing an integer value from its residues modulo non
coprime integers. We also propose an efficient linear data
structure, a radix ladder, for the intermediate storage and
computations. Our design is structured into three main
modules: a black box residue computation in charge of com-
puting each residue; a Chinese remaindering controller in
charge of launching the computation and of the termination
decision; an integer builder in charge of the reconstruction
computation. We then show that this design enables many
different forms of Chinese remaindering (e.g. deterministic,
early terminated, distributed, etc.), easy comparisons be-
tween these forms and e.g. user-transparent parallelism at
different parallel grains.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Object-oriented design methods; I.1.2 [Computing
Methodologies]: Symbolic and Algebraic Manipulation—
Algorithms; G.4 [Mathematics of Computing]: Mathe-
matical Software—Algorithm design and analysis

1. INTRODUCTION
Modular methods are largely used in computer algebra to
reduce the cost of coefficient growth of the integer, rational
or polynomial coefficients. Then Chinese remaindering (or
interpolation) can be used to recover the large coefficient
from their modular evaluations by reconstructing an integer
value from its residues modulo non coprime integers.

∗Part of this work was done while the first author was visit-
ing the Claude Shannon Institute and the University College
Dublin, Ireland, under a CNRS grant.
†Part of this work was done while the second author was
visiting the ArTeCS group of the University Complutense,
Madrid, Spain.

LinBox1[9] is an exact linear algebra library providing some
of the most efficient methods for linear systems over arbi-
trary precision integers. For instance, to compute the de-
terminant of a large dense matrix over the integers one can
use linear algebra over word size finite fields [10] and then
use a combination of system solving and Chinese remainder-
ing to lift the result [13]. The Frobenius normal form of a
matrix is used to test two matrices for similarity. Although
the Frobenius normal form contains more in formation on
the matrix than the characteristic polynomial, most efficient
algorithms to compute it are based on computations of char-
acteristic polynomial (see for example [23]). Now the Smith
normal form of an integer matrix is useful e.g. in the compu-
tation of homology groups and its computation can be done
via the integer minimal polynomial [12]. In both cases, the
polynomials are computed first modulo several prime num-
bers and then only reconstructed via Chinese remaindering
using precise bounds on the integer coefficients of the integer
characteristic or minimal polynomials [18, 8].

An alternative to the deterministic remaindering is to termi-
nate the reconstruction early when the actual integer result
is smaller than the estimated bound [14, 12, 20]. There after
the reconstruction stabilizes for some modular iterations, the
computation is stopped and gives the correct answer with
high probability.

In this paper we propose first in section 2 a linear space
data structure enabling fast computation of Chinese recon-
struction, alternative to subproduct trees. Then we propose
in section 3 to structure the design of a generic pattern of
Chinese remaindering into three main modules: a black box
residue computation in charge of computing each residue;
a Chinese remaindering controller in charge of launching
the computation and of the termination decision; an in-
teger builder in charge of the reconstruction computation.
We show in section 4 that this design enables many dif-
ferent forms of Chinese remaindering (e.g. deterministic,
early terminated, distributed, etc.) and easy comparisons
between these forms. We show then in section 5 that this
structure provides also an easy and efficient way to provide
user-transparent parallelism at different parallel grains. Any
parallel paradigm can be implemented provided that it ful-
fills the defined controller interface. We here chose to use
Kaapi2[16] to show the efficiency of our approach on dis-
tributed/shared architectures.

1http://linalg.org
2http://kaapi.gforge.inria.fr



2. RADIXLADDER: LINEAR STRUCTURE
FOR FAST CHINESE REMAINDERING

2.1 Generic reconstruction
We are given a black box function which computes the eval-
uation of an integer R modulo any number m (often a prime
number).

To reconstruct R, we must have enough evaluations rj ≡ R
mod mj modulo coprimes mj . To perform this reconstruc-
tion, we need two by two liftings with U ≡ R mod M and
V ≡ R mod N as follows:

RMN = U + (V − U) × (M−1 mod N) × M. (1)

We will need this combination most frequently in two differ-
ent settings: when M and N have the same size, and when
N is of size 1. The first generic aspect of our development
is that for both cases, the same implementation can be fast.

We first need a complexity model. We do not give much
details on fast integer arithmetic in this paper, instead our
point is to show the genericity of our approach and that
it facilitates experiments in order to obtain goods practi-
cal efficiency with any underlying arithmetic. Therefore we
propose to use a very simplified model of complexity where
division/inverse/modulo/gcd are slower than multiplication.
We denote by dαlα the complexity of the pgcd of integers of
size l with 1 < α ≤ 2, and ranging from O(l2) for classical
multiplication to O(l1+ε) for FFT-like algorithms. Then the
cost of the division is also bounded by dαlα and there exists
mα such that the complexity of integer multiplication of size
l can be bounded by mαlα (e.g. m2 = 2). We refer to e.g.
the GMP manual3 or [19, 15] for more accurate estimates.

With this in mind we compute formula (1) with one multi-
plication modulo as follows:

Algorithm 1 Reconstruct

Input: U ≡ R mod M and V ≡ R mod N .
Output: RMN ≡ R mod M × N .
1: UN ≡ V − U mod N ;
2: MN ≡ M−1 mod N ;
3: UN ≡ UN × MN mod N ;
4: RMN = U + UN × M ;
5: if RMN > M ×N then RMN = RMN −M ×N end if

Now, if the formula (1) is computed via algorithm 1 and the
operation counts uses column “Mul.” for multiplication and
“Div./Gcd.” for division/inverse/modulo/gcd, then we have
the complexities given in column ”CRT” of table 1.

Size of operands Mul.
Div.

CRT
Gcd.

l × 1 l 3l 9l + O(1)
l × l mαlα dαlα 2(mα + dα)lα + O(l)

Table 1: Integer arithmetic complexity model

3http://gmplib.org/gmp-man-4.3.0.pdf

2.2 Radix ladder
Fast algorithms for Chinese remaindering rely on reconstruct-
ing pairs of residues of the same size. A usual way of imple-
menting this is via a binary tree structure (see e.g. figure 1
left). But Chinese remaindering is usually an iterative pro-
cedure and residues are added one after the other. Therefore
it is possible to start combining them two by two before the
end of the iterations. Furthermore, when a combination has
been made it contains all the information of its leaves. Thus
it is sufficient to store only the partially recombined parts
and cut its descending branches. We propose to use a radix
ladder for that task. A radix ladder is a ladder composed
of successive shelves. A shelf is either empty or contains
a modulus and an associated residue, denoted respectively
Mi and Ui at level i. Moreover, at level I, are stored only
residues or moduli of size 2i. New pairs of residues and
moduli can be inserted anywhere in the ladder. If the shelf
corresponding to its size is empty, then the pair is just stored
there, otherwise it is combined with occupant of the shelf,
the latter is dismissed and the new combination tries to go
one level up as shown on algorithm 2.

Algorithm 2 RadixLadder.insert(U,M)

Input: U ≡ R mod M and a Radix ladder
Output: Insertion of U and M in the ladder.,
1: for i = size(M) while Shelf[i] is not empty do
2: U, M :=Reconstruct(U mod M, Ui mod Mi);
3: Pop Shelf[i];
4: Increment i;
5: end for
6: Push U, M in Shelf[i];

Then if the new level is empty the combination is stored
there, otherwise it is combined and goes up ... An example
of this procedure is given on figure 1.
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Figure 1: A residue going up the radix ladder

Then to recover the whole reconstructed number it is suf-
ficient to iterate through the ladder from the ground level
and make all the encountered partial results go to up one
level after the other to the top of the ladder. As we will see
in section 3.3, LinBox-1.1.7 contains such a data structure,
in linbox/algorithms/cra-full-multip.h.

An advantage of this structure is that it enables insertion
of any size pair with fast arithmetic complexity. Moreover,
merge of two ladders is straightforward and we will make an
extensive use of that fact in a parallel setting in section 5.



Algorithm 3 RadixLadder.merge

Input: Two radix ladders RL1 and RL2.
Output: In place merge of RL1 and RL2.
1: for i = 0 to size(RL2) do
2: RL1.insert(RL2.Shelf[i]);
3: end for
4: Return RL1

3. A CHINESE REMAINDERING DESIGN
PATTERN

The generic design we propose here comes from the obser-
vation that there are in general two ways of computing a re-
construction: a deterministic way computing all the residues
until the product of moduli reaches a bound on the size of the
result ; or a probabilistic way using early termination. We
thus propose an abstraction of the reconstruction process in
three layers: a black box function produces residues modulo
small moduli, an integer builder produces reconstructions
using algorithm 2, and a Chinese remaindering controller
commands them both.

Here our point is that the controller is completely generic
where the builder may use e.g. the radix ladder data struc-
ture proposed in section 2 and has to implement the termi-
nation strategy.

3.1 Black box residue computation
In general this consists in mapping the problem from Z to
Z/mZ and computing the result modulo m. Such black boxes
are defined e.g. for the determinant, valence, minpoly, char-
poly, linear system solve as function objects IntegerModular*
(where * is one of the latter functions) in the linbox/solutions

directory of LinBox-1.1.7.

3.2 Chinese remaindering controller
The pattern we propose here is generic with respect to the
termination strategy and the integer reconstruction scheme.
The controller must be able to initialize the data structure
via the builder ; generate some coprime moduli ; apply the
black box function ; update the data structure ; test for ter-
mination and output the reconstructed element. The gener-
ations of moduli and the black box are parameters and the
other functionalities are provided by any builder. Then the
control is a simple loop. Algorithm 4 shows this loop which
contains also the whole interface of the Builder.

Algorithm 4 CRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: v := BlackBox.apply(p);
5: Builder.update(v, p);
6: end while
7: Return Builder.reconstruct();

LinBox-1.1.7 gives an implementation of such a controller,
parametrized by a builder and a black box function as the
class ChineseRemainder in linbox/algorithms/cra-domain.h.

The interface of a controller is to be a function class. It
contains a constructor with a builder as argument and the

functional operator taking as argument a BlackBox, comput-
ing e.g. a determinant modulo m, and a moduli generator
and returning an integer reconstructed from the modular
computations. Algorithm 5 shows the specifications of the
LinBox-1.1.7 controller. Then any higher-level algorithm

Algorithm 5 C++ ChineseRemainder class

1 template<c l a s s Bu i l d e r > s t r u c t ChineseRemainder
2 {
3 ChineseRemainder ( const Bu i l d e r& b ) : b l d r ( b ) {}
4

5 template<c l a s s Funct ion> I n t e g e r& ope ra to r ( ) (
6 I n t e g e r & re s ,
7 const Funct i on & BlackBox ) {
8 // CRA−Con t r o l . . .
9 }

10

11 pro tec ted : B u i l d e r b l d r ;
12 } ;

just choose its builder and its controller and pass them the
modular BlackBox iteration it wants to lift over the integers.

3.3 Integer builders
The role of the builder is to implement the interface defined
by algorithm 4.

There are already three of these implementations in LinBox-
1.1.7: an early terminated for a single residue, an early ter-
minated for a vector of residues and a deterministic for a vec-
tor of residues (resp. the files cra-early-single.h, cra-early-
multip.h and cra-full-multip.h in the linbox/algorithms di-
rectory). Up to now the radix ladder is not a separated class
as only this data structure is currently used and as it is sim-
ple enough to inherit from one of the latter and modify the
behavior of the methods.

EarlySingle

EarlyMultip

FullMultip

...

combination
Linear

Figure 2: Early termination of a vector of residues
via a linear combination

Actually EarlyMultipCRA inherits from both EarlySingleCRA
and FullMultipCRA as it uses the radix ladder of FullMultipCRA
for its reconstruction and the early termination of EarlySingleCRA
to test a linear combination of the residues to be recon-
structed as shown on figure 2 The FullMultipCRA has been



implemented so that when a vector/matrix is reconstructed
the moduli and some computations are shared among the
ladders. We give more implementation details on the early
termination strategies in sections 4 and 5.

3.4 Mappers and binders
To further enhance genericy, the mapping of between in-
teger and field operations can also be automatized. If the
data structure storing the matrix disposes of binder adaptors
generic mappers can be designed. This is the case for the
sparse and dense matrices of linbox and a generic converter,
using the Givaro/LinBox fields init and convert convert-
ers, can be found in linbox/field/hom.h, linbox/algorithm/
matrix-hom.h.

Then, to map any function class to the field representation
one can use the following generic mapper:

Algorithm 6 C++ Mapper class

1 template<c l a s s Data , c l a s s Funct ion>
2 s t r u c t Mapper {
3 Mapper ( const Data &b , const Funct i on& h )
4 : A( b ) , g ( h ) {}
5

6 template<c l a s s F i e l d > typename F i e l d : : Element&
7 ope ra to r ( ) ( typename F i e l d : : Element& d ,
8 const F i e l d& F) const {
9 typename Data : : template r eb ind <F i e l d > : : o t h e r Ap ;

10 Homomorphism : : map(Ap , t h i s−>A, F ) ;
11 r e t u r n th i s−>g ( d , Ap ) ;
12 }
13

14 pro tec ted : const Data& A; const Funct i on& g ;
15 } ;

An example of the design usage, here computing a determi-
nant via Chinese remaindering, is then simply:

Algorithm 7 C++ Chinese remaindering scheme

1 // [ . . . ] b u i l d e r , ma t r i x i n i t i a l i z a t i o n s e t c .
2 ChineseRemainder<ModularEar lyS ing leCRA> ETcra ( Bu i l d e r ) ;
3 Mapper<Spar seMat r i x<I n t e g e r >,Determinant> BBox(A, Det ) ;
4 I n t e g e r d ;
5

6 ETcra ( d , BBox ) ; // C a l l to the c o n t r o l l e r

4. TERMINATION STRATEGIES
We sketch here several termination strategies and show that
our design enables to modify this strategy and only that
while the rest of the implementation is unchanged.

4.1 Deterministic strategy
There Full ∗ CRA.update(v, p) just adds the residues to
the ladder ; where Full ∗ CRA.notTerminated() tests if
the product of primes so far exceeds the precomputed de-
terministic bound.

4.2 Earliest termination
In a sequential mode, depending on the actual speed of the
different routines of table 1 on a specific architecture or if the
cost of BlackBox.apply is largely dominant, one can choose

to test for termination after each call to the black box. A
way to implement the probabilistic test of [12, Lemma 3.1]
and to reuse every black box apply is to use random primes
as the moduli generator. Indeed then the probabilistic check
can be made with the incoming black box residue computed
modulo a random prime. The reconstruction algorithm of
section 3 is then only slightly modified as shown in algorithm
8 and the termination test becomes simply algorithm 9.

Algorithm 8 EarlySingleCRA.update(v, p)

Global: U ≡ R mod M .
Global: A variable Stabilization initially set to 0.
Input: v ≡ R mod p.
Output: RMN ≡ R mod M × p.
1: u ≡ U mod p;
2: if u == v then
3: Increment Stabilization;
4: Return (U, M × p);
5: else
6: Stabilization = 0;
7: Return Reconstruct(U mod M, v mod p);
8: end if

Algorithm 9 EarlySingleCRA.notTerminated()

1: Return Stabilization < EarlyTerminationThreshold;

In the latter algorithm, EarlyTerminationThreshold is the
number of successive stabilizations required to get a proba-
bilistic estimate of failures. It will be denoted ET for the rest
of the paper. This is the strategy implemented in LinBox-
1.1.7 in linbox/algorithms/cra-early-single.h. With the es-
timates of table 1, the cost of the whole reconstruction of
algorithm 4 thus becomes

t
X

i=1

(apply + 8i + O(1)) =

(t + ET )apply + 4(t + ET )2 + O(t) (2)

where t = &log2β (R)' and β is the word size.

This strategy enables the least possible number of calls to
BlackBox.apply. It it thus useful when the latter domi-
nates the cost of the reconstruction.

4.3 Balanced termination
Another classic case is when one wants to use fast inte-
ger arithmetic for the reconstruction. Then the balanced
computations are mandatory and the radix ladder becomes
handy. The problem now becomes the early termination.
There a simple strategy could be to test for termination
only when the number of computed residues is a power of
two. In that case the reconstruction is guaranteed to be
balanced and fast Chinese remaindering is also guaranteed.
Moreover random moduli are not any more necessary for all
the residues, only those testing for early termination need be
randomly generated. This induces another saving if one fixes
the other primes and precomputes all the factors Mi×(M−1

i

mod Mi+1). There the cost of the reconstruction drops by
a factor of 2 from 2(mα + dα)lα to (mα + dα)lα.
The drawback is an extension of the number of black box



applications from &log2β (R)' + ET to the largest power of
two immediately superior and thus up to a factor of 2 in the
number of black box applies. For the Builder, the update
becomes just a push in the ladder as shown on algorithm 10.

Algorithm 10 EarlyBalancedCRA.update(v, p)

1: RadixLadder.insert(v, p);

The termination condition, on the contrary tests only when
the number of residues is power of two as shown on algo-
rithm 11.

Algorithm 11 EarlyBalancedCRA.notTerminated()

1: if Only one Shelf, Shelf[i], is full then
2: Set Ui to Shelf[i] residue;
3: for j = 1 to EarlyTerminationThreshold do
4: p :=PrimeGenerator();
5: if (Ui mod p) ! = BlackBox.apply(p) then
6: Return false;
7: end if
8: end for
9: Return true;

10: else
11: Return false;
12: end if

Then, the whole reconstruction of algorithm 4 now requires:

ET · (apply + 3 · 2k) +
k−1
X

i=0

2k

2i+1

“

apply + (mα + dα)2iα
”

+(apply + 3 · 2i) =

(2k + k + ET − 1) · apply +
“

2k
”α mα + dα

2α − 2
+ O(2k)

(3)

operations, where now k = &log2(log2β (R))'.

Despite the augmentation in the number of black box appli-
cations, the latter can be useful, in particular when multiple
values are to be reconstructed.

Example 1. Consider the Gaußian elimination of an in-
teger matrix where all the matrix entries are larger than n
and bounded in absolute value by A∞. Let a∞ = log2β (A∞)
and suppose one would like to compute the rational coeffi-
cients of the triangular decomposition only by Chinese re-
maindering (there exist better output dependant algorithms,
see e.g. [22], but usually with the same worst-case complex-
ity). Now, Hadamard bound gives that the resulting numer-
ators and denominators of the coefficients are bounded by√

nA2
∞

n
. Then the complexity of the earliest strategy would

be dominated by the reconstruction where the balanced strat-
egy or the hybrid strategy of figure 2 could benefit from fast
algorithms:

EarlySingleCRA O(n4a2
∞)

EarlyMultipCRA O(nω+1a∞ + n2+αaα
∞ + n2a2

∞)
EarlyBalancedCRA O(2nω+1a∞ + n2+αaα

∞)

Table 2: Early termination strategies complexities
for Chinese remaindered Gaußian elimination with
rationals

In the case of small matrices with large entries the recon-
struction dominates and then a balanced strategy is prefer-
able. Now if both complexities are comparable it might be
useful to reduce the factor of 2 overhead in the black box
applications. This can be done via amortized techniques, as
shown next.

4.4 Amortized termination
A possibility is to use the ρ-amortized control of [2]: instead
of testing for termination at steps 21, 22, . . ., 2i, . . . the
tests are performed at steps ρg(1), ρg(2), . . ., ρg(i), . . . with
1 < ρ < 2 and g satisfies ∀i, g(i) ≤ i. If the complexity
of the modular problem is C and the number of iterations
to get the output is b, [2] give choices for ρ and g which

enable to get the result with only b + f(b)
b

iterations and
extra O(f(b)) termination tests where f(b) = logρ(b).

In example 1 the complexity of the modular problem is nω,
the size of the output and the number of iterations is na∞

so that strategy would reduce the iteration complexity from
2nω+1a∞ to (na∞ + o(na∞))nω and the overall complexity
would then become:

EarlyAmortizedCRA
O(nω+1a∞ + n2+αaα

∞

+ log(na∞)nαaα
∞)

Indeed, we suppose that the amortized technique is used
only on a linear combination, and that the whole matrix is
reconstructed with a FullMultipCRA, as in figure 2. Then
the linear combination has size 2 log(n) + n · a∞ which is
still O(n · a∞). Nonetheless, there is an overhead of a fac-
tor log(na∞) in the linear combination reconstruction since
there might be up to O(log(na∞)) values ρg(i), ρg(i+1), . . .
between any two powers of two. Overall this gives the above
estimate. Now one could use other g functions as long as
eq. 4 is satisfied.

8

<

:

“

ρg(i+1) − ρg(i)
”

= o(ρg(i))
“

ρg(i+k(i)) − ρg(i)
”

∼ 2#log2(ρg(i))$, k(i) = o(ρg(i))
(4)

5. PARALLELIZATION
All parallel versions of these sequential algorithms have to
consider the parallel merge of radix ladders and the paral-
lelization of the loop of the CRA-control algorithm 4. Many
parallel libraries can be used, namely OpenMP or Cilk would
be good candidates for the parallelization of the embarrass-
ingly parallel FullMultipCRA. Now in the early termination
setting, the main difficulty comes from the distribution of
the termination test. Indeed, the latter depends on data
computed during the iterations. To handle this issue we
propose an adaptive parallel algorithm [5, 24] and use the
Kaapi library [6, 16]. Its expressiveness in an adaptive set-
ting guided our choice, together with the possibility to work
on heterogenous networks.

5.1 Kaapi overview
Kaapi is a task based model for parallel computing. It was
targeted for distributed and shared memory computers. The
scheduling algorithm uses work-stealing [3, 1, 4, 17]: an idle
processor tries to steal work to a randomly selected victim
processor.



The sequential execution of a Kaapi program consists in
pushing and popping tasks to dequeue the current running
processor. Tasks should declare the way they access the
memory, in order to compute, at runtime, the data flow de-
pendencies and the ready tasks (when all their input values
are produced). During a parallel execution, a ready task,
in the queue but not executed, may be entirely theft and
executed on an other processor (possibly after being com-
municated through the network). These tasks are called dfg
tasks and their schedule by work-stealing is described in [16,
17].

A task being executed by a processor may be only partially
theft if it interacts with the scheduler, in order to e.g. decide
which part of the work is to be given to the thieves. Such
tasks are called adaptive tasks and allows fine grain loop
parallelism.

To program an adaptive algorithm with Kaapi, the program-
mer has to specify some points in the code (using kaapi_
stealpoint) or sections of the code (kaapi_stealbegin,
kaapi_stealend) where thieves may steal work. To guar-
antee that parallel computation is completed, the program-
mer has to wait for the finalization of the parallel execution
(using kaapi_steal_finalize). Moreover, in order to bet-
ter balance the work load, the programmer may also decide
to preempt the thieves (send an event via kaapi_preempt_
next).

5.2 Parallel earliest termination
Algorithm 12 lets thieves steal any sequence of primes.

Algorithm 12 ParallelCRA-Control

1: Builder.initialize();
2: while Builder.notTerminated() do
3: p := Builder.nextCoPrime();
4: kaapi stealbegin( splitter, Builder);
5: v := BlackBox.apply(p);
6: Builder.update(v, p);
7: kaapi finalize steal();
8: kaapi stealend();
9: if require synchronization step then

10: while kaapi nomore thief() do
11: (list of v, list of p) :=kaapi preempt next();
12: Builder.update(list of v, list of p);
13: end while
14: end if
15: end while
16: Return Builder.reconstruct();

At line 4, the code allows the scheduler to trigger the pro-
cessing of steal requests by calling the splitter function. The
parameters of kaapi_stealbegin are the splitter function
and some arguments to be given to its call. These argu-
ments4 can e.g. specify the state of the computation to
modify (here the builder object plays this role). Then, on
the one hand, concurrent modifications of the state of com-
putation by thieves, must be taken care of during the con-
trol flow between lines 4 and 8: here the computation of the
residue could be evaluated by multiple threads without crit-

4in or out

ical section5. On the other hand, after line 8, the scheduler
guarantees that no concurrent thief can modify the computa-
tional state when they steal some work. Remark that both
branches of the conditional if at line 9 must be executed
without concurrency: the iteration of the list of thieves or
the generation of the next random modulus are not reen-
trant.

The role of the splitter function is to distribute the work
among the thieves. In algorithm 13, each thief receives a
coPrimeGenerator object and the entrypoint to execute.

Algorithm 13 Splitter(Builder,N, requests[])

1: for i = 0 to N − 1 do
2: kaapi request reply(request[i], entrypoint,

Builder.getCoPrimeGenerator() );
3: end for

The coPrimeGenerator depends on the Builder type and
allows the thief to generate a sequence of moduli. For in-
stance the coPrimeGenerator for the earliest termination
contains at one point a single modulus M which is returned
by the next call of nextCoPrime() by the Builder.

The splitter function knows the number N of thieves that
are trying to steal work to the same victim. Therefore it
allows for a better balance of the work load. This feature
is unique to Kaapi when compared to other tools having a
work-stealing scheduler.

5.3 Synchronization
Now, the victim periodically tests the global termination
of the computation (line 9 of algorithm 12). Depending
on the chosen termination method (Early*CRA, etc.), the
synchronization may occur at every iteration or after a cer-
tain number of iterations. The choice is made in order to
e.g. amortize the cost of this synchronization or reduce the
arithmetic cost of the reconstruction. Then each thief is
preempted (line 11) and the code recovers its results before
giving them to the Builder for future reconstruction (line
12).

The preemption operation is a two way communication be-
tween a victim and a thief: the victim may pass parameters
and get data from one thief. Note that the preemption op-
eration assumes cooperation with the thief code. The lat-
ter being responsible for polling incoming events at specific
points (e.g. where the computational state is safe preemption-
wise).

On the one hand, to amortize the cost of this synchroniza-
tion, more primes should be given to the thieves. In the
same way, the victim code works on a list of moduli inside
the critical section (at line 3 returns a list of moduli, and
at lines 5-6 the victim iterates over this list by repeatedly
calling apply and update methods). On the other hand, to
avoid long waits of the victim during preemption, each thief
should test if it has been preempted to return quickly its
results (see next section).

5This depends on the implementation, most of the LinBox
library functions are reentrant



5.4 Thief entrypoint
Finally, algorithm 14 returns both the sequence of residues
and the sequence of primes that where given to the Black-
Box. This algorithm is very similar to algorithm 12.

Algorithm 14 Thief’s EntryPoint(M)

1: Builder.initialize();
2: list of v.clear();
3: list of p.clear();
4: while Builder.CoPrimeGenerator() not empty do
5: if kaapi preemptpoint() then break; end if
6: p := Builder.nextCoPrime();
7: kaapi stealbegin( splitter, Builder);
8: list of p.push back(p);
9: list of v.push back(BlackBox.apply(p));

10: kaapi stealend();
11: end while
12: kaapi stealreturn (list of v, list of p);

Lines 7 and 10 define a section of code that could be concur-
rent with steal requests. At line 5, the code tests if a pre-
emption request has been posted by algorithm 12 at line 11.
If this is the case, then the thief aborts any further compu-
tation and the result is only a partial set of the initial work
allocated by the splitter function.

5.5 Efficiency
These parallel versions of the Chinese remaindering have
been implemented using Kaapi transparently from the Lin-
Box library: one has just to change the sequential controller
cra-domain.h to the parallel one.

In LinBox-1.1.7 some of the sequential algorithms which
make use of some Chinese remaindering are the determinant,
the minimal/characteristic polynomial and the valence, see
e.g. [20, 12, 11, 8] for more details.

We have performed these preliminary experiments on an 8
dual core machine (Opteron 875, 1MB L2 cache, 2.2Ghz,
with 30GBytes of main memory). Each processor is attached
to a memory bank and communicates to its neighbors via
an hypertransport network. We used g++ 4.3.4 as C++
compiler and the Linux kernel was the 2.6.32 Debian distri-
bution.

All timings are in seconds. In the following, we denote by
Tseq the time of the sequential execution and by Tp the time
of the parallel execution for p = 8 or p = 16 cores. All
the matrices are from “Sparse Integer Matrix Collection”
(SIMC)6.

Table 3 gives the performance of the parallel computation
of the determinant for small invertible matrices (less than a
second) and larger ones (an hour CPU) of the SIMC/SPG and
SIMC/Trefethen collections.
The small instance (ex-1) needed very few primes to recon-
struct integer the solution. There, we can see the overhead of
parallelism: this is due to some extra synchronizations and
also to the large number of unnecessary modular compu-

6http://ljk.imag.fr/CASYS/SIMC

Matrix d, r Tseq[k] Tp=8[k] Tp=16[k]

ex − 1 560, 8736 0.29[4] 0.16[9] 0.22[16.8]
ex − 3 2600, 71760 837.80[184] 123.56[193] 77.99[193]
t − 150 150, 2040 0.21[59] 0.046[63.4] 0.036[63.6]
t − 300 300, 4678 2.52[138] 0.36[144.8] 0.24[144.7]
t − 500 500, 8478 15.19[249] 2.05[257] 1.31[256.3]
t − 700 700, 12654 52.59[367] 6.50[368.9] 4.19[371.2]
t − 2000 2000, 41907 2978.23[1274] 384.43[1281] 236.59[1281]

Table 3: Timings for the computation of the de-
terminant. d is the dimension of the matrix, r the
number of non-zero coefficients, [k] is the mean num-
ber of primes observed for the Chinese remaindering
using p cores.

tations before realizing that early termination was needed.
Despite this we do achieve some speed-up.

We show on table 4 the corresponding speed-ups of table 3
compared with a naive approach using OpenMP: for p the
number available cores, launch the computations by blocks
of p iterations and test for terminaison after each block is
completed. For large computations the speed-up is quite

Matrix ex − 1 ex − 3 t − 150 t − 300 t − 500 t − 700 t − 2000
Naive 1.38 10.66 2.10 8.52 11.29 12.55 12.48
Alg.12 1.35 10.74 5.78 10.52 11.56 12.55 12.59

Table 4: Speed-up using 16 cores of algorithm 12
compared to a naive approach with OpenMP

the same since the computation is largely dominant. For
smaller instances we see the advantage of reducing the num-
ber of synchronizations. On e.g. multi-user environments
the advantage should be even greater.

6. CONCLUSION
We have proposed a new data structure, the radix ladder,
capable of managing several kinds of Chinese reconstructions
while still enabling fast reconstruction.

Then, we have defined a new generic design for Chinese re-
maindering schemes. It is summarized on figure 3. Its main
feature is the definition of a builder interface in charge of
the reconstruction. This interface is such that any of ter-
mination (deterministic, early terminated, distributed, etc.)
can be handled by a CRA controller. It enables to define
and test remaindering strategies while being transparent to
the higher level routines. Indeed we show that the Chinese
remaindering can just be a plug-in in any integer computa-
tion.

We also provide in LinBox-1.1.7 an implementation of the
ladder, several implementations for different builders and a
sequential controller. Then we tested the introduction of a
parallel controller, written with Kaapi, without any modifi-
cation of the LinBox library. The latter handles the difficult
issue of distributed early termination and shows good per-
formance on a SMP machine.

In parallel, some improvement could be made to the early
termination strategy in particular when the BlackBox is
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Figure 3: Generic Chinese remaindering scheme

fast compared to the reconstruction and when balanced and
amortized techniques are required. Also, output sensitive
early termination is very useful for rational reconstruction,
see e.g. [21] and thus the latter should benefit from this kind
of design.
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