Parallel evaluation of arithmetic circuits

Nathalie REVOL and Jean-Louis ROCH

LMC-IMAG, 100 rue des Mathémaliques, BP 53X, 38041 Grenoble Cedez,
FRANCFE

Nathalie.Revol@imag.fr, Jean-Louis.Roch@imag.fr

In this paper, a generic algorithm designed for the parallel evaluation
of arithmetic circuits is given. This algorithm can be used in the do-
main of VLSI design, in order to get tight upper bounds on the com-
puting time of a circuit. It can also be used in automatic parallelization
of numerical programs, as a guide for the detection of some predefinite
schemes such as dot-products or reductions. More generally, the (theoret-
ical) algorithm presented in section 2 evaluates very quickly arithmetic
straight-line programs, and its evaluation time serves as a good upper
bound. This algorithm generalizes Miller, Ramachandran and Kaltofen’s
algorithm [18] in the sense it deals with a great variety of algebraic
structures: semi-rings, rings or lattices. Our contribution resides on the
one hand in a new bound for the evaluation of circuits over lattices,
which improves previous results [19], and on the other hand in the uni-
fied formulation for the evaluation algorithm. This algorithm runs in
O(min(logn + logd) log n, (ks + logn)logn)) parallel time, d being the
“algebraic degree” (in an extended sense) of the circuit and h, the max-
imal number of alternances of @ and ® on a path of the circuit if the &
and ® operations define a lattice, with M (n) processors, where M (n) is
the number of processors necessary for the multiplication of two n X n
matrices in the structure in O(logn) parallel time. After presenting this
algorithm, its efficiency is shown on particular cases: taking as input a
simple and sequential algorithm, it can be used as a “compiler” to pro-
duce a sorting circuit as fast as Cole’s circuit, with logarithmic depth,
or an adder equivalent to Brent and Kung’s adder in terms of size and
depth. These academic examples confirm the relevance of the algorithm
presented here in the area of conception of fast VLSI arithmetic operators.

1 Introduction

In the domain of VLSI design, two questions naturally arise: the first one is to
design a circuit computing the solution of a given problem, the second one is

Preprint submitted to Elsevier Preprint 16 April 1996

to determine whether this circuit can be improved. It appears that in this area,
the computation time of a circuit is an important criterion. Qur works allows
one to derive tight upper bounds on the computation time of a multi-valued
boolean function.

Actually, in order to measure the quality of a VLSI circuit, two measures are
used (cf. [16]): the first one is A, the area of the chip surface that is taken
up by the electronic components devoted to the considered computation; the
second one is the time, T', which represents the number of clock cycles spent
in a computation. It is assumed that the components of the circuit are totally
synchronous. Even if this assumption is not very realistic, it is interesting since
it permits to derive tight upper bounds on the complexity of actual circuits.
These two quantities can be combined in order to get a new measure of the
quality of a circuit, which exhibits the trade-off between the area A and the
time T'. It appears that with respect to the quantity AT, circuits are optimal
that are not considered to be good VLSI circuits; eventually, the quantity
which is widely used is AT Thus it is particularly interesting to get good
upper bounds on the time 7', both in terms of performance (for the user of
the circuit) and of hardware cost (AT? cost).

Since our works focuses on 7', an apparent limitation is that the quantity A is
often overestimated. It appears that there exists circuits achieving our bounds
on 1" with reasonable A; for instance, we derive automatically a logarithmic
time bound from the boolean equations modeling the addition of two n-bit
integers, and it is well-known that Brent and Kung [3] have proposed an adder
with logarithmic time and small (linear) area. (This formed a test case for our
work). Another apparent weakness of our result is that it gives asymptotic
bounds on T'. However, the constants are small (between 1 and 2). Moreover,
our algorithm takes benefit of the algebraic properties of the boolean opera-
tions in order to derive the upper bounds, and in fact the result indicates for
instance whether the associativity should be used in order to reorganize the
computations or the commutativity could help more fruitfully.

Briefly stated, our work takes as input boolean equations describing the com-
putations and describes how they can be evaluated quickly in parallel. The
time of this evaluation is very often a tight upper bound on the time needed
by a circuit to perform these computations; the way the boolean operations
are performed often indicates how to design a real VLSI circuit achieving this
time complexity with a reasonable area A. In the last section of this paper,
some upper bounds for already known problems illustrate this point.

To replace this in a more general framework, we consider the problem of the
evaluation of arithmetic circuits when the + and x operations define various
algebraic structures such as semi-rings, rings or lattices. The boolean algebra,
which is the basic algebraic structure used for VLSI design, constitutes in

fact a particular application. The term of “circuit” will be used in a more
general meaning than the VLSI one; actually the parallel complexity theory is
based on the notion of — uniform — boolean [2,7,21] and arithmetic [9] circuits,
also called straight-line programs. We present in this paper a generic algorithm
for the parallel evaluation of arithmetic circuits when the underlying algebraic
structure is commutative and is either a semi-ring, a ring or a lattice. Our first
contribution is a unified presentation of known and new algorithms designed
for each case.

The boolean circuits constitute a theoretical model for parallel computations
and the complexity classes NC*, NC are defined upon this model [7]. Thus,
any parallel computation is equivalent to the parallel evaluation of the corre-
sponding boolean circuit. Since the boolean algebra ({True, False},V,A) is
a lattice, algebraic properties can be taken into account in order to speed up
the parallel evaluation of boolean circuits. Our other contribution consists in
a new algorithm for the parallel evaluation of lattice circuits; its complexity
improves the best known results [19]. We introduce a new measure, the max-
imal number of alternances, to which the complexity is related. It has to be
noticed that Ladner has shown that the boolean circuit evaluation problem is
P-complete.

In the framework of parallel evaluation, two cases can be distinguished: ex-
pressions and circuits. An expression is a formula where every variable and
every intermediate result can serve only once as an operand. It can be rep-
resented as a tree, and optimal algorithms exist with a EREWS(ﬁ,log n)
complexity ! [1,4,10,15,17], where n is the number of nodes in this tree. Note
that this problem is NC'-complete [14].

The evaluation of an arithmetic circuit with operations in a commutative semi-
ring (SR, +, x, 0, 1) can be done by Miller, Ramachandran and Kaltofen’s
algorithm ? [18]. It has a complexity of C REWsr(M(n), log n(logn + log d)),
where d denotes the arithmetic degree of the circuit and n the number of
nodes. It consists in applying repeatedly a sequence of three procedures. The
first one groups two successive + nodes into one, the second evaluates + nodes
having their operands evaluated, and the last one evaluates or shunts x nodes

1 The notation EREWs(nbof proc,time) is due to Karp and Ramachandran [14];
it means that the computation time of the algorithm on a EREW (Exclusive Read
Exclusive Write) PRAM is O(time), where an operation on the structure S is done
in one unit of time, while the number of processors required to achieve this time is
O(nb of proc). The notation CREWg(nb of proc,time) just differs on the parallel
machine performing the computation: it is a CREW (Concurrent Read Exclusive
Write) PRAM. Similarly, when the parallel machine is a CRCW (Concurrent Read
Concurrent Write) PRAM, the notation C RCWg(nbo fproc, time) will be employed.
For this last case, it does not matter which kind of CRCW-PRAM is used.

2 In the following, Miller, Ramachandran and Kaltofen will be abbreviated in MRK.

(the shunt is the equivalent of the rake of Kosaraju and Delcher [15], or of
the prune of Cole and Vishkin [4]).

A lattice (L, &, ®) is a set L in which two internal operations, & and
®, are commutative and associative and satisfy the absorption law: Va,b €
L, (a®b)®@a=(a®b) P a = a. In this paper we shall restrict the work
to distributive lattices. Miller and Teng [19] proposed two algorithms for the
contraction of distributed lattice circuits. They are based on MRK’s algorithm
[18], designed for circuits with operations in a semi-ring. The first one con-
sists in two simultaneous executions of this algorithm, one considering & as
the addition and ® as the multiplication, and the other inverting the roles of
@ and ®. The first having completed its computation stops the second. The
other algorithm consists in applying the basic procedure of contraction twice
at each step, the first one with ® as multiplication, the second with & as
multiplication.

If dg stands for the arithmetic degree of the circuit when & represents the
addition and ® the multiplication, and dg is the degree when the roles of &
and ® are inverted, d being the minimum of dg and dg, and if n is the number
of nodes in the circuit, then the complexity of Miller and Teng’s algorithms
is :

CREW(M(n),logn(logn + logd)).

The main benefit of Miller and Teng’s algorithms is their simplicity, since you
just have to run MRK’s algorithm twice. However, this simplicity is counter-
balanced by a loss of performance. Actually, its major drawback comes from
the difference of treatment between @& and ®, whereas in a lattice they have
exactly the same properties.

The algorithm presented in this paper (section 2) is a generalization of MRK’s
algorithm; on the one hand, it is designed to handle algebraic structures of
different kinds; on the other hand, it fully exploits the symmetric properties
of @ and ® in the lattice case. It is composed of four procedures. The first
operation, called Group, groups + nodes by means of matrix multiplications,
and it groups both & and ® nodes in the lattice case. The second one, Eval,
evaluates + (resp. @) nodes as well x (resp. ®) nodes having their operands
already evaluated. The third one is a partial evaluation of the nodes having
some of their operands evaluated; its name is PartialEval. A generalization
of the Shunt is then performed on x nodes, or on & and ® nodes in the
lattice case, suppressing chains of unary x (resp. & and ®) nodes; thus it is
called Suppress.

This algorithm can be modulated in order to be a simple extension of the
tree contraction technique, to correspond to MRK’s algorithm for circuits
over semi-rings, or to be a very efficient algorithm in the lattice case. Its
complexity is thus the same as MRK’s complexity in the semi-ring case.

For the lattice case, this algorithm has a first complexity upper bound of
CREWL(M(n),logn(logn + log d)), which means that it is (at least) as effi-
cient as Miller and Teng’s algorithms. Another upper bound is C REW (M (n),
(he + logn)logn), where h, is the maximal number of alternances of & and
® on any path between a value node and a result node in the circuit. Proofs
of these bounds are to be found in section 3.

In section 4, some applications of this algorithm are presented. These exam-
ples are classical test problems, in order to check if the evaluation algorithm
achieves good performances on well-known problems. The first one illustrates
the power of this algorithm as complexity predictor: it gives a O(logn) time
complexity on a C RCW —PRAM for the sort, when given as input the inser-
tion sort algorithm. The second problem is the addition and the multiplication
of two n-bit numbers: the practical complexity matches the theoretical one,
since the experimental time is logarithmic; this algorithm used as a compiler
produces in this case an adder of linear width and logarithmic depth start-
ing from the boolean equations of the addition, this means that it produces
automatically an adder equivalent to Brent and Kung’s adder [3]. Lastly, the
limits of our algorithm are given: for the P-complete lexicographic maximal
independent set problem [6], it evaluates the corresponding circuit in linear
parallel time. Since the evaluation algorithm gives satisfying results on these
problems, some real applications are considered as future work.

2 Algorithm

2.1 Definitions and notations

A commutative semi-ring (SR, 4+, x, 0, 1) is a set SR in which two internal
operations, + and X, are associative and commutative, have a unit element (0
for + and 1 for x) and x is distributive with respect to +. In a commutative
ring, every element has an inverse for +.

A lattice (L, &, ®) is a set L in which two internal operations, & and ®, are
commutative and associative and satisfy the absorption law: Ya,b € L, (a®b)®
a = (a®b)®a = a. From the absorption law, we can deduce the idempotency
of @ and ®: Va € L, a ®a = a® a = a. In this paper, we will restrict the
work in two directions: on the one hand, we consider only distributive lattices,
i.e. lattices where ® is distributive with respect to @, which implies that @
is also distributive with respect to ®; on the other hand, we limit ourselves
to lattices with a greatest element e (a unit element for ®) and a smallest
element ¢ (a unit element for &). Actually, this second assumption is not

restrictive, since it is possible to add dummy e and ¢ elements to L; we also
have Vx € L, e @ x = € and ¢ ® x = ¢ because of the absorption law.

Notations: in what follows, S stands for an arbitrary algebraic structure,
whereas [stands for a lattice, and + and x represent operations from a
semi-ring or a ring, ¢ and ®@ stand for lattice operations.

In each of these structures, an arithmetic operation (either an addition or a
multiplication) is assumed to be performed in unit time. In the case of a totally
ordered lattice, it happens that the addition or multiplication of n elements can
be performed in constant time with O(n?) processors on a C RCW —PRAM.

In the following, arithmetic circuits are represented by DAGs. The vertices
are labeled as leaves, + or x nodes, or & or @ nodes. The out-degree of leaves
is 0, the out-degree of +, § and ® nodes is > 1 (operations of variable arity),
the out-degree of x nodes is < 2. The edges are directed top-down, from the
operator to the operands; they are weighted with (a x z)-like linear functions

or (a ® x @ b)-like affine functions.

Notations: v and w denote nodes of the DAG, usually with w representing any
child of v. The adjacency matrix associated to the DAG is denoted by U; its
coefficients represent the linear or affine functions weighting the edges: if the
function is linear, it is simply represented as a single coefficient whereas an
affine function is represented as a pair of coefficients.

The four basic operations of the contraction algorithm are detailed in the

following paragraphs.

2.2 Parallel evaluation algorithm

Eval

The most obvious procedure is Eval: when a node knows the value of all its
operands, it computes a value and becomes a leaf, i.e. it disconnects itself
from its children.

Fig. 1. The Eval procedure.

This can be done with C REWs(n?,log n) complexity and C RCW(n?*, 1) com-
plexity in a totally ordered lattice.

Group

We generalize the “MM” operation of MRK’s algorithm. In the latter, they
use only linear functions on the edges, and they group + operations by matrix
products (which correspond to one step of a transitive closure computation),
so as to transform two successive + nodes into a single one, and to compute
the result of n-ary +.

f}}}&%

Fig. 2. MRK’s Group.

They define two matrices from the adjacency matrix:

— U™t is the matrix of weights of the edges between two + nodes,
— U™ is the matrix of weights of the edges from a + node to a x node or to
a leaf.

MRK’s “MM?” operation can then be defined as

Ut «— Uttt + Ut
followed by Ut «— Ut+. U+t

As far as lattices are concerned, since & and ® are symmetric, ® nodes are
grouped as well as &, and thus we define four auxiliary matrices from the
adjacency matrix U:

~ U®® (resp. U®?) is the matrix of weights of the edges between two @ (resp.
®) nodes,

~ U® (resp. U®") is the matrix of weights of the edges from a @ (resp. ®)
node to a ® (resp. &) node or to a leaf.

The grouping operation can be written as matrices operations:

U% «—— U U% 4+ U%
followed by U®% «— o [o%
and
U® «+— U U® 4+ U%
followed by U®® «— [U®® [®®

Since the coefficients of the matrices represent affine functions, usual matrix
products can not be used and have to be slightly modified:

(AB)ZJ = Sé Az’k(r) o] Bk,j(x)

when & nodes are grouped, and

n

(A.-B)i; = & Aiglx) 0 By,j()

k=1
when ® nodes are grouped.
The Group procedure has the same complexity as a matrix product:

CREWgs(M(n),logn),

where M(n) is the minimal number of processors required to multiply two
n X n matrices in time O(logn), and C RCWr(M'(n), 1) in a totally ordered
lattice, where M’(n) is the minimal number of processors required to multiply
two n x n matrices in time O(1). M(n) is roughly bounded by O(r?), and
M'(n) by O(n?).

PartialEval

This procedure and the following one form a generalization of MRK’s Shunt
of x nodes; they allow one to shunt both & and ® nodes.

Any node having leaves children computes its partial result and puts the result
on one (or any in the lattice case®) edge to a non-leaf child if one exists;
otherwise the node keeps only one child (a leaf) and puts its value on the edge
between them.

(©)
f(z)
a f

%
aofBoy

a [v o

Fig. 3. The partial evaluation procedure.

This procedure has a CREWs(n* logn) complexity, and a C RCW(n?,1)

complexity in a totally ordered lattice.
Suppress

The previous procedure may have created unary nodes. We now “compress”
the chains of unary nodes (only the x nodes in the semi-ring case, both &
and ® nodes in the lattice case). A pointer-jumping technique is used; it
consists in repeating the following process until no node has a unary child:
each node which has a unary child disconnects itself from this child and con-
nects to the only grand-child originated from the unary child. For the whole
evaluation of the DAG, the total cost of Suppress is C REWs(n,logn) and
CRCWs(n,logn).

The combination of PartialEval and Suppress corresponds to the Shunt
procedure of MRK.

3 using the idempotency of @ and ®.

Algorithm

The main procedure of the evaluation algorithm consists in a preprocessing
and then in applying the “Group - Eval - PartialEval - Suppress” se-
quence as many times as required.

Algorithm 1 (DAG evaluation)
Preprocessing
Group*: do [logn| times Group
Suppress
repeat Phase
Group

@ nodes

® nodes

Eval

all nodes in parallel
PartialEval

all nodes in parallel
Suppress

every chain of unary nodes

until every node is evaluated.

end Phase

In the next section, an upper bound of the number of applications of Phase
is given.

Remark

For the CREW version of this algorithm, the read/write protocol is the fol-
lowing: we work with two copies of the DAG, an old copy used to read the old
values and a new, modified copy, so as to avoid write conflicts; the nodes and
the adjacency matrices are then updated. This allows to perform in parallel
the matrices products, using old matrices and then updating them.

3 Complexity

In this section, an upper bound of the complexity of the previous algorithm
is given. In the lattice case, it is split into three parts. The first one involves
an algebraic measure, depending on the function computed by the DAG: hg

10

corresponds to the height defined by MRK, when & represents the addition
and ® the multiplication. The second one inverts the roles of & and ® and
involves hg, the corresponding height. For the last part of the proof, we intro-
duce h,, the maximal number of alternances of @& and ® on any path of the
DAG. Using these measures, we put in evidence three different upper bounds.
Two characteristic quantities have to be defined upon the DAG: the degree of
a DAG and its number of alternances.

Definition 1 Let’s define dg, dg and d as follows:

1 if v is a leaf,
dg(v) = { 3, da(w child of v) ifvisa ® node,
max,(dg(w child of v) ifvis a ® node,

dg of a DAG is the mazimum of the dg degrees of its nodes,

1 if v is a leaf,
dg(v) = ¢ 3, do(w child of v) ifvis a @ node,
max, (dg(wechild of v) if vis a & node,

dg of a DAG is the mazimum of the dg degrees of its nodes.

The degree d of a DAG is the minimum of its dg and dg degrees in the lattice
case, d = dy otherwise.

This notion of degree does not exactly meet the usual definition of "algebraic
degree”: a DAG computing (z 4+ 2?) — (2?) computes the identity function,
whose algebraic degree is equal to one, whereas the degree of the DAG is 2.
This definition permits to manage such pathological cases; however, d can be
thought as the usual degree in a first approach.

Definition 2 We then define h, as the mazimal number of alternances on a
path from an output node to a leaf of © and @ nodes* .

4 This notion of alternance should not be confused with the notion of alternance
defined for alternative Turing machine: in the latter context, the notion of alternance
refers to the number of random choices made during a given execution.

11

More formally, h,(v) is equal to 1 if v is a leaf,

ho(w @ child of v) + 1,
ho(v) = max | h,(w @ child of v),
ho(w leaf child of v) + 1)

if v is a & node, and

ho(w & child of v) + 1,
he(v) = max | h,(w® child of v),
ho(w leaf child of v) + 1)

if v is a @ node. The number of alternances h, of a circuit s the maximum
of the h, numbers of alternances of its nodes in the lattice case, h, = +oc
otherwise.

These two quantities permit to measure the parallel complexity of the DAG,
as shown in the following theorem.

Theorem 1 An upper bound for the complexity of algorithm 1 is :

CREWL(M(n), log(n) * min(log(nd), h, + log(n)))
and

CRCWL(M(n), min(log(nd), h, + log(n)))

Proor

An easy point to prove is the complexity of the procedure Phase: the com-
plexity of the procedure Phase is CREW (M (n), logn) and C RCW (M'(n),
1) in a totally ordered lattice. O

The number of applications of the procedure Phase is a little bit more tricky
to establish. First of all, an upper bound is established using a new quantity,

the height of a DAG (this first upper bound is based on MRK’s proof).

12

Let’s define hg as follows: v being a node of the DAG, let hg(v) be 1 if v is a
leaf,

he(w & child) +
he(v) = max | fg(w @ child),
he(w leaf child)

1
27

if v is a @ node, and

he(v) = he(w child)
if v is a ® node.

A dominant child w of a & node v is a child such that hg(v) = hg(w) + %
if wis a & node, hg(v) = hg(w) otherwise. hg(v) is the height obtained by
exchanging & and ® in the previous definition.

The height hg (resp. hg) of a DAG is the maximum of the heights of its nodes.

We assume that there is no unary node in the entry DAG (thanks to the
preprocessing ending up with Suppress). Following MRK proof’s scheme,
let’s show that hg is divided by 2 by one application of Phase. Let’s consider
Phase, Group, Eval,...as maps of circuits to circuits. They are surjective
on nodes, and modify only the edge structure. We denote by U = (X, E) a
circuit and by U’ = (X', E'), with X' = X its image by Phase, by v a node
in X and by v’ € X' its image, and by U, and U], the subcircuits they induce
(i.e. the subcircuits computing their value). w’ will represent any child of v,
and w its antecedent by Phase.

Let v be a ® node having one @ child w. If w’, its image, is not a child of
v’, the only possibility is that w has become a unary node with child z after
PartialEval, and has been suppressed by Suppress. Thus the v — w edge
has been replaced by only one edge v’ — z’. From this point we deduce :

Corollary 1 Ifv'is a @ node, then its height is hg(v') = 3 hg(w' child of v')
and the height of its antecedent is hg(v) > 3 hg(w antecedent of w').

The same holds when @& and @ are exchanged.
Theorem 2 If U and U’ are arithmetic circuits, if v’ is a node of U which
is neither a leaf nor an output node (a node without parents) and v is its

antecedent, then hg(v) > 2hg(v').

Proor
Let’s prove it by induction on the size of U/, the subcircuit induced by v’ in

U'.

13

— INITIALIZATION. Let v’ be neither a leaf nor an output node of U’, and let
v’ have only leaves children.

If v’ is a @ node, hg(v') = 1. Let’s prove that hg(v) > 2 by reducing it to
the absurd. If hg(v) < 2, either hg(v) = 1 or hg(v) = 2. If hg(v) = 1, since
there is no unary node, v is either a leaf or a @& node whose children are
leaves. After Eval, v is a leaf, and thus v’ is a leaf, which is opposite to the
assumption. If hg(v) = %, then v is a @ node whose children are either @
nodes with only leaves children, or and possibly leaves. After Group, every
child of v is a leaf, and after Eval v itself is also a leaf. Thus, v’ is a leaf,
and this is a contradiction. The case where v’ is a @ node is completed.

Ifv'is a @ node, hg(v') = f(w’ child of v'). It is enough to prove that every
w antecedent of w' has a height > 2, thanks to corollary 1. If hg(w) < 2,
he(w) = 1 or hg(w) = 2. If hg(w) = 2, then (cf previous case) after
Group w is a & node having only leaves children. If hg(w) = 1, after
Group w is also a & node having only leaves children. In both cases, after
Eval w is a leaf. Since w’ is a child of v’, w must be the only child of
v after PartialEval. Thus, v is a unary node and after Suppress it is
disconnected from its parents. This means that v’ is an output node, which
is a contradiction. Hence, every w antecedent of w’ child of v’ has a height
> 2, and hg(v) > Y hg(w) > 23 hg(w') = 2hg(v') (by corollary 1).

Our induction is correctly founded, let’s treat the general case now.

— GENERAL CASE. The induction hypothesis is that for any subcircuit U,
of size < k (i.e. with a number of nodes < k), and such that w’, the image
of w, is neither a leaf nor an output node, the height of w is divided by (at
least) 2 by Phase.

Let v be a node such that U, is of size k + 1, let’s prove that hg(v) is
divided by 2 by Phase.

- If v is a P node, v’ is also a & node. Let w’ be a dominant child of v' and

w its antecedent. If w' is a @ node, then hg(v') = hg(w') < Thg(w) by a

straightforward application of the induction hypothesis, and since w is a

descendant of v, hg(w) < hg(v). Thus, 2hg(v') < hg(v).

If w' is a @ node, we only need to show that there exists a path of
length at least 2 between v and w. If such a path does not exist, then, v
and w are adjacent, and Group is disconnecting them. Hence, we have
he (1) + 1 < he(v), and he (o) = ha(w') + 1 < L(ho(w) + 1) < Sha(v).

In conclusion, the property is true for & nodes.

- Ifvis a ® node, v’ is also a @ node. hg(v') =3 hg(w’ child of v'). Thanks
to corollary 1, we only need to prove that for each w', hg(w') < The(w).
w’ is not an output node since it has a parent v’. If w’ is not a leaf, then,
the induction hypothesis applies, and hg(w') < Lhg(w).

The only delicate case occurs when w' is a leaf. Let’s show that hg(w) >
2. By a mean of contradiction, if hg(w) < 2, as for the initial case, v’ would
be an output node. This is a contradiction with the initial assumption
on v'. Hence, we deduce that hg(w) > 2 if w' is a leaf. So hg(v') =

14

> hg(w' child of v') < %Zh@(‘w) < hg(v).

By this induction, we proved that for any node in the DAG which is not
transformed into a leaf or an output node by Phase, its height hg is divided
by 2. O

Let A = min(hg, hg).

Theorem 3 Fach application of Phase on a circuit divides its height h = min
(he, hg) by 2.

PROOF
It is true for Ag. Since algorithm 1 deals with & and ® in a symmetric manner,

it is also true for hg; hence, it is true for A the minimum of hg and hg.
O

By this theorem, after [log, h] applications of Phase, a circuit of height h
is transformed into a circuit with only leaves and output nodes. One Eval is
enough to evaluate every node. (Note that the preprocessing does not increase
the height, and thus its influence can be neglected).

MRK proved that hg < %e@d@ + dg where eg is the number of & — & edges.
Similarly, hg < Legdy + dg where eg is the number of @ — ® edges.

Thus, after [log, h] + 1 = O(log(nd)) applications of Phase, a circuit of de-
gree d with n nodes is evaluated.

Let’s tackle the last part of the proof. Intuitively, it is clear that what prevents
the Phase procedure to work more is the alternance of & and ® nodes.

Let’s show that at most (h, 4 log n) applications of Phase suffice to evaluate
the DAG.

Firstly, none of the Group, Eval, PartialEval or Suppress procedures in-
crease h,.

Secondly, the preprocessing plays an important role: Group* computes a tran-
sitive closure of & nodes and ® nodes. After Group®, A, is the length of the
longest path of the DAG +1. Obviously, the parallel evaluation time of a DAG
is less than the length of its longest path: h, applications of Eval are enough
to evaluate the DAG, a fortiori h, applications of Phase suffice to evaluate it.

If these results are put together, they involve theorem 1: at most O(min(log(nd),
he+log(n))) applications of Phase are enough in order to evaluate every node

15

of the DAG.

Remark

The complexity of the preprocessing is bounded by the complexity of logn
Phase; the preprocessing can even be replaced by log n applications of Phase
if an homogeneous algorithm is preferred instead.

4 Applications

The aim of the following examples is only to illustrate the efficiency of al-
gorithm 1. They have been chosen because their time complexity is already
well-known and thus the comparison between the best implementation and
the performances of our algorithm is possible. The results we obtain are en-
couraging. Real applications are mentioned at the end of this section and will
constitute our future work.

4.1 Addition and multiplication of two n-bit numbers

In order to illustrate the complexity of algorithm 1, we have simulated its exe-
cution and counted the number of applications of Phase. The input straight-
line programs are classical “paper-and-pencil” algorithms for infinite precision
- either integer or fixed-point real - arithmetic, described with boolean gates.
Let’s consider the addition of two integers, the adaptation to real fixed-point
addition being straightforward. Let a = (a,—1...a0) and b = (b,_1...bo)
two n-bit integers. Introducing carries ¢;, the equations defining the result
r=(rp_1...70), that we assume to be given in the VLSI specification, are the
following:

COZO,

c; = (ai A bz) \Y/ ((CLZ vV bz) A ci—l))

r, = [(CLZ A 62) V [(dZ N bz)] A Cf_l) V [(dZ A 62) V (CLZ' A bz)] N Ci_1

Tn = Cpe1 (7 is an Overflow Flag).

It may be noticed that we consider here the VLSI specification as simple as
possible.
The corresponding boolean circuit has O(n) nodes. Its degree is linear in the n,

16

and h, is also linear. Thus, the predicted complexity is C RCW(M'(n),logn)® .
On figure 4, we can check that this complexity is achieved, and that the con-
stants are small. Since the parallel time is logarithmic for the tree contraction
technique, and since this algorithm requires only a linear number of proces-
sors, this result means that an adder with a linear number of gates and a
logarithmic delay exists. It can even be built if this contraction algorithm is
used as a compiler instead of being used as an interpreter. An adder with
the same properties has been proposed by Brent and Kung [3]. Our algorithm
presents the advantage that it can build the circuit automatically from the
classical boolean equations of the addition.

12

1 PR

10 <><> 4 © _

s e

9r O.- T O &

8 ’O, ’ F + + + —

T o ¢ + + + .

S Tree contraction ©

6ro + + loggr—l— 9 - A

5 1 + Lattice algorithm * |
1.35logyz +2 - -

4l + _

3 H §

9 ! ! ! ! !

0 20 40 60 80 100 120

Fig. 4. Experimental results for the addition.

The same results (logarithmic time, small constants) occur when the boolean
circuit for the multiplication of two n-bit numbers is evaluated [20].

To obtain these results, only one test with arbitrary inputs has been done, in
order to determine the number of steps needed to compute the result; indeed,
there is no trick using the actual values of the inputs in the algorithm; thus,
the number of steps is the same, whatever the inputs are.

The addition requires the NOT operator. Goldschlager [11] has proven that a
boolean circuit with NOT gates can be transformed into a monotone boolean
circuit (without NOT' gates). In fact we did not use this transformation; in-
stead, we slightly modified the algorithm to be able to treat the NOT op-
eration: the weighting functions are True, False, x, =z (or more generally
(e ® 2) & (b ® —z) & c)-like functions); since NOT' is a unary operation,

® In the Boolean algebra, M'(n) = O(n?).

17

the NOT nodes are suppressed; since a & (=(b ® ¢)) = a & (—b) & (—¢),
@ and ® nodes are grouped when they are connected by a —z edge; since
a®(~(bdc)) =ad ((-b) @ (—¢)), & nodes are not grouped when they are
connected by a =z edge, neither are the ® nodes. The evaluation time is the
same for the monotone circuit as for the circuit with NOT' gates; we can thus
save half of the memory.

4.2 Parallel sort

Algorithm 1 can be used as a predictor of parallel complexity: the computation
of the degree and the maximal number of alternances of a program provides an
estimation of its parallel complexity which is often non trivial. For instance,
let us consider the problem of sorting an array of n distinct numbers z4,...x,
and of placing them in an array yi,...y, in increasing order. The structure
(RU{+oc} U{—oc}, min, Maz,+oo, —00) is a distributive lattice. The eas-
iest way to solve this problem is to program an insertion sort. An obvious
parallelization of the insertion procedure leads to the following algorithm, the
upper index denoting the step:

Algorithm 2 (Insertion sort)
fori=1ton do

if i =1 then

[yi'] & [1]
if 1 =2 then

['y?),yg%] — [min(xq, x2), Maz(xy, x3)]
if 1 > 2 then

yY) — min(;vz-,_yy_l))

) e Max(ySY, 2;)
forg=21toi—1do
y](-l) — Ma;z:(y(z__ll)

J

smin(yy ™", @)

(1) (i-1) (-1)

Actually, the computation of y;” from y]-i__1 » Y and x; corresponds to the
computation of the second element of the sorted array containing these three
elements.

The maximal number of alternances of the corresponding circuit is at least

linear: h, > ha(yén)) and ha(yél)) =2+ ha(yéi_l)) = 2(1 — 1). The degree dpo.

18

is exponential: for 2 <1 < n,
dMar(yY)) = dMal?(Y_l))
duran(y'™) = d I L (), 2 < <i— 1
Mal?(y]) Mal?(7)‘I’ Maz(y]_l)7 >7 >0
dMaI(yz(Z)) = dMaI.(yz(Z_l)) + 1

Y
Y

and they correspond to the (;) The degree d,,;, is linear: for 2 <1 < n,

din (1) = din(y) + 1
Bnin (YD) = max(dmin (Y™ + 1, dpin (y'5), 2< 5 <i— 1
o

J 7
in (4)) = dpin(y{ V)

Thus, algorithm 1 evaluates the insertion sort circuit in logarithmic time on a
CRCW —PRAM. The parallel complexity of the best known algorithms [12]
for this problem is thus automatically predicted, using a simple and a prior:
not highly parallel algorithm.

4.3 A P-complete boolean circuit

A problem of particular interest is the lexicographic maximal independent set

problem, denoted by LMIS; actually, it is a P-complete problem. As a matter

of fact, it happens that the LMIS is one of our worst cases.

The LMIS problem is the following: let G = (V| E) be a graph, and V' be a

linearly ordered set: V = {vq,...,v,} with vy > vy > ... > v,. The LMIS

problem consists in determining a maximal set of vertices that form an empty

subgraph; this set must be maximal for the order on V ¢ .

A greedy sequential algorithm gives the solution, and the corresponding boolean
circuit has an exponential degree, and a linear h,, the complexity bound for

its parallel evaluation using algorithm 1 is thus O(n).

4.4 Application fields: circuits for fived-point arithmetic

First of all, some other boolean circuits can be studied in the same way as the
addition or multiplication circuits. Thus an estimation of their depth can be
easily obtained. If this estimation is good, it is then possible to “compile” the

6 Without the lexicographic order constraint, this problem can be solved efficiently
in O(log?(n)) parallel time.

19

original circuit into another one, achieving the depth bound: algorithm 1 has
to be applied “symbolically” on the circuit, i.e. each operation such as discon-
nect from the child and connect to a grand-child has to be physically realized,
but no evaluation is performed. Furthermore, for the addition and multiplica-
tion circuits, it appears experimentally that the adjacency matrices are very
sparse. Thus, if only the useful computations are performed for the Group
operations, the number of simultaneous operations decreases significantly, z.e.
the size of the circuit is small. For the addition circuit, only a linear number
of operations are performed at each step, and then the size of the “compiled”
circuit is small compared to the O(r?) theoretical bound.

It seems that the usual arithmetic operations - implemented either by power
series or in a “CORDIC way” for instance - present the same characteristics:
very good theoretical time, theoretically overestimated size which appears to
be reasonable in practice. In such cases, algorithm 1 can be used as a prepro-
cessor for VLSI design, in order to build a circuit with a good cost.

In other areas, algorithm 1 cannot be used because it evaluates a straight-line
program with too many processors. However, the complexity result of sec-
tion 3 can be used in order to estimate an upper bound of the parallel time
required to solve a problem, as a predictor. Such areas include for instance
graph theory: problems such as the computation of connected components are
expressed in terms of lattice operations (min - max), optimization problems or
reliability studies require either lattice (min - max) or semi-ring (max - +, A -
x) operations and finally enumeration problems use a semi-ring. Lastly, sim-
ulations of discrete events systems (modeled by timed Petri nets for instance)
perform computations in the semi-ring (IR, max, +).

5 Conclusion

In this paper, an algorithm for the parallel contraction of arithmetic circuits
has been presented. Firstly, it unifies the various algorithms designed for differ-
ent algebraic structures. Secondly, it improves previous algorithms by the use
of the lattice’s algebraic properties, and by a symmetric treatment of the lat-
tice’s & and @ operations. Its complexity is C REWgs(M(n),log n+min(log n +
logd, h, +1logn)), where d is the algebraic degree of the circuit, and h, is the
maximal number of alternances of & and ® in the DAG in the lattice case, +o0c
otherwise. In most problems, this bound is rather tight, thus this algorithm
appears as a predictor for the time complexity of an algorithm, and as an in-
dicator of the algebraic properties that have to be taken into account, in order
to reach this time. The mapping issue is not covered by this approach: firstly,
the material resources criterion is not minimized (the number of processors in
a parallel computation or the area of a VLSI circuit); secondly, the problem

20

of reusing the processing components is not considered. Further work has to
be done in order to attain a trade-off between time and material resources
- reflecting the AT? measure of quality in VLSI design.

More generally, this easy-to-compute complexity estimation provided by al-
gorithm 1 is particularly interesting: it can be used to detect the existence of
reductions in numerical programs: actually, a constant h, for instance means
that one operation prevails, and that reductions based on this operation prob-
ably exist. A linear dg means that reductions of “dot-product” kind are worth
to be searched, whereas a linear dg indicates that p « p ® x; & y; patterns
are preferably to be looked for. This is valid even if the & and ® operations
do not define a lattice. Thus, the complexity results established in §3 can be
integrated in automatic parallelizing tools, in order to guide the detection of
reductions: indeed, the reduction procedures are now integrated in most of
the parallel languages (HPF, MPI, ...) because they are performed efficiently
on most of the highly parallel arithmetic units. Since the detection algorithms
are rather costly and cannot be applied to the whole numerical program to be
parallelized, they really need such an expert tool to guide them.

References

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple
parallel tree contraction algorithm. Journal of Algorithms, 10(2), pp 287-302,
June 1989.

[2] A. Borodin. On relating time and space to size and depth. SIAM .J. on
Computing, 6(4), pp 733-744, December 1977.

[3] R.P. Brent and H.T. Kung. A regular layout for parallel adders. I[FEFE
Transactions on Computers, C31(3), pp 260-264, 1982.

[4] R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree and graph problems. In 27**IEEE Symposium on
Foundations of Computer Science, pp 478-491, 1986.

[5] R. Cole and U. Vishkin. Approximate parallel scheduling. Part I : the basic
technique with a pplications to optimal list ranking in logarithmic time. STAM
J. on Computing, 17(1), pp 128-142, February 1988.

[6] S. A. Cook. Towards a complexity theory of synchronous parallel computations.
Enseignement Mathématique, 27, pp 99-124, 1981.

[7] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64, pp 2-22, 1985.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progression (full paper). Journal of Symbolic Computation, 9(3), pp 251-280,
March 1990.

21

[9] J. von zur Gathen, G. Seroussi. Boolean circuits versus arithmetic circuits.
Proc. 6" Int. Conf. Computer Science, Santiago, Chile, pp 171-184, 1986.

[10] A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic
expression evaluation and context-free recognition. LNCS, VLSI Algorithms
and Architecture, (319), pp 32-45, 1988.

[11] L. M. Goldschlager. The monotone and planar circuit value problems are log
space complete for P. SIGACT News, 9(2), pp 25-29, 1977.

[12] J. JaJ4. An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[13] E. Kaltofen. Greatest common divisors of polynomials given by straight-line
programs. J. ACM, 35(1), pp 231-264, January 1988.

[14] R. M. Karp and V. Ramachandran. Handbook of Theoretical Computer
Science, J. van Leeuwen, edilor, chapter Parallel Algorithms for Shared-
Memory Machines, pp 869-941. Elsevier Science Publishers, B.V., 1990.

[15] S. R. Kosaraju and A. L. Delcher. Optimal parallel evaluation of tree-structured
computations by raking. LNCS, VLSI Algorithms and Architecture, (319), pp
103-110, 1988.

[16] T. Lengauer Handbook of Theoretical Computer Science, J. van Leeuwen,
editor, chapter VLSI Theory, pp 835-868. Elsevier Science Publishers, B.V.,
1990.

[17] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In
IEEE, 26" IEEE Symposium on Foundations of Computer Science, pp 478489,
1985.

[18] G. L. Miller, V. Ramachandran, and E. Kaltofen. Efficient parallel evaluation
of straight-line code and arithmetic circuits. SIAM J. of Computing, 17(4), pp
687-695, 1988.

[19] G. L. Miller and S.-H. Teng. Dynamic parallel complexity of computational
circuits. J.ACM, pp 254-263, 1987.

[20] N. Revol. Complexité de I’évaluation parallele de circuits arithmétiques. Ph.D.
Thesis, LMC, INPG, 1994.

[21] W.L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22(3), pp 365-383, June 1981.

[22] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
Band 13(Heft 4), pp 354-356, 1969.

[23] V. Strassen. Vermeidung von Divisionen. Journal fir Mathematik, Band 264,
pp 184-202, 1973.

22

