PAC++ system and
parallel algebraic numbers computation

Th. Gautier and J.L. Roch
LMC, 46 av Félix Viallet, 38000 Grenoble, France
e-mail : Thierry.Gautier@imag.fr, Jean-Louis.Roch@imag.fr

Abstract:

In order to manage large data structures and solve high dimension problems,

computer algebra systems were re-designed in the past few years to use parallel computers.

Following the evolution of the machines, our PAC system has been re-built to obtain more

efficiency and scalability. This paper gives an overview of our new concepts about the integration

of a computer algebra system in a parallel environnement and how the handling of the algebraic

numbers can be done in a efficient way: this is illustrated by a new algorithm for computing

the Jordan normal form.

Keywords:
load-balancing

1 Introduction

Several parallel systems are available for alge-
braic computations, for both shared and dist-
ributed memory architectures. Using early ver-
sions of these environments [31, 2, 18], including
our PAC (Parallel Algebraic Computing) library
[25, 24], the programmer had to write his algo-
rithms at a low level to manage his parallel pro-
cesses and the communications between them.

Now, high level programming models and in-
terfaces are available either on shared [9] or dist-
ributed memory machines [29, 6]. However if
these solutions succeed in using “few processors”,
1 to 32, or if they work at a coarse level
of granularity with good speed-ups, it is still an
open question to provide massively parallel li-
braries, i.e. targeted to parallel machines with 32
to 1024 processors, for algebraic computations. It
is widely accepted that the main challenge is to
distribute the work load among the processors,
given that this load can greatly vary during ex-
ecution. We introduced in [26, 27] an original
approach to solve this problem at low levels of
granularity.

i.e.

In this context, the aim of this paper is to

parallel algebraic computing, algebraic number, Jordan normal form, dynamic

show how the PAC project has moved to PAC++,

not only to take into account the requirement

to dynamically distribute the work load on new

massively parallel architectures, but also to pro-

vide high level facilities for the programmers. This
project aims at providing an efficient and scalable

library for parallel symbolic and numerical com-

putations on distributed memory architectures.

Currently, few algorithms have a parallel imple-
mentation but the global organization and all ba-

sic primitives are specified for an easy implemen-
tation of a rich parallel library.

This paper is divided in two parts. The first
one begins with a presentation of the concepts
and organisation of PAC+4. An important point
is the basic feature to communicate PAC++ ob-
jects. This point concerns sequential and par-
allel communication between PAC++ and other
systems or languages. The global organization
(arithmetics, matrices, polynomials) is presented
and in particular we focus on choices that have
been made for the conception of communication
interface and memory management. Finally, we
provide experimental performances obtained for
some linear algebra functions.

The second part deals with the problem of

parallel computation with algebraic numbers. Re-
cently, the problem of computing the Jordan nor-
mal form of a matrix (with entries in a field F,
with no restriction) [28] and the Smith normal
form of a matrix (with entries in F'[X]) have been
proven to be in NC'. The associated algorithms
strongly relate to parallel computation in alge-
braic extensions [28]. We then present how alge-
braic numbers are integrated in PAC++4. This
leads to some practical parallel efficient paral-
lelizations of the previous theoretical algorithms.
The parallel mechanism we propose is illustrated
by the computation of the Jordan normal form.

2 Designing a parallel library
for algebraic computations

Although our library may be used with any par-
allel environnement, PAC++ also provides com-
munication facilities which can be called from
different systems or languages like a unix-style
library (see figure 1). It is designed in C++
in order to use some of its useful characteris-
tics such as overloading and inheritance. Fur-
thermore, PAC++4 objects are strongly typed.

PAC++ Kernel

Function Call Message Passing
Protocol Protocol

Parallel/Sequentia Interface

Figure 1: Parallel-sequential interface: the most
general method for communicating with PAC++

2.1 Dynamic-load balancing

Algebraic computations are intrinsically dynamic:

in most cases, the effective cost of a computation
cannot be statically predicted. The main reason
for this is that the growth of intermediate coeffi-
cients is difficult to estimate precisely before the
computation since it relies on many parameters.
Therefore, a static parallelization of a general al-
gebraic algorithm (even a highly parallel one) is
a complex issue: given a number of processors, a
good parallelization consists in evenly distribut-
ing the work load, so as to guarantee the best
possible processors utilization.

[‘Bas’cArithmetics H Memory Manager‘}

H L]

‘ Matrix over T H Polynomial over T ‘

Dynamic
Load-Balancing
using Athapascan

Linear Algebrafunctions
- characteristic polynomial

- Frobenius normal form

- Jordan normal form

- Hermite normal form

Figure 2: Global organisation of algebraic com-
puting part

A dynamic load-sharing mechanism is thus
necessary in order to decide how the parallelism
of a given algorithm can be exploited (i.e., at
which level of granularity it is has to work, which
computations have to be distributed ...) in or-
der to decrease the total computational time on a
given machine. In computer algebra, the cost of
an algorithm, evaluated at a given level of gran-
ularity, constitutes a significant information that
can be dynamically predicted just before the ex-
ecution of the algorithm. For instance, the cost
of a matrix product relates to the dimension of
the matrices at the matrix operations level of
granularity. This cost prediction is a relevant
information which has to be taken into account
by the load-balancer in order to achieve an ef-
ficient parallelization [27]. Notice that the type
of cost information is used in some other paral-
lel systems for computer algebra. In PAC++,
this information is handled at a relatively fine
grain level, since target computational supports
are fine grain parallel machine. In DSC [6], this
information is also used to determine the map-
ping of the parallel processes, but at a coarser
grain.

2.2 Parallel programming model

Although sequential algorithms can be used in
parallel programming models based on message
passing with functions for packing and unpacking
structures, all parallel algorithms of PAC++ are
designed for using asynchronous Remote Proce-
dure Call to be dynamically load-balanced with
runtime-support [26].

A parallel program in PAC++ is a set of pro-
cesses, called servers, with the ability to do alge-
braic computation. This set of servers are map-
ped on physical processors. Each of these servers
has several entry-points that are called serwvices.
An RPC call consists of choosing the processor on
which the specific service is to be executed and

the sending of the arguments. The result will be
returned to the caller in a packed form.

The runtime support used is called Athapas-
can [22]. Athapascan is a parallel extension of C
which includes a dynamic load-balancing mecha-
nism and an adaptative granularity scheme. Gen-

must be returned and an array of percentages
which precises the part of the total structure in
each sub-structure. In order to minimize memory
copies the split function performs logical copies.
From an implementation point of view, this is
realized by in place classes which are basic tools

erally, parallelizing a computation consists of split- for manipulating in place effective structures.

ting it into parallel subcomputations, using dif-
ferent rules. Splitting may be halted at each
step, reducing to a sequential computation: this
defines the granularity of the algorithm. In or-
der to ensure portability and efficiency on paral-
lel architectures, a parallel (work load efficient)
algorithm written in Athapascan has to provide
a maximal parallelism via a recursive splitting
mechanism. At each step of the recursion, an al-
ternative between a finer parallel algorithm (ex-
pressed by asynchronous RPC) and a sequential
one is proposed. The threshold for the decision
of a parallel algorithm depends not only of the
dimension, but also on the characteristics of the
parallel machine and of its work load, which are
known by the load balancing mechanism.

An example of our ”parallel programming par-
adigm” is the following: (Algorithm denotes a
service):

Algorithm (input, output)
{
if (threshold(input) = ws_local)
// —-—- Sequential computation
Sequential_Algorithm(input, output);
else {
// ——- Parallel computation
// Step 1 : splitting
Split (input, inputl, input2);

// Step 2 : parallel computation with
// recurrent calling

S1 = Spawn(Algorithm, inputl, resulti);
852 = Spawn(Algorithm, input2, result2);
// Step 3 : fusion

Wait (81, S2) ;
output = Fusion (resultl, result?2)

2.3 Splitting structures

For functional oriented algorithms the most im-
portant operators are the split operator which
splits any PAC++ structure in order to process
it concurrently, and the merge operator its coun-
terpart. In this section, we focus on the split
operator.

All PAC++ structures have their own version
of the function split. The main argument of the
function splitis the number of sub-structures that

For example, given one vector Vect over the
rationals, the following example shows how to
split and communicate two PAC++ sub-vectors
to appropriate services by asynchronous remote
procedure calls:

SubVector<Rational> List[2] ;
Buffer B1,B2 ;

Buffer Res1,Res2

Synchro syn_ptl, syn_pt2 ;

// Step 1: Splitting
// Split ’List’ in two parts (20% and 80%)
Vect.split(List, 2, 0.2, 0.8) ;

// The two sub-vectors are packed:
B1 << List[0] ; B2 << List[1] ;

// Step 2: Parallel computation
// asynchronous spawn
// on servers ’servl’
syn_ptl= Spawn(servli,
syn_pt2= Spawn(serv2,

of two services

and ’serv2’
servicel, B1l, Resl);
service2, B2, Res2);

// Step 3: Fusion

// the results are unpacked in place in
// vector ’Vect’

WaitSpawn (synchroptl) ;

WaitSpawn (synchropt2) ;

Res1 >> List[0] ; Res2 >> List[1] ;

2.4 Pack and Unpack functions

Any PAC++ structure which has to be commu-
nicated (whatever the model used, e.g. point
to point, RPC ...) is packed by its sender in a
communication buffer. This buffer is transmit-
ted. The structure is restored by unpacking the
buffer, as shown in the above example.

The pack/unpack mechanism is implemented
in a recursive manner. Packing on a high level
structure will recursively call pack functions on
the sub-level structures. For instance, the pack-
ing of a matrix begins with row and column di-
mensions and finishes by a recursive packing of
the coefficients using a C-style array storage by
rows.

Messages

Matrix Classwith Passing
sequential algorithms

inheritence

Protocol

Sequential Version
PAC++v1.0

Matrix Class with
paralel algorithms

Figure 3: Matrix example to PAC++ object or-
ganization of parallel/sequential algorithms

Parallel Version

PAC++v2.0

2.5 Memory Management

In order to hold data structures, PAC++ uses
a reference counting with free-lists strategy for
memory management.

Such a mechanism is usually not used, since
it could be difficult to assert the following invari-
ant ”the reference counts are all correct”. But
in C++4, three operations are required on ob-
jects: initialization, assignment, destruction. In
PAC++, any object have a specific definition of
this three operators. The developer writes one
version of this operators for each class which in-
crease or decrease reference counters and free mem-
ory. Then, the C4++ compiler automatically gen-
erates a call to a constructor for creating an ob-
ject and to a destructor when the flow control
leaves a C++ instruction block.

This three critical operators of C++ are im-
plemented in order to minimize memory copies.
The recopy constructor does a logical copy; the
destructor does a logical free and the assignment
operator implements the following specification:
if an object A is assigned to B, such as A = B,
all further modifications on A or B do not modify
the other. For classes that can not have mem-
ber functions which modify internally the data,
the assignment operator is implemented by using
a logical copy. This is the case for all the basic
arithmetics. For other classes, the assignment
operator is implemented in a recurrent manner
by assignment each of element.

For example, and since no operator can mod-
ify the internal representation of an arbitrary pre-
cision integer, the assignment between two inte-
gers is implemented as a logical copy. Otherwise,
for an object matrix over integer, the access ele-
ment operator

Integer& operator() (const int, const int)

can be used in read and write mode, so the matrix
assignment operator is implemented by creation

of a new matrix of the same size in which each
coefficient is affected.

The most frequently required bloc sizes are
treated by the memory manager as special cases
in a fast way.

In the parallel version of our library, each
server supports a kernel consisting of a version
of the memory manager and of a version of all
arithmetics (over the integers, rationals, float-
ing points, matrices and polynomials). Presently
PAC++ does not support shared objects between
processors.

2.6 Passing arguments by value

In PAC++, the semantics for passing arguments
to a function is by value. The cost of such a pass-
ing can become very important for large sized ob-
jects. This is why in PAC++, all objects are im-
plemented as pointers to actual representations.
This customized encapsulation is commonly used
in C++ programming and achievies high perfor-
mance to our library. In order to satisfy the se-
mantics of passing by value, the C++ type spec-
ificator const must be used.

For example, consider a sqr function which
takes a matrix in input and returns its square.
The canonical form for this kind of declarations
is:

Matrix sqr (const Matrix& A)

We use the reference specifier & in order to op-
timize the code so that the compiler does not
generate calls to the recopy constructor.

2.7 Logical organization

The arithmetic part of the PAC++ library is di-
vided in three levels: the first consists of the basic
arithmetics on arbitrary precision integers, ratio-
nals, floating point numbers and residue number
systems.

Basic Unsigned Integer

i

Arithmetic

i

Modular Integer
Arithmetic

Arbitrary Precision Arbitrary Precision

Floating Point

Integer

!

Arbitrary Precision

Rational

Figure 4: PAC++ Basic arithmetics, hierarchical
dependence

As shown figure 4, the arbitrary precision arith-
metics over integers and floating point numbers
are based on unsigned arbitrary precision integer.
The performance of this module is very critical
for the overall performance of the library. This
module is currently implemented on the GNU
Multi-precision functions on non-negative inte-
gers (see Gmp in [14]).

The second level concerns all structures which
are the representation of a T-algebra (such as
matrices or polynomials), based on an algebraic
structure represented by T'. In the first version of
PAC++, this module is made of C4++ template
definitions of classes.

The third level contains all non-basic func-
tions using the two previous levels. One can find
here the linear algebra module.

2.8 Experimental results

In this section, we give some performance results
of implemented algorithms. The theoretical re-
sults are given in O notation (the so-called O-
smooth), which means that we hide logarithmic
factors.

Since the PAC++4 arithmetics are based on
Gmp, the sequential time complexity for multi-
plication is the one of Karatsuba algorithm [16],
O(n'5°) bit operations. In fact, the multipli-
cation algorithm of Gmp automatically switches
between the standard algorithm in O(n?) and the
Karatsuba one, depending on the sizes of the in-
put numbers (about ten machine-words). In the
following, we will use O(n!-5%) to give the cost of
more elaborated PAC++ algorithms.

In the implementation of the polynomial arith-
metic, the multiplication between two polynomi-
als of degree n is done in sequential time O(n?).

2.8.1 Characteristic polynomial

The PAC++ library implements the O(n?3!) arith-
metic operations Strassen matrix multiplication
with automatic threshold for switching between
standard and the Strassen algorithms. In PAC++,
four methods for computing characteristic poly-
nomial of square matrices can be found. Two
methods are a Gauss-Bareiss [1], computation of
the determinant of the characteristic matrix, the
Leverier-Souriau-Faddeeva algorithm [10, 11, 4].
The two other methods use intermediate similar
matrix forms (Hessenberg [23, 3], and polycyclic
[21, 17, 21] form) and deduce the characteristic
polynomial by recurrent relations.

Characteristic Polynomial
100000 T T

10000

1000

100

Temps

Gauss-Bareiss -—
Leverier —+-
Polycyclic -8
Hessenberg >

01¢"

0.01 L L L L L
25 30 35 40 45
DIM

L
20 50

Figure 5: With sparse matrix input (10 percent
of non-zero coefficients per row)

Note that the Leverier-Souriau-Faddeeva method

with standard arithmetic of PAC++ is the best
one (on any type of matrix for sufficiently large
dimensions). This can be easily deduced from the
cost of matrix-vector multiplications.

In contrast, with a modular integer arithmetic,
the best methods are polycyclic or Hessenberg
methods. In fact, in this methods only the sizes
of the intermediate coefficients are O(n?) bits.
Since the coefficients in the characteristic poly-
nomial are O(n) bits length, only O(n) primes
are needed to recover the values from residues.

2.8.2 Smith normal form of polynomial
matrix

We now provide some practical results concern-
ing the computation of the Smith normal form of
polynomial matrices. Since it is not currently our
purpose to study the Smith normal form, we only
briefly recall some elementary properties. The
form is generally defined over a principal domain.
For an input matrix A of dimension n, the Smith
form is a diagonalization of A which is entirely
computed within the domain of the entries, i.e.
using unimodular transformations [20].

Computing the Smith normal form may re-
quire a huge amount of time. For a random input
8 x 8 matrix of degree 4 with absolute values of
integer coefficients less than 3, the default Maple
routine will run more than ten hours CPU on a
Sun4 !

Smith normal form computation in PAC++
100000 T T T T
PACH 4 o—
/B Maple-new 4 —+-

- Maple-old 4 -8

PACH 2 -

10000

1000 F T L

6
Dimension

Figure 6: Smith normal form computations over

Qlz].

We compare below two different algorithms

over Q[z].

matrices will be chosen at random, the cost for

Let us notice that since our input

computing the Smith normal form will roughly be
the cost for computing the Hermite normal form.
The first algorithm, say STD-algorithm, is the
default in Maple. It consists in a standard elim-
ination process over the polynomials [15]. The
second algorithm, say SYLV-algorithm, is the one
proposed in [30]. It is based on generalized sub-
resultants. The form is computed by diagonaliz-
ing over () a “generalized Sylvester” matrix con-
structed from the input polynomial matrix.

Figure 6 gives average computational times
for random input matrices of degree 2 or 4 whose
entries are integers absolutely bounded by 3.
Clearly, the STD-algorithm (Maple-old) is pro-
hibitive even for small dimensions. For an 8 X
8 matrix of degree 4 it runs nearly 1000 times
slower than SYLV-algorithm (Maple-new). From
this figure, we also conclude to the superiority of
PACH++ over Maple. Still for an 8 x 8 matrix, the
Maple code runs in 940 seconds while the same
code in PAC++ runs in only 150 seconds.

3 Algebraic number

Many problems in computer algebra involve com-
putations with roots of polynomials, i.e. arith-
metic in the algebraic closure of fields. In the
following, F' is an arbitrary commutative field,
P(a) is an univariate polynomial of degree n over
F with | < n distinct roots aq,... A first
way to compute with the roots of P is to as-
sume that P is irreducible over F'. In practice,
the factorization of P can be difficult and expen-
sive. In [5], an alternative way, called D5, is pre-

, O

sented which allows computation in F'| the alge-

braic closure of F', with no need of factorization.
Even if only sequential versions of D5 are avail-
able [7, 13], its working is intrinsically parallel,
and the same model has been used to show the
intrinsic parallelism of some linear algebra prob-
lems which relate to eigenvalues [28]. The aim of
this part is to explain how parallel computation
with algebraic numbers is handled in PAC++.
First, we recall how algebraic numbers are rep-
resented in D5 [7], and how parallelism appears
while computing with such numbers. Next, the
related primitives are presented and the imple-
mentation is detailed. We conclude by an exam-
ple, where algebraic numbers appear naturally:
the parallel computation of the Jordan normal
form.

3.1
bers

Given F', computing in F reduces to the con-
struction of a tower of subfields F; (1 < i< n)

Fchc..cF,CF

such that each Fj is a simple algebraic extension
of F;_1 by a root a; of a univariate polynomial
P; with coefficients in F;_;1 [8]. F; is denoted
F;_1(e;). Usually, the elements of F; are repre-
sented as polynomials in (F;_;[a]/(P(«)). This
is the common way algebraic extensions appear
in computer algebra. The problem is that gen-
erally P; is reducible and characterizes not only
one root «;, but a set of roots. Therefore, the
result of a computation may not be the same for
all the roots of F;, typically for boolean output
of =70 (i.e. test to zero) gates for an arithmetic
circuit over F [12]. As an example, let o denote
aroot of P = 25 — 223 — 22 + 2 in Q, the al-
gebraic closure of the field of the rationals. The
answer to the question o? —2 =?0 may be true or
false, depending on the chosen root a of P. This
leads to an automatic discussion, called splitting
in D5, which reduces to a partial factorization of
P. Notice that this partial factorization does not
require polynomial factorization, but only poly-
nomial ged computations, and thus is in NC?
[28]. In the sequential implementation of D5, the
test a? — 2 =70 in the previous example would
return: “Either o is a root of 22 — 2 = 0 and the
answer is true, or « is a root of 3 — 1 and the
answer is false.”

3.2 Handling algebraic numbers

The solution proposed in [7] to compute in F is
the introduction of a class, denoted by A1g<F> in

Computation with algebraic num-

PACH++. Since basic field operations (+,-,%,/)
in Alg<F> are performed exactly like in D5 using
polynomial remainder and gcd computations, we
focus only on the splitting mechanism (which cor-
responds to the =70 test operation) and its par-
allelization. In D5, the user can define a symbol
to be a generic root of a polynomial. To manage
splittings that occur in a computation, a discus-
sion package is adjunctive to the top of the class
Alg<F>, with one function AllCases that allows
the user to obtain the list of results, one result per
splitting. From a parallel point of view, two kinds
of computations with algebraic numbers may be
distinguished:

1. situations involving only one root of P, what-
ever this root is. For instance, implementa-
tion of Householder algorithm to compute
the @R factorization of a matrix involves
one of the root of a polynomial of degree 2
at each step. Another exampleis a sequence
of computations performed for every root of
a polynomial but one root after the other.
In such situations, at the end of an algo-
rithm, the result has to be valid for at least
one of the roots of P, and a new polynomial
characterizing this root is expected. For in-
stance, the program: “ Compute a?—2 =70
for a one of the roots of z° — 223 — 22 427
could deliver as output: false if a®—1=0.

2. situations involving a parallel computation
for every root of a polynomial P. The ex-
pected output of such a computation is then
a set of results, each result being associ-
ated with a polynomial that characterizes
the roots of P that leads to this result. For
example, the program: “For each « root
of % — 223 — 22 + 2, compute a? — 2 =
?70” should deliver in a D5 manner: true if
a? —2 =0 and false if a® — 1 = 0.

To deal with the first case, a constructor is pro-

vided by PAC++:
Alg<K> OneRoot (Polynom< Alg<K> > P)

It allows the construction of an algebraic num-
ber that represents one root (always the same)
of the polynomial argument P with possibly al-
gebraic number coefficients. When a splitting
occurs on such an algebraic number, a random
choice is performed by the system to ensure the
validity of the result. The selector:

Polynom< Alg<K> > GetReductionRule ()

returns the polynomial, factor of the initial P,
that currently characterizes the algebraic num-
ber. Since parallel computations are possible (and

recommended !) in PAC++, two concurrent pro-
cesses, dealing with an algebraic number a may
induce different choices in the splittings. To en-
sure coherency, the splitting is then performed in
global mutual exclusion. Notice that those two
primitives allow the user to manage “by hand”
sequential computations in a D5 manner.

The second scheme of computation is intrin-
sically parallel: the same program has to be ex-
ecuted for all the roots. For such a scheme, a
parallel iterator is provided:

ParForAllRoots(a, Polynom< Alg<K> > P,
fn, in args, int& n, out& res[])

where fn is a service having the following the
prototype:

service fn (in args, out res)

Such a loop provides the execution of the service
fn for the groups of roots a of P that behave dif-
ferently (branching may occur). When this loop
terminates, the number of different splittings is
returned by n, together with the array of the re-
sults returned by the different executions of the
service fn.

When a splitting occurs, a new execution of
the service is spawned, while the current execu-
tion keeps on: both executions compute with a
different subset of roots of P. Due to parallel
computation, two concurrent processes may be
created in the body of £n. Since those processes
have to work with the same subset a of roots,
splitting of this subset into two new subsets is
made, as previously in mutual exclusion.

3.3 A case study: Jordan normal
form of matrices

Let A be a square matrix of dimension n over
a field F'. We briefly recall the scheme of the
NC algorithm proposed in [28] to compute the
Jordan normal form of A. Let £4(x) be the mul-
tiplicity free (or square free if the field is perfect)
greatest factor of the characteristic polynomial
of A. The algorithm computes Agk), the greatest
factor of &4 such that rank((A — AId)*) = i for
0 < 7,k < n. Then, a generalized multiplicity
free basis is computed for the set of polynomials
(Agk))iyk. Let D; be a polynomial in the result-
ing set. For any k, there exists an unique integer
t; 1 such that D; divides Agfl This means that
rank((A — AId)*) = ijr for each of the roots of
D;. Now, the number of Jordan blocks of dimen-
sion k associated to each of the roots of D; is
(45 k41 — 245, + 45 k—1). This algorithm works in

time O(log® n), its work load being O(n®M(n))
where M(n) denotes the number of processors
needed to compute in logarithmic time the prod-
uct of two square matrices of dimension n with
entries in F.

The main work load comes from the compu-
tation of the Agk). In [28], those polynomials are
directly computed using a slight modification of
Mulmuley’s rank algorithm [19]. However, even if
this leads to a polylog time parallel algorithm, on
the one hand it is far not workload efficient, and
on the other hand it makes that the computation
of the Jordan form strongly relates to Mulmuley’s
algorithm. Using the previous primitives for han-
dling algebraic numbers leads to a more efficient
algorithm, directly built on a black boz to com-
pute the rank in any field, whatever the imple-
mented rank algorithm is. Since field operations
are provided in A1g<F> (+, -, *, /, =70), this
rank algorithm may be used to compute the rank
of a matrix with entries in A1g<F>. During the
computation, splittings may occur that can be
handled thanks to “ParForAllRoots” iterator. At
the end of the body of this iteration, “GetRe-
ductionRule” returns the algebraic relation that
characterizes roots that lead to the current value
for the rank.

Consider now the implementation of the algo-
rithm. Let m be the highest multiplicity in the
minimal polynomial P4 of A. (A — Ald)* is of
interest only if & < m. Those matrices may be
directly computed from the computation of the
powers A* (1 < k < m) (prefix scheme). The
call “mat(A,k)” is assumed to compute the ma-
trix: Ef:o CiX AF~% using the previously com-
puted powers of A. Assuming that polynomi-
als A[n][n] are initialized to the constant 1 poly-
nomial, the algorithm may be then written in
pseudo PAC++:

ParForAllRoots(A, Ps) do

ParFor £ = 1, m do
r = rank(mat(A, k)) ;
Alr][k] = A[r][k] * GetReductionRule(A)

EndParFor

EndParForRoots
Since different processes may read and modify
the same global variable A[r][k], modifications
to this variable have to be performed in mutual
exclusion.

The main advantage of this algorithm, related
to the theoretical one, is that its permits to use an
efficient parallel algorithm to compute the rank.
The use of the algebraic number arithmetic and
of the lazy mechanism of splitting generates ex-
actly the parallelism needed for the application.

Each arithmetic operations in F' in the theoret-
ical algorithm has been replaced by an arith-
metic operation in Alg<F>. This means that,
since the degree of P4 is bounded by n, the cost
of each arithmetic operation is O(GC D(n)) oper-
ations in F' (here, GC'D(n) denotes the workload
of the parallel algorithm to compute the ged of
two polynomials of degree n in F[z]). If R(n) is
the workload need to compute rank of a square
matrix of order n, then the whole workload is
O(mnGCD(n)R(n)).

From a practical point of view, using algebraic
numbers in this example leads to a coarse grain
parallelism, that may be efficiently used on a par-
allel machine.

4 Conclusions

Currently parallel computers are used to solve
high dimension problems of algebraic computing.
In PAC++, the sequential /parallel algorithm ap-
proach, with dynamic load-balancing, provides
an interested concept to develop efficient and scal-
able libraries for massively parallel computers.
More and more numerical methods are going to
use algebraic computation in order to solve ill-
conditioned problems, this is why the general in-
terface of PAC++ will be developed to allow easy
communications between Lapack (Lapack++) and
PAC++.

Currently, we are going to develop some par-
allel linear algebra functions and algebraic num-
ber arithmetic on our 32-processor parallel com-
puter IBM SP1. The experiments with algebraic
numbers should agree with theoretical results and
the proposed tool is expected to be powerful.

References

[1] E.H. Bareiss. Computational solution of
matrix problems over an integral domain. J.

Inst. Math. Appl., 10:68-104, 1972.

B.W. Char. Progress report on a system for
general purpose parallel symbolic algebraic
computations. In ISSAC’90, Tokyo, Japan.
ACM Press, pp 96-103, 1990.

H. Cohen. A course in Computational Al-
gebraic Number Theory. Springer-Verlag,
1993.

L. Csanky. Fast parallel matrix inversion
algorithms. SIAM J. Comput., 5:618-623,
December 1976.

[5] J. Della Dora, C. Dicrescenzo, and D. Duval.
About a new method for computing in alge-
braic number fields. In Proc. EUROCAL’85,
LNCS 204, Springer Verlag, pages 289-290,
1985.

[6] A.Diaz, E. Kaltofen, K. Schmitz, and T. Va-
lente. DSC A System for Distributed Sym-
bolic Computation. In M. Watt, editor, I5-
SAC’91, pages 324-333. ACM Press, 1991.

[7] C. Dicrescenzo and D. Duval. Algebraic ex-
tensions and algebraic closure in Scratchpad
II. In Proc. ISSAC’88, LNCS 358, Springer
Verlag, pages 440-446, 1988.

[8] D. Duval. Diverses questions relatives au
calcul formel avec des nombres algébrigues.
Thése de Doctorat d’Etat, Université de
Grenoble, France, 1987.

[9] H. Hong et al. PACLIB User Manual. Re-
search Institute for Symbolic computation
(RISCC-Linz), Johannes Kepler University,
Linz, Austria, October 1992.

[10] V.N. Faddeev.
Linear Algebra.

New York, 1959.

Computational Methods of
Dover Publications Inc,

Théorie des Matrices.

[11] F.R. Gantmacher.
Jacques Gabay, 1957.

[12] J. von zur Gathen. Algebraic complexity
theory. Ann. Rev. Comput. Sci., 3:317-347,
1988.

[13] T. Gémez-Diaz. Quelques applications de
Uévaluation dynamique . PhD thesis, Uni-
versité de Limoges, France, 1994.

[14] T. Granlund. The GNU Multiple Precision
Arithmetic Library.

[15] R. Kannan. Solving systems of linear equa-
tions over polynomials. Theoretical Com-

puter Science, 39:69-88, 1985.

[16] A. Karatsuba and Y. Ofman. Multiplication

of multidigit numbers on automata. Techni-
cal Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, 1962.

[17] W. Keller-Gehrig.

the Characteristic Polynomial.

Computer Science, 36:309, 1985.

Fast Algorithms for
Theoretical

[18] W. Kiichlin. A parallel sac-2 based on
threads. Technical report, Computer and
Information Science, Ohio State University,

Columbus, April 1990.

[19] K. Mulmuley. A fast parallel algorithm to
compute the rank of a matrix over an ar-
bitrary field. Combinatorica, 7(1):101-104,
1987.

[20]

M. Newman. Integral Matrices. Academic
Press, 1972.

P. Ozello. Calcul exact des formes de Jor-
dan et de Frobenius d’une matrice. PhD the-
sis, Université Scientifique Technologique et

Médicale de Grenoble, 1987.

B. Plateau and al. Apache presentation -
athapascan. Technical Report 93-1, IMAG
Institute, Grenoble France, October 1993.

[21]

[22]

23]

T.M. Rao. Error-free computation of char-
acteristic polynomial of a matrix. Comp.

and Math. with Appl., (4):61-65, 1978.

J.L. Roch. The PAC System : General
Presentation. In Symposium CAP 2, Univ.
Cornell - N-Y Springer-Verlag, LNCS 584,
1990.

J.L. Roch, F. Siebert, P. Sénéchaud, and
G. Villard. Computer Algebra on a MIMD
machine. ISSAC’88, LNCS 358 and in
SIGSAM Bulletin, ACM, 23/11, p.16-32,
1989.

J.L. Roch, A. Vermeerbergen, and G. Vil-
lard. Cost prediction for load-balancing:
application to algebraic computations. In
CONPAR 92, Lyon France, volume 634 of
LNCS, pages 467478, September 1992.

J.L. Roch, A. Vermeerbergen, and G. Vil-
lard. A new load-prediction scheme based
on algorithmic cost functions. In CONPAR
94, Linz Austria, LNCS, September 1994.

J.L. Roch and G. Villard. Parallel com-
putations with algebraic numbers, a case
study: Jordan normal form of matrices. In

PALE’9, Athens Greece, LNCS, July 1994.

K. Siegl. ——Maple—— - A system for
parallel symbolic computations. In Parallel
Systems Fair at the 7th International Paral-
lel Processing Symposium, Newport Beach,

CA, April 1993.

G. Villard. Computation of the Smith nor-
mal form of polynomial matrices. In I5-
SAC’93, Kiev, Ukraine. ACM Press, pp
209-217, July 1993.

S.M. Watt. Bounded Parallelism in Com-
puter Algebra. PhD thesis, Univ. Waterloo,
Ontario, 1985.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

