
FAST MATRIX MULTIPLICATION ALGORITHMS

ON MIMD ARCHITECTURES

B.DUMITRESCU ∗† , J.L.ROCH ∗ AND D.TRYSTRAM ∗

Abstract. Sequential fast matrix multiplication algorithms of Strassen and Winograd are stud-
ied; the complexity bound given by Strassen is improved. These algorithms are parallelized on MIMD
distributed memory architectures of ring and torus topologies; a generalization to a hyper-torus is
also given. Complexity and efficiency are analyzed and good asymptotic behaviour is proved. These
new parallel algorithms are compared with standard algorithms on a 128-processor parallel computer;
experiments confirm the theoretical results.

Key Words. matrix multiplication, Strassen’s algorithm, Winograd’s algorithm, parallel algo-
rithms.

AMS(MOS) subject classification. 65-04, 65F30, 65Y05.

1. Introduction. Matrix multiplication is an operation that often occurs in
linear algebra algorithms; moreover, the trend to express problems in terms of block
of matrices (level-3 operations, see [11]), due especially to the memory organization
of supercomputers, has instigated new studies on matrix multiplication problem.

In 1969, Strassen proposed a new way to multiply two n-dimensional matrices
[19]. This method is based on a substitution of multiplications by additions in the
usual formulae (inner products), which reduces the number of multiplications from
O(n3) to O(nlog2 7). Improvements have been developed from Strassen’s algorithm
[20] and many other algorithms have been discovered [17]. At this time, the best
upper bound known is O(n2.37) [7].

Among all these methods, Strassen’s [19] and Winograd’s [20] have been shown
to be of some practical interest for sequential implementations [4, 6], but disregarded
because their numerical properties are weaker than those of the standard algorithm.

Fast matrix multiplication methods lead to theoretical optimal parallel algorithms
with a polynomial bounded number of processors [7]. However, from a practical point
of view, only few implementations have been proposed [2, 3, 16]; all of these are for
SIMD architectures. One of the main reasons is that the basic formulae used in these
methods are not symmetric or regular and then cannot easily, and thus efficiently,
be parallelized, while the standard algorithm has a structure very appropriate for
parallelism. But the cited papers have proved that efficiency can be obtained and
that, from numerical point of view, the fast algorithms, implemented with care, may
be of value. Of course, fast algorithms will be better only for matrix dimensions of
the order of hundreds.

We propose in this paper parallelizations which minimize the depth of the prece-
dence graph using 7 processors on a ring architecture or 49 on a torus. This study
leads to practical efficient implementations: on one hand, fast methods are used lo-
cally as the basic sequential routine on block submatrices, and, on the other hand, it
leads to a parallel task repartition on a ring or on a torus.

From this study, we give asymptotically optimal algorithms, whose complexity is
O((n

2k)log2 7) on a k hyper-torus with 7k processors. We present some experiments on
a 128 Transputer network.

∗ LMC-IMAG, 46, Av. F. Viallet, 38031 Grenoble, France.
† On leave from the Polytechnical Institute of Bucarest, Romania; supported by a TEMPUS

grant.

1

This paper is structured as follows. In section 2 fast sequential algorithms of
Strassen and Winograd are analyzed; Strassen’s bound of 4.7nlog2 7 is improved. Sec-
tion 3 and 4 deal respectively with the precedence task graph of these algorithms and
task allocation on ring and hyper-torus topologies; complexity formulae are derived
and asymptotic efficiency equal to 1 is proved. In section 5 a short review of standard
algorithms on ring and torus is given; a mixed algorithm is obtained from Strassen’s
and standard algorithms. Experimental results are presented in section 6, that show
the good behaviour of the new parallel algorithms, compared to standard ones, for
matrices of size greater than 200× 200.

2. Fast sequential methods for matrix multiplication. Let A and B be
two square matrices of size n × n. If not explicitly specified, we assume that n is a
power of 2. We denote by ai,j the element of row i, column j, of matrix A. Denote
by MM(n) the problem of computing the matrix multiplication C = A · B. We call
the explicit use of the formula ci,j =

∑n

k=1 ai,k · bk,j the standard method for solving
MM(n).

For any matrix X of size n × n, we define the partition X =

[

X1,1 X1,2

X2,1 X2,2

]

,

where Xi,j are square blocks of size n
2 ×

n
2 .

2.1. Strassen’s method. The first fast method for matrix multiplication was
discovered by Strassen in 1969 [19]. It is based on the following formulae:

C = A ·B =

[

M0 + M1 + M2 −M3 M3 + M5

M2 + M4 M0 −M4 + M5 + M6

]

(1)

M0 = (A1,1 + A2,2) · (B1,1 + B2,2) M3 = (A1,1 + A1,2) · B2,2

M1 = (A1,2 − A2,2) · (B2,1 + B2,2) M4 = (A2,1 + A2,2) · B1,1

M2 = A2,2 · (B2,1 −B1,1) M5 = A1,1 · (B1,2 −B2,2)
M6 = (A2,1 −A1,1) · (B1,1 + B1,2)

The algorithm above is recursively applied for each of the 7 new MM(n
2) sub-

problems, halving each time the dimension of the blocks. Moreover, 18 additions of
matrices of dimension n

2 are involved. The arithmetic complexity is:

tm(n) = nlog 7 ta(n) = 6nlog 7 − 6n2(2)

where tm(n) and ta(n) respectively denote the number of multiplications and the
number of additions; all logarithms in this paper are in basis 2, so we will simply
write log instead of log2.

2.2. Winograd’s method. In 1973, Winograd [20] improves Strassen’s method,
reducing the number of additions to only 15; it is also proved that this is the minimum,
for any algorithm of rank 7 (using 7 multiplications instead of 8, as the standard) for
MM(2) [17]. The following formulae describe the algorithm:

C = A · B =

[

M0 + M1 M0 + M4 + M5 −M6

M0 −M2 + M3 −M6 M0 + M3 + M4 −M6

]

(3)

M0 = A1,1.B1,1 M3 = (A1,1 −A2,1).(B2,2 −B1,2)
M1 = A1,2.B2,1 M4 = (A2,1 + A2,2).(B1,2 −B1,1)

M2 = A2,2.(B1,1 −B1,2 −B2,1 + B2,2) M5 = (A1,1 + A1,2 −A2,1 −A2,2).B2,2

M6 = (A1,1 −A2,1 −A2,2).(B1,1 + B2,2 −B1,2)

2

The complexity is similar with (2):

tm(n) = nlog 7 ta(n) = 5nlog 7 − 5n2(4)

2.3. Designing a good sequential algorithm. In this section, we wish to
derive an efficient algorithm for matrix multiplication. As the target processors are
usual microprocessors, on which floating-point addition and multiplication have ap-
proximately equal execution time, we may consider the complexity of each of the
three algorithms (standard, Strassen and Winograd) as the sum of the number of
multiplications tm(n) and the number of additions ta(n):

TStand(n) = 2n3 − n2 TStrassen(n) = 7nlog 7 − 6n2 TWino(n) = 6nlog 7 − 5n2

The idea is to determine a good tradeoff between Strassen’s or Winograd’s algo-
rithms and the standard one; the recursion will be performed until a cutoff dimension
n0 is obtained, after which the standard algorithm is used; such an algorithm will be
called mixed.

If n and n0 are powers of 2, the best cutoff dimension is n0 = 8, both for Strassen’s
and Winograd’s algorithms (see also [12]).

In the general case where matrix size is not a power of 2, recursions take place
down to a dimension q less or equal to n0, i.e. in the interval [[n0

2] + 1, n0]. In the
original paper of Strassen [19] it is proved that there exists an n0 such that:

TStrassen mix(n) < 4.7 nlog 7, ∀n > n0(5)

By another way, we give below a better bound. It is immediate that ∀n, ∃q ∈
[[n0

2] + 1, n0] and ∃p > 0 integer, so that (q − 1) · 2p < n ≤ q · 2p; note that p is
the minimal number of recursion steps in order to obtain a block dimension less or
equal to n0. For a proper recursion, initial matrices are padded with zeroes, up to size

q · 2p. Using the recursion formula T (n) = 7T (n
2) + 18n2

4 , with the initial condition
T (q) = 2q3 − q2, it follows that:

TStrassen mix(n) =
2q3 + 5q2

qlog 7
(q · 2p)log 7 − 6(q · 2p)2 <

2q3 + 5q2

(q − 1)log 7
nlog 7 = cq nlog 7

The problem to be solved is:

min
n0

max
q∈[[

n0
2

]+1,n0]
cq

Listing the values of cq, it is easy to make the best choice: c21 = 4.62, c40 = 4.644.
So, the optimal n0 is 40, and the corresponding bound, which improves that of (5):

TStrassen mix(n) < 4.65 nlog 7, ∀n > 40

As an observation, Strassen computed his bound implicitely using the interval [16,31],
which, as can be seen, is not the best.

An analogous computation for Winograd leads to n0 = 36, TWino mix(n) <

4.56 nlog 7; we did not find any reference to a similar result.
These results were obtained based only upon arithmetic complexity reasons.

Other factors, such as implementation complexity or numerical stability are discussed
in the sequel. Recall once again that the analysis above is based on the hypothesis
that the ratio of floating-point multiplication time vs. floating-point addition time is
equal to 1; if the ratio is greater than 1, the value of n0 decreases.

3

Standard Winograd Strassen
n n0 n0

8 16 32 64 16 32 64
32 0.22 0.29 0.24 0.22 0.22 0.25 0.22 0.22

48 0.75 1.11 0.83 0.74 0.75 0.90 0.76 0.75

64 1.76 2.19 1.78 1.68 1.76 1.90 1.72 1.76
80 3.43 5.37 3.80 3.29 3.20 4.22 3.47 3.27

96 5.91 8.05 6.08 5.45 5.44 6.67 5.72 5.54

128 13.97 15.84 13.01 12.28 12.65 14.03 12.75 12.82
192 47.01 57.52 43.76 39.35 39.28 48.23 41.60 40.34

256 111.27 112.97 93.15 88.03 90.67 100.99 92.04 92.56
384 374.99 407.37 311.03 280.17 279.72 343.91 297.49 288.66

512 888.23 799.24 660.47 624.66 643.14 718.10 655.43 659.08
Table 1

Timings (in seconds) for sequential algorithms on a transputer T800

2.4. Experiments. In order to find the best cutoff dimension n0, we performed
a series of experiments on implementations of standard, Winograd and Strassen al-
gorithms. All programs were written in C, with double precision variables, compiled
with the C3L compiler and executed on a single transputer of a supernode; for more
information on this type of computer, as well as on available software tools, see [1]
and section 6 of the present paper. The results are reported in table 1.

From this table, we can remark that the optimal cutoff dimension for Winograd’s
algorithm is 32 ≤ n0 < 64; as an example, for the experiments above, the value n0 =
48 will collect the best times, for the chosen dimensions n. The difference between the
theoretical result (n0 < 16, as experiments are made only for unpadded matrices) and
the experimental one is due to the great overhead due to implementation: dynamic
memory allocation, function calls, more integer arithmetic. It is recommended, for
numerical stability, to choose, as far as possible, a greater value; Bailey [2] uses 127,
IBM’s ESSL library even more.

As expected, Strassen’s method is only a little worse than Winograd’s and has a
greater n0.

Both fast methods become much better than the standard one beginning at matrix
dimension of the order of 100 (speed improvement: about 10%).

2.5. A brief discussion on numerical stability. One must never forget nu-
merical stability; fast algorithms often have worse numerical properties than the stan-
dard ones. For the MM(n) problem we refer to the original work of Brent [4], redis-
covered by Higham [12]. We remind only the absolute error for Strassen’s method:

‖E‖ ≤

[

(

n

n0

)log 12

(n2
0 + 5n0)− 5n

]

u‖A‖ · ‖B‖+ O(u2)(6)

where ‖A‖ = maxi,j |ai,j | and u the unit roundoff of the machine; for Winograd’s
method the error bound is similar, but with an exponent of log 18 ≈ 4.17 replacing
log 12 ≈ 3.585, while for the standard algorithm:

‖E‖ ≤ nu‖A‖ · ‖B‖+ O(u2)

The standard algorithm is obviously more stable than the fast ones. It can be
seen that the bound in (6) is improved by a bigger n0. A way to get error within an

4

acceptable limit is to permit only few levels of recursion (as in the IBM ESSL library
[13] - four levels), i.e. keeping constant and small n

n0
, which has the biggest exponent;

this implies also a limitation of speed improvement, but a compromise is necessary.

2.6. The problem of memory space. The Parallel Computation Thesis states
(see [14]) that parallel time is polynomially equivalent to sequential space. From a
practical point of view, the data dependency graph in a sequential algorithm may
be seen as a precedence graph, despite different interpretations. Minimizing memory
space is important because on one hand it leads to an efficient sequential algorithm,
which may be used by each processor of a parallel computer, and on another hand
it gives an insight into the efficiency of the parallelization. The main characteristic
of fast sequential algorithms compared to a standard algorithm, is to reduce time
complexity, while increasing space complexity. The parallelization of such a fast
algorithm is expected to lead to a slower algorithm, but requiring fewer processors.
Thus, it is important to study precisely the space complexity needed for fast matrix
multiplication.

Unfortunately, the problem of determining the minimal memory space needed for
the execution of an algorithm is NP-complete. It can be found, under the name of
REGISTER SUFFICIENCY, in [10].

The data dependency graph for Strassen’s or Winograd’s algorithms having a
small number of vertices (25 and 22, respectively, as can be seen in the next section),
the problem of minimizing memory space was solved by an exhaustive, but carefully
designed, program. The extra memory (over that necessary for the result) is 2

3n2 cells
for Strassen’s algorithm and n2 cells for Winograd’s algorithm; the first result is also
reported in [2] from Kreczmar [15].

3. Parallel complexity study. In the sequel, we propose parallel versions of
both (Winograd and Strassen) fast algorithms for MM(n); since they are defined
recursively, we first consider the parallelization on one level consisting of reducing the
matrix dimension from n to n

2 , i.e. using equations (1), (3) only once.
The parallel implementation of fast MM(n) methods is based on the notion

of precedence task graph introduced in [5]. An elementary task is defined as an
indivisible unit of work, specified only in terms of its external behaviour (inputs,
outputs, execution time, etc.).

The parallel complexity study principle consists of splitting the program into
elementary tasks, whose order of execution is directed by precedence constraints.
According to the literature, the precedence constraint relation is denoted ≺; if, for
tasks Ti, Tj , Ti ≺ Tj , then the execution of task Tj can begin only after the completion
of task Ti. The precedence task graph (which is a DAG) is built directly from these
constraints; if Ti ≺ Tj , then a path exists from Ti to Tj .

We presume a coarse grain computation, i.e. a task contains block (level-3 BLAS)
operations (not matrix element level operations).

3.1. Precedence task graph for Winograd’s method. The elementary tasks
are the following, as directly resulting from equations (3) (there are 7 multiplication
tasks and 15 addition tasks):

5

M M

T T

T

T

M

T

T

T T1

T

T

M2 M M

T T

M

T

T T

5

7

8

3

4

2 6

11 12 13

15 14

17 16

1 0 6 3 5 4

a

b

c

Fig. 1. Precedence task graph for Winograd’s algorithm

Task T1 = A1,1 −A2,1

Task T2 = A2,1 + A2,2

Task T3 = T1 −A2,2

Task T4 = T3 + A1,2

Task T5 = B2,2 −B1,2

Task T6 = B1,2 −B1,1

Task T7 = T5 + B1,1

Task T8 = T7 −B2,1

Task M0 = A1,1 ·B1,1

Task M1 = A1,2 ·B2,1

Task M2 = A2,2 · T8

Task M3 = T1 · T5

Task M4 = T2 · T6

Task M5 = T4 · B2,2

Task M6 = T3 · T7

Task T11 = M0 + M1

Task T12 = M0 −M6

Task T13 = M3 −M2

Task T14 = T12 + M4

Task T15 = T12 + T13

Task T16 = T14 + M5

Task T17 = T14 + M3

and lead to the precedence task graph of figure 1; hereafter the notation for the task
name and for its output is the same.

It is well known that, in a precedence task graph, width gives information about
the necessary (or maximum) number of processors and depth about the parallel exe-
cution time. We try to minimize the depth (the number of tasks in the longest path
in the graph), in order to obtain a shorter execution time. The depth of this graph
is 6; in order to reduce it to 5, we have to ‘cut’ the edges denoted by a and b in
figure 1. We also cut edge c for the following reason: there are 7 multiplication tasks
of time O((n

2)log 7), whose execution time is much greater than that for the other
tasks; we intend to obtain a scheduling which implies parallel execution for all these
7 tasks; for a minimal global execution time, each longest path has to be divided by
the multiplication stage in the same way.

The cost of this reduction is the introduction of some redundant work; there are
now 18 (instead of 15) addition tasks of time O((n

2)2). Tasks that have changed
(compared to the previous version of the precedence graph) and the new ones are
listed above:

6

M M

T T T

M

T

T T

T

M2 M M

T T

M

8 4

2 6

11 12 13

1 0 6 3 5 4

T

T T

T16

18 14

17

T T1

TT

10

7

5

3

9

T15

Fig. 2. Improved precedence task graph for Winograd’s algorithm

Task T9 = A1,2 −A2,2

Task T10 = B1,1 −B2,1

Task T18 = M3 + M4

Task T4 = T1 + T9

Task T8 = T5 + T10

Task T14 = M4 + M5

Task T16 = T12 + T14

Task T17 = T12 + T18

The new precedence task graph is shown in figure 2. The analysis from this
subsection was first done in [18].

3.2. Precedence task graph for Strassen’s method. There are several ways
to obtain tasks that fulfill Strassen’s algorithm; we have chosen the most promising
one, i.e. the one with minimal depth: 4. The elementary tasks are the following and
lead to the precedence graph of figure 3:

Task T1 = A1,1 + A2,2

Task T2 = B1,1 + B2,2

Task T3 = A1,2 −A2,2

Task T4 = B2,1 + B2,2

Task T5 = B2,1 −B1,1

Task T6 = A1,1 + A1,2

Task T7 = A2,1 + A2,2

Task T8 = B1,2 −B2,2

Task T9 = A2,1 −A1,1

Task T10 = B1,1 + B1,2

Task M0 = T1 · T2

Task M1 = T3 · T4

Task M2 = A2,2 · T5

Task M3 = T6 · B2,2

Task M4 = T7 · B1,1

Task M5 = A1,1 · T8

Task M6 = T9 · T10

Task T11 = M0 + M1

Task T12 = M2 −M3

Task T13 = M5 −M4

Task T14 = M0 + M6

Task T15 = T11 + T12

Task T16 = M2 + M4

Task T17 = M3 + M5

Task T18 = T13 + T14

At a first view of the precedence graphs, it seems that Strassen’s algorithm is
more appropriate for parallelization; both graphs contain 7 multiplication tasks and
18 addition tasks, but Strassen’s depth is smaller; if a large number of processors is
available, parallel execution time for Strassen’s algorithm will be shorter.

4. Task allocation. The general context is distributed-memory MIMD parallel
computers. The model is multiport (several ports of a processor can work in parallel),
links between processors are bidirectional and communication is presumed full duplex,

7

M M

T T

M M2 M M M

11

1 0 6 3

T15 T18

T16T T17 T1314 12

4 5

T3 T4 T9 T10

T2T1 T5 T6 T7 T8

Fig. 3. Precedence task graph for Strassen’s algorithm

though a half duplex model is also considered; p denotes the number of processors,
and P0, P1, . . . , Pp−1 the processors. The elementary step consists in computation
followed by neighbour communication, but it is possible that steps exist that consist
only of computation or only of communication.

4.1. Task allocation on a ring. As we mentioned in the previous section, tasks
consisting of multiplications have a much greater execution time than the others.
Thus, let us consider a ring of 7 processors and try an allocation that permits the
parallel execution of the 7 multiplication tasks; recall that we are concerned, for the
moment, only with the first level of recursion of the fast MM(n) algorithms. For
both Winograd’s and Strassen’s algorithms such allocations are detailed in figures 4
and 5. Criteria to obtain these parallelizations were:

- parallel execution of multiplication tasks;
- minimal communication between processors;
- the memory needed by each processor, as well as an uniform repartition of

matrix blocks, were ignored for the moment;
Some details about communication are necessary (references are to figure 4):
- in step 3, processors P0 and P6 exchange matrices computed in the same step

(communication is presumed simultaneous, but, of course, it can be done sequentially);
- in step 3, processor P3 sends the same matrix to its two neighbours (same remark

as above);
- in step 4, processor P1 receives a matrix from its left and sends the same matrix

to its right (this communication is presumed pipelined);
From the initial splitting into elementary tasks, described in the previous section,

some redundant work was introduced for Winograd’s algorithm; tasks T1, T5 and
T12 are duplicated and placed on processors that otherwise were idle (Duplicate and

Accelerate principle). For Strassen’s algorithm, such means are not necessary. The
chosen strategy guaranties the execution in the time constrained by the longest path
of the precedence graph, and thus is optimal for Winograd; for Strassen it is also
optimal, for the mentioned number of processors, which is smaller than the width of
the precedence graph, and then, tasks that could be scheduled in parallel, have in fact
sequential execution.

8

T5 T10 T2 T9 T1T5

T5

T7 T1 T6 T4 T3

M1 M2 M3 M5M4 M6M0
M0

T12 T13 T18 T14 T12

T12 T12 T12 T12

T15 T17T11 T16

P0 P1 P2 P3 P4 P5 P6

T1

T7

M

M0 M M M

6

3 3 4

T8

A1,1

A2,2

A2,2A1,2

B2,2

A2,2A2,1

B1,2B1,1

A2,1

B2,2

A1,1

B1,2

A2,2

B2,1B1,1

A1,2

B2,1

B1,1A1,1

B2,2B1,2

A2,1

Processor

Input matrices

step 1

step 2

step 3

step 4

step 5

mapping

Fig. 4. Task allocation and execution scheme for parallel Winograd

M1 M2 M3 M5M4 M6M0
M0

T16

T3T1

T2 T4 T5

T6

T7

T8 T9

T11

T15

T12 T13 T14

T18T17

M3 M4

M3M4M4T12 T13

M0 M3

P0 P1 P2 P3 P4 P5 P6

T10

A2,1A1,1A1,1A2,2A2,1A1,2A1,1A2,2A2,2A1,2A2,2A1,1

B1,2B1,1B2,2B1,2B1,1B2,2B2,1B1,1B2,2B2,1B2,2B1,1

Processor

Input matrices

mapping

step 1

step 2

step 3

step 4

step 5

Fig. 5. Task allocation and execution scheme for parallel Strassen

9

Parallel complexity study. Denote by mq the number of multiplications and by
aq the number of additions necessary to solve sequentially the MM(q) problem (by
an algorithm not yet specified: standard, Winograd, Strassen or mixed), where q = n

2
is the dimension of the blocks. Also denote by tc(n) the number of matrix elements
which are transmitted (for a simplier analysis, we do not count transmitted bytes; we
do not consider the extra time needed by pipelining, by a full duplex transmission on
a link or by a simultaneous transmission made by a processor on both links with its
neighbours) and by M(n) the maximal (over all processors) memory space occupied
by the inputs (number of matrix elements).

For solving MM(n) on a ring of processors, the complexity of parallel Winograd’s
algorithm is:

tm(n) = mq ta(n) = n2 + aq tc(n) = n2 M(n) = n2(7)

while for parallel Strassen’s algorithm:

tm(n) = mq ta(n) = n2 + aq tc(n) = n2

2 M(n) = n2(8)

These equations show that parallel Strassen is expected to be a little faster than
parallel Winograd, due only to communication.

Bounding memory in parallel Strassen algorithm. Instead of searching for insignif-
icant improvements of the communication time, we try to minimize the memory space.
Figure 6 represents an allocation for Strassen’s precedence task graph built under a
supplementary constraint:

- initially, each processor has at most one block (of dimension n
2) of each input

matrix A, B;
As it will be seen, the aim of this constraint is not only to keep memory space

within acceptable limits, but will be a favorable factor in speeding up implementations
on torus and hyper-torus.

We note that an initial step consisting only of communications is added. The
number of steps including communication is 4. For this parallel version of Strassen’s
algorithm, called parallel Strassen with minimal memory, the complexity formulae
are:

tm(n) = mq ta(n) = n2 + aq tc(n) = n2 M(n) = n2

2
(9)

For Winograd’s algorithm with memory constraint, we can also find an allocation,
but it implies many initial communications and becomes unpractical.

4.2. Generalization to a hyper-torus. From the previous study on a ring
of 7 processors, it is easy to recursively build a mapping on a hyper-torus. Recall
that a hyper-torus denotes a k-dimensional torus with k > 1; we briefly denote a
k-dimensional hyper-torus a k-torus. Recall also an informal recursive definition of
the hyper-torus: a k-torus is a ring of (k − 1)-tori, and a 1-torus is a ring.

Since the discussed fast algorithms are recursive, the main idea of the allocation
on a hyper-torus is to embed recursion levels in successive rings of the hyper-torus.
We first analyze Winograd’s algorithm.

Consider a k-torus with p = 7k processors (each ring of the recursive definition is
made up of 7 tori). The algorithm described in the previous subsection is applied for
each ‘ring’, with the input matrices distributed over the processors that compose that
ring. Each processor has only blocks of dimension q = n

2k . The algorithm described
in figure 4 is adapted as follows:

10

M1 M2 M3 M5M4 M6M0
M0

T16

T3T1

T2 T4 T5

T6

T7

T8 T9

T11

T15

T12 T13 T14

T18T17

M3 M4

M3M4M4T12 T13

P0 P1 P2 P3 P4 P5 P6

M0 M3

T10

A2,1A1,1A2,2A1,2A2,2A2,2A1,1

B1,2B2,2B1,1B2,2B2,1B2,2B1,1

A1,1

B1,1

B1,2A1,1A1,1A1,2A1,2A2,2

A2,1A2,1B1,1B1,1B2,1B2,2

Processor

Input matrices
mapping

step 0

step 1

step 2

step 3

step 4

step 5

Fig. 6. Task allocation and execution scheme for parallel Strassen with minimal memory

- the input matrix distribution is the same, but considering that each processor
of the initial ring is now a (k − 1)-torus with 7k−1 processors, each n

2 ×
n
2 block is in

fact distributed over this torus;
- steps 1 and 2 are made exactly in the same manner, each processor doing the

operations with the blocks it owns;
- step 3 (multiplication) becomes recursive (recall that recursion levels are actually

unrolled); the MM(n
2) problem that has to be solved by each (k − 1)-torus is split

into 7 MM(n
4) problems; each (k − 1)-torus executes steps 1 and 2, etc.

- only at the last level of recursion, i.e. after k executions of steps 1 and 2,
when each processor has a MM(q) problem to solve locally, a sequential algorithm is
applied;

- steps 4 and 5, the gathering of the results, are made in a reverse order, from
inner to outer ‘rings’; there are k executions of these steps;

- finally, the result is distributed among 4k processors;

Parallel complexity study. Now, our goal is to derive complexity formulae for this
parallel algorithm, similar with the ones for the ring architecture. As the algorithm
is designed so that each processor has to solve a MM(q) problem, it follows that
tm(n) = mq and ta(n) = aq + O(n2). To find the coefficient hidden by the big O, let
us discuss the block distribution of the input matrices over the hyper-torus.

On a ring (block dimension n
2) the most loaded processor has 3 blocks of B

and 1 of A (there are processors having 2 blocks of each matrix, but an asymmetric
distribution will be worse for k-torus, with k > 1). On a 2-torus (block dimension n

4),
with the embedded recursion algorithm, there will exist a processor with 3 blocks of
each initial (from ring architecture) 3 blocks of B, i.e. 9 blocks of B, and 1 block of

11

A. Using inductive reasoning:

M(n) =

[

(

3

4

)k

+

(

1

4

)k
]

· n2(10)

That is, as k increases (and p), the required memory for a processor decreases very
slowly, and not proportionally to the number of processors, like most algorithms on
MIMD architectures. It turns out that memory requirements imply a growth in the
number of additions. Only additions that appear in steps 1 and 2 are concerned.

For simplicity, exemplify on a 2-torus (with 7×7 processors), for the most loaded
processor Ploaded. The inner ring to which Ploaded belongs must solve a MM(n

2)
problem; Ploaded has 3 n

4 ×
n
4 blocks of a n

2 ×
n
2 matrix; but these blocks must be

computed at the first level of recursion, by Ploaded as its part in the outer ring. So
that, at this level, it will be 3 times more additions, for steps 1 and 2. The number

of additions will be: ta(n) = [(2 · 3 + 2) + 4] ·
(

n
4

)2
+ an

4
. To be more explicit, there

are (block additions):
- 2 · 3 - first level (outer ring), steps 1 and 2;
- 2 - second level (inner ring), steps 1 and 2;
- 4 - steps 4 and 5, second and first level; in fact, processor P0, the most loaded

on a ring, has nothing to do in step 5, as can be seen in figure 4; but P0 stays idle
while other processors perform step 5.

Note that for steps 4 and 5, the input matrix distribution is not important, as
inputs for tasks in these steps are the results of the multiplication step; thus, only
one block is handled for each processor.

A generalization is now simple (each term of the sum represents the maximal
number of block additions performed in a recursion level, for steps 1, 2, 4, 5):

ta(n) = aq + [2 · (3k−1 + 1) + . . . + 2 · (31 + 1) + 4] ·
n2

4k
= aq + (3k + 2k− 1)

n2

4k
(11)

As each addition is either followed or preceeded by a communication, the same
reasoning gives the following formula:

tc(n) = (3k + 2k − 1)
n2

4k
(12)

Similar equations can be derived for parallel Strassen’s algorithm (figure 5), but
with a Ploaded that has 2 blocks of A and 2 of B; thus the coefficients of n2 get new
expressions:

tm(n) = mq tc(n) = 2k · n2

4k M(n) = 1
2k−1 · n

2

ta(n) = aq + [2 · (2k−1 + 1) + . . . + 2 · (21 + 1) + 4] · n2

4k = aq + (2k+1 + 2k − 2)n2

4k

(13)
We now turn to the parallel Strassen algorithm with minimal memory; similar

equations as above can be found, with the remark that counting additions is very
simple: each level of the embedded recursion contributes with 4 block additions,
in steps 1, 2, 4, 5 of the algorithm (the same situation is met for the number of
transmitted matrix elements, although not exactly in the same steps).

tm(n) = mq ta(n) = aq + 4k · n2

4k tc(n) = 4k · n2

4k M(n) = 2 · n2

4k
(14)

12

Remarks. Some remarks on equations (10)-(14) are necessary. Assume that the
sequential algorithm used for the MM(q) problem is of complexity tm = cmqω, ta =
caqω, where ω = 3 for the standard algorithm, and ω = log 7 for a fast algorithm.
Then:

- for all three implementations of this subsection, considering only the most sig-
nificant terms, the execution time is:

t(n) = (cm + ca) · qω + O(n2) = O
((n

2k

)ω)

- the efficiency of parallelization - computed for any fast method - has a similar
expression as the following, written for parallel Strassen with minimal memory (as an
example):

Ep(n) =
(cm + ca)nω + O(n2)

7k[(cm + ca)qω + 4k(1 + τ)n2

4k]

where τ is the number of arithmetic operations that can be executed while a matrix
element is transmitted between two processors; it is obvious that Ep(n) → 1 as
n →∞, and this assertion is true for all discussed parallel algorithms.

- if the coefficient of nω decreases proportionally to the number of processors
p, the coefficient of n2 is decreasing much more slowly; a short analysis shows that
parallel Strassen is the most efficient for small k, while parallel Strassen with minimal
memory is the best for bigger k; the value of k for which the two methods have the
same complexity depends on τ .

There is one more advantage of the parallel Strassen with minimal memory algo-
rithm. For all three parallel algorithms described in figures 4 - 6, for a ring topology,
each one can be described as follows (we assimilate communication before sequential
matrix multiplication to steps 1 and 2 and the one after multiplication to steps 4 and
5):

do steps 1 and 2 communicating with immediate neighbours on ring

do step 3 (without communication)

do steps 4 and 5 communicating with immediate neighbours on ring

In the embedded recursion, at level j of recursion, a processor communicates with
immediate neighbours on ring j of the recursive description of a hyper-torus. Only
the parallel Strassen with minimal memory supports a description like the following
one:

for j = 1 to k

do steps 1 and 2 communicating with immediate neighbours on ring j

do step 3 (without communication)

for j = k downto 1

do steps 4 and 5 communicating with immediate neighbours on ring j

where steps description is exactly the same as for the ring topology, with parametrized
communication. For Winograd or Strassen without memory constraint, steps 1 and
2 must be changed, because processors have to perform a variable number of block
additions or communications. This implies that each processor has its own program,
different from other ones, and makes programming fastidious.

13

Conclusions. An analysis was made in this subsection of three parallel fast matrix
multiplication algorithms implemented on a hyper-torus topology. For all of them an
asymptotic efficiency equal to 1 was found. The best algorithm that we considered is
parallel Strassen with minimal memory, for the following reasons:

- a good arithmetic and communication complexity, as can be seen in equations
(14);

- a much easier implementation; it was the only retained for experimentations on
torus;

- it can be easy coupled with a standard algorithm on sub-tori in order to use a
number of processors which is not a power of 7, but only a multiple.

5. Other algorithms for parallel matrix multiplication. In this section
we recall short descriptions of standard algorithms on MIMD architectures, and we
present a new mixed parallel algorithm, which results from the combination of a fast
method with a standard one.

On a ring topology. We describe two methods for matrix multiplication.
1. The first is the most regular; input matrices are partitioned in square blocks

of size n
p
× n

p
. Each processor Pj has in its local memory a block column of input

matrices, that is blocks Ai,j , Bi,j , i = 0 . . . (p−1); finally, each processor will have the
correspondent block column of the result C; result blocks are initialized with zeroes.
For processor Pj , the algorithm is:

for k = 0 to p− 1
for i = 0 to p− 1

multiply Ai,local with B(j+k) modp,j and add the result to Ci,j

in parallel do {block column shift of A}
send local block column of A to the right

receive a block column of A from left and store it as local

The complexity formulae are (for more information see [11]):

tm(n) = p2mn
p

ta(n) = p2an
p

+ n2 tc(n) = n2 M(n) = 2n2

p
(15)

2. The second is obtained by imposing conditions of minimal communication,
implying that p = 8; each processor has an n

2 ×
n
2 block of inputs A and B; it computes

the multiplication of the blocks; only half of processors make a block addition. For
Pi the algorithm is:

multiply local blocks of A and B

if i is even

send the result to right

else

receive a block result from left

add local result block with the received one

and leads to:

tm(n) = mn
2

ta(n) = an
2

+ n2

4 tc(n) = n2

4 M(n) = n2

2
(16)

14

On a torus topology. Three algorithms are presented below:
1. The standard algorithm is the following (processors are denoted Pi,j , upon

their position in the torus; each one is presumed to have in its local memory input
matrices blocks Ai,j , Bi,j , and to compute result block Ci,j , which is initialized with
zeroes; there are p× p processors):

for k = 0 to p− 1
if (i− j + k) mod p = 0 then {proc. starting diffusion on its row}

send local block of A to right

else receive a block of A from left and store it

if (i− j + k) mod p 6= p− 1 {other proc. than that ending diff.}
send the block to right

multiply the diffused block of A with the local block of B

and add to the local block of result

in parallel do {vertical block shift of B }
send local block of B above

receive a block of B from below and store it as local

The complexity formulae are:

tm(n) = pmn
p

ta(n) = pan
p

+ n2

p
tc(n) = 2n2

p
M(n) = 2n2

p2(17)

For a detailed description see [9]. Another form of the parallel standard algo-
rithm, reducing communication by means of preskewing, is due to Cannon (for more
information see [3]); we implemented it but did not notice significant differences over
the algorithm above; so that we do not report any result.

2. A generalization of the algorithm with minimal communication can be made
on a torus. The definition is an embedded recursion, similar with that used for fast
algorithm, but with p = 8k. General formulae for complexity can be found in [8];
those for the torus are:

tm(n) = mn
4

ta(n) = an
4

+ n2

8 tc(n) = n2

8 M(n) = n2

8
(18)

These relations show that communication is really minimal: there are b = 2k

blocks, p = b3 processors (implying maximal parallelism) and only k = log b blocks
are communicated by the most loaded processor.

3. As usual parallel computers have a number of processors that is a power of 2,
it is natural to think to a variant of a fast algorithm, adaptable to various dimensions
of the torus; in fact one dimension is 7; denote the other with d. The idea is (again) to
embed successive levels of the algorithm in successive rings of a torus, but now with
a first level using parallel Strassen with minimal memory and the second the parallel
standard on a ring of d processors; we think that this brief and informal description
is sufficient and present complexity formulae:

tm(n) = d2m n
2d

ta(n) = d2a n
2d

+ (d + 4)n2

4d
tc(n) = (d + 4)n2

4d
M(n) = n2

4d

(19)

6. Experimental results. In order to present experimental results we recall
here all algorithms presented in this paper.

1. On ring topology:
• StaR - standard algorithm;

15

• StaComR - standard algorithm with minimal communication;
• WinoR - parallel Winograd;
• StrComR - parallel Strassen (with minimal communication);
• StrMemR - parallel Strassen with minimal memory;

2. On torus topology:
• StaT - standard (with diffusion on rows);
• StaComT - standard with minimal communication;
• StrMemT - parallel Strassen with minimal communication;
• MixT - mixed Strassen and standard;

For each algorithm, on each processor, a sequential method is finally applied; a
letter, S or W, is added to the names above, as the sequential method is the standard
or the mixed Winograd. For algorithms that can be implemented on various number
of processors, that number is added to the name. So that, StaTS64 is the parallel
standard algorithm on a torus 8×8, with sequential standard method on a processor.
If context is relevant, this final information will be omitted.

Experiments were carried on a Telmat MegaNode computer; this is a parallel
computer of the family of supernodes, based on the T800 transputer, with configurable
network topology. Processors (i.e. transputers) are grouped in nodes; each node
has 16 transputers connected via a programmable electronic switch; two nodes are
coupled in a tandem; tandems can be coupled via a superior level of switches. This
architecture permits any network configuration of degree at most 4 (each transputer
has 4 bidirectional connection links). Each transputer of the MegaNode has a local
memory of 4Mb. For more information see [1].

For the experiments, the used network configurations were rings of 7 or 8 proces-
sors and tori of 49 (7× 7), 64 (8× 8) and 63 (9× 7) processors.

Denote by TX(n) the execution time for a certain algorithm X that solves the
MM(n) problem; it can be written explicitly:

TX(n) = (tm(n) + ta(n) + τtc(n))α

where α is the time necessary for a floating point operation and τ is the number of
floating operations executed during the transmission between two neighbour proces-
sors of a floating point number.

Define, as usually, the efficiency on p processors of a parallel algorithm X as (S
is the sequential algorithm):

εX(n) =
TS(n)

pTX(n)

In order to compare two algorithms for the same topology and for the same
number of processors, we define the speed ratio of algorithm X to algorithm Y as:

Sr(n) =
TY (n)

TX(n)

If X is faster than Y , it is obvious that Sr(n) > 1. If the number of processors is
different, but on the same topology, speed ratio is redefined as work ratio:

Wr(n) =
pY TY (n)

pXTX(n)

where pY , pX are the number of processor on which algorithms Y and X are imple-
mented.

16

n StaR8 StaR7 StaComR WinoR StrComR StrMemR
64 0.29 0.31 0.25 0.34 0.30 0.35

128 2.01 2.14 1.81 2.13 2.01 2.10
256 14.93 16.61 12.79 14.04 13.60 13.91
512 109.76 132.49 90.08 95.09 93.33 94.53
768 354.25 397.19 284.78 296.03 292.08 294.77

1024 795.08 954.27 632.89 652.94 645.94 650.72
Table 2

Timings for ring topology, fast local sequential method

n StaR8 StaR7 StaComR WinoR StrComR StrMemR
64 0.29 0.31 0.25 0.34 0.30 0.35

128 2.01 2.14 1.86 2.18 2.06 2.16
256 14.93 16.15 14.23 15.49 15.04 15.36
512 115.07 130.11 111.33 116.34 114.58 115.77
768 383.53 428.51 372.89 384.14 380.20 382.89

1024 903.38 1024.00 880.48 900.55 893.53 898.31
Table 3

Timings for ring topology, standard local sequential method

We present in the sequel experimental results for the described methods and
comment them. We will insist on the results on torus topology, those for ring being
similar.

6.1. Experiments on a ring. Results are presented in table 2 for fast sequential
method (mixed Winograd) and in table 3 for standard sequential method; execution
times are given in seconds. From both tables it can be seen that:

- fast algorithms timings differ only in a few occasions; in fact their theoretical
complexities are the same for the leading term and differ only at the coefficient of the
n2 term; we choose StrMemR for comparison with other algorithms.

- standard algorithm with minimal communication StaComR is only a little faster
than StaR for standard sequential method, but much faster for fast sequential method;
the explanation is that StaComR works, at processor level, with blocks of dimension
n
2 , while StaR with blocks of n

8 ; there are two more levels of sequential recursion for
StaComR. The asymptotic speed ratio is (we refer to relations derived in precedent
sections; for sake of brevity, we denote by only mq the term hiding the greatest power
of n, that is mq + aq):

Sr(n) =
82mn

8

mn
2

=
64

49
≈ 1.31

- we compare now StrMemR with StaR7, i.e. a fast algorithm vs. the most usual
for ring architecture. The asymptotic speed ratio is :

Sr(n) =
72mn

7
+ O(n2)

mn
2

+ O(n2)

For standard sequential method Sr(n) = 8
7 ≈ 1.14, while for fast sequential method

Sr(n) = 73−log 7 ≈ 1.45. Figure 8 presents the speed ratio for StrMemRW vs. StaRS7,

17

n StaT64 StaT49 StaComT MixT63 StrMemT
128 0.44 0.49 0.27 0.35 0.45
256 2.59 2.85 1.85 1.87 2.50
512 15.10 20.30 12.95 13.82 15.46

1024 103.91 141.17 90.74 99.63 100.65
1536 327.31 422.04 286.26 341.90 308.52
2048 726.31 988.92 635.48 745.24 675.02

Table 4

Timings for torus topology, fast local sequential method

n StaT64 StaT49 StaComT MixT63 StrMemT
128 0.44 0.49 0.27 0.35 0.45
256 2.59 2.85 1.93 1.87 2.58
512 15.77 19.96 14.65 13.82 17.15

1024 117.45 151.13 113.97 101.28 123.88
1536 388.57 501.89 381.08 342.99 403.33
2048 912.16 1180.10 899.05 794.08 938.58

Table 5

Timings for torus topology, standard local sequential method

i.e. a comparison between the fastest algorithm and the ‘classic’ one; for n = 1024
it can be observed that fast method is about 57% faster, and only 2% for n = 128;
as, in this case, speed ratio infinitely grows with matrix dimension (following a curve
shape of the form n3−log 7), for bigger n better improvements are expected.

- if StrMemR is compared with the fastest standard algorithm, StaComR, an
work ratio of 8

7 ≈ 1.14 is expected for any sequential method (block dimensions are
equal to n

2 for both algorithms); that means that time for StrMemR on 7 processors
has to be the same that time for StaComR on 8 processors; of course, due to greater
communication complexity, StrMemR will always have greater execution time.

For all comparisons above, data resulted from experiments show an asypmptotic
behaviour that confirms the theoretical values. It can be appreciated that on a ring
topology, fast algorithms significantly improve speed, beginning from matrix dimen-
sions of 200.

From the point of view of efficiency, parallel Strassen with minimal memory per-
mits a good parallel implementation, as figure 11a show. As sequential timings were
too expensive for bigger n, we present results only for n ≤ 512 (as n grows efficiency
will grow too). Naturally, we present efficiency only for StrMemRW; if the standard
sequential method is used, globally, the algorithm may be considered mixed (a parallel
phase based on the fast method, followed by a standard sequential one); thus a com-
parison with a unitary sequential algorithm will be irrelevant in terms of efficiency.
Sequential timings are taken from table 1, for Winograd method, n0 = 32.

6.2. Experiments on a torus. Results are presented in table 4 for fast se-
quential method (mixed Winograd) and in table 5 for standard sequential method;
execution times are given in seconds.

Analogous remarks as those for ring architecture will be now presented, for pairs of
algorithms; asymptotic limits are derived; some of them can be considered somewhat
unexpected.

- for standard algorithms, StaComT vs. StaT64, the same considerations as

18

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

standard seq.

fast seq.

n

Sr

Fig. 7. StrMemT vs. StaT49

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

ring
torus

Sr

n

Fig. 8. StrMemW vs. StaTS

above; the speed ratio has now an asymptotic limit of 1.14 for fast sequential method;
there is only one extra sequential level of recursion: blocks of n

4 for StaComT, of n
8

for StaT64.
- comparison between fast algorithm StrMemT and standard StaT49 leads to the

speed ratio:

Sr(n) =
7mn

7
+ O(n2)

mn
4

+ O(n2)

For standard sequential method Sr(n) = 64
49 ≈ 1.31; for fast sequential method

Sr(n) ≈ 1.45. Actual values in figure 7. Asymptotic values are represented with
horizontal lines, with the same type as the lines for the experimental values.

The fastest algorithm (StrMemTW) can be compared with the usual one
(StaTS49); from figure 8 it can be seen that speed improvement begins to be sig-
nificant for matrix dimension of about 200 (as for ring topology) and goes to 75% for
n = 2048.

Figure 9 presents timings for StrMemTW, StaTW49 and StaTS49, that is algo-
rithms for 49 processors. Two kind of improvements can be noted, over the usual
algorithm StaTS49: the use of a fast sequential method, in StaTW49, and of both
fast parallel and sequential methods in StrMemTW.

19

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

StaTW49

StaTS49

StrMemTW

n

t

Fig. 9. Timings (in seconds) for algorithms for 49 processors.

0

200

400

600

800

1000

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

StaTW64

StaTS64

MixTW63

n

t

Fig. 10. Timings (in seconds) for algorithms for 64 processors.

- the most interesting is the comparison between the mixed algorithm MixT63
(on a torus of 7 × 9 processors; torus dimensions are chosen so that the number of
processors for the mixed algorithm has a value as close as possible to a power of 2)
and the standard one StaT64; speed ratio is:

Sr(n) =
8mn

8
+ O(n2)

92m n
18

+ O(n2)

leading to the following particular values: for standard sequential method Sr(n) =
9
8 = 1.125, while for a fast sequential method a more complicate formula is obtained

Sr(n) = 92
·72

8·9log 7 ≈ 0.96; thus, the best method depends on the sequential algorithm.
In figure 10, timings for algorithms on a 64 processors architecture are presented.
While the use of a fast sequential method significantly improves the behaviour of
the standard algorithm StaT, the mixed algorithm (the one more appropriate to this
number of processors) does not bring new improvements.

- if StrMemT is compared with the fastest standard algorithm, StaComT, a work
ratio of 64

49 ≈ 1.31 is expected for any sequential method (block dimensions are equal
to n

4 for both algorithms).

20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550

b

c

a

n

ε

Fig. 11. Efficiency for: (a) StrMemR (b) StrMemT (c) MixT63

Efficiency for StrMemT is presented in figure 11b, while for MixTW63 in figure
11c.

6.3. About overheads. We also performed a series of experiments simulating
communication, in order to approximate overhead due to communication; denote
by Tnc execution time without communication. We use a simplified model for the
expression of Tp - the execution time for a parallel algorithm:

Tp = Ta + Tc + Tl

where Ta is the time for arithmetic operations (we can consider that Ta ≈
Ts

p
where Ts

is the serial time), Tc = Tp−Tnc is the time spent for communication and Tl = Tnc−Ts

the time lost in parallel execution because of poor load balancing, specific software
implementation, etc. Thus, two kind of overheads can be computed (see [9] for details):

1. overhead due to communication: Oc = 1− Tnc

Tp

In fact, since communication protocol for transputers implies synchronization,
an unmeasurable part (that we believe to be small) of this overhead is due to
idle time.

2. load balancing, software, algorithmic overhead: Ol =
Tnc−

Ts
p

Tp

All variables above are dependent on n, for the MM(n) problem; for notation
simplicity, we have omitted n in these formulae.

Tnc was measured for all described parallel algorithms; four other tables, similar
with tables 2-5, can be presented, but, in order to alleviate presentation, we limit our-
selves to some graphics. Oc and Ol were computed for StrMemRW and StrMemTW
(thus, only for the fast sequential method), and can be seen in figure 12 (communi-
cation overhead) and in figure 13 (load balancing and software overhead).

Some comments are necessary. For small matrix size, communication overhead has
much greater values because the ratio computation vs. communication is proportional
with n; thus Oc has to have the same aspect as 1

n
(and it have, as figure 12 shows);

however, there is another factor: a pipeline is made with messages with fixed size; so
that, for small n pipelining is quasi-inexistent.

The great difference between ring and torus topology is due, principally, to a
hardware factor. In a supernode computer, communication time depends on the rela-
tive position of the two implied processors; in a tandem communication is about twice

21

torus

ring

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

n

Oc

Fig. 12. Communication overhead for StrMem

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 50 100 150 200 250 300 350 400 450 500 550

torus

ring

n

Ol

Fig. 13. Load balancing and software overhead for StrMem

22

faster than inter tandem, because of the extra level of switches that links tandems;
for details see [1].

As for Ol torus topology seems to be better, we can suppose that the communi-
cation overhead contains much of the load balance overhead for torus.

If the standard sequential method is used, a small decrease in communication
overhead is expected, as parallel time increases.

7. Conclusions. The presented parallel implementations of fast matrix multi-
plication algorithms on MIMD architectures are proven to be faster than standard
parallel algorithms, on ring or on torus topologies. Speed improvement becomes for
matrix dimensions of 200 (about 10% faster) and, for sufficiently big n, measured tim-
ings are close to the theoretical predicted values, that is 30% when the local sequential
method is the same; when sequential methods are different (fast sequential for fast
parallel, standard sequential for standard parallel) maximal measured speed growth
was 75% for n = 2048; this latter result is consistent with the one reported by Bailey
[2], for the same matrix dimension (in another context, a Cray-2 supercomputer), i.e.
101%, but with 35% of this improvement due to other causes.

However, a disadvantage of these parallel fast algorithms is the fixed number of
processors, while standard algorithms can be easily customized. The parallel mixed
algorithm (MixT), more flexible from this point of view, is good only for standard
sequential method. All proposed algorithms can be efficient on dedicated hardware.

On a configurable topology, such as the supernode, these algorithms require a
smaller number of processors for the same speed (compared with standard ones), an
advantage in a multiuser environment.

As a general conclusion, fast matrix multiplication algorithms cannot be ignored,
on MIMD computers as well as on SIMD computers. They can bring, by themselves,
a considerable speed-up of applications, that is more important than the implied
implementation difficulties.

REFERENCES

[1] Y. Arrouye et al., Manuel du Meganode, version 2.1, Tech. Rep. RT79, LMC-IMAG, 1992.
[2] D. Bailey, Extra high-speed matrix multiplication on the Cray-2, SIAM J. Sci. Sta. Comput.,

9 (1988), pp. 603–607.
[3] P. Bjørstad, F. Manne, T. Sørevik, and M. Vajteršic, Efficient Matrix Multiplication on

SIMD Computers, SIAM J. Matrix Anal. Appl., 13(1) (1992), pp. 386–401.
[4] R. Brent, Algorithms for matrix multiplication, Tech. Rep. CS157, Stanford University, 1970.
[5] E. Coffman and P. Denning, Operating Systems Theory, Prentice-Hall, 1973.
[6] J. Cohen and M. Roth, On the implementation of Strassen’s fast multiplication algorithm,

Acta Informatica, (1976), pp. 341–355.
[7] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, in 19

th. Annual ACM Symp. Theory Comp., 1987, pp. 1–6.
[8] B. Dumitrescu, J. Roch, and D. Trystram, Fast Matrix Multiplication Algorithms on MIMD

Architectures, Tech. Rep. RT80, LMC-IMAG, 1992.
[9] G. Fox et al., Solving problems on concurrent processors, Prentice-Hall, 1988.

[10] M. Garey and D. Johnson, Computers and Intractability - A Guide to the Theory of NP-
Completeness, W.H.Freeman and Company, 1979.

[11] G. Golub and C. Van Loan, Matrix Computations. Second edition, The John Hopkins Uni-
versity Press, 1989.

[12] N. Higham, Exploiting Fast Matrix Multiplication Within the Level 3 BLAS, ACM Trans.
Math. Soft., 16 (1990), pp. 352–368.

[13] IBM, Engineering and Scientific Soubroutine Library, Guide and Reference, Release 3, 4th
ed., 1988.

23

[14] R. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, in Hand-
book of Theoretical Computer Science, J. van Leeuwen, ed., Elsevier Science Publishers,
1990.

[15] A. Kreczmar, On memory requirements of Strassen algorithm, in Algorithms and Complexity:
New Directions and Recent Results, J. Traub, ed., Academic-Press, 1976.

[16] D. Lee and M. Aboelaze, Linear Speedup of Winograd’s Matrix multiplication algorithm
using an array of processors, in 6 th. IEEE Distributed Memory Computing Conference,
1991, pp. 427–430.

[17] V. Pan, How to Multiply Matrix Faster, Springer-Verlag, L.N.C.S. vol. 179, 1984.
[18] J. Roch and D. Trystram, Parallel Winograd Matrix Multiplication, in Parallel Computing:

From Theory to Sound Practice, W. Joosen and E. Milgrom, eds., IOS Press, 1992, pp. 578–
581.

[19] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354–356.
[20] S. Winograd, Some remarks on fast multiplication of polynomials, in Complexity of Sequential

and Parallel Numerical Algorithms, J. Traub, ed., Academic-Press, 1973, pp. 181–196.

24

