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Abstract. Viewing a parallel execution as a set of tasks that execute
on a set of processors, a main problem is to find a schedule of the tasks
that provides an efficient execution. This usually leads to divide algo-
rithms into two classes: static and dynamic algorithms, depending on
whether the schedule depends on the indata or not. To improve this rough
classification we study, on some key applications of the STRATAGEME
project [21, 22], the different ways schedules can be obtained and the
associated overheads. This leads us to propose a classification based on
regularity criteria i.e. measures of how much an algorithm is regular (or
irregular). For a given algorithm, this expresses more the quality of the
schedules that can be found (irregular versus regular) as opposed to the
way the schedules are obtained (dynamic versus static).

These studies reveal some paradigms of parallel programming for
irregular algorithms. Thus, in a second part we study a parallel pro-
gramming model that takes into account these paradigms to free the
user from task scheduling. An implementation, PAC++, is presented.

1 Introduction

There are two main differences between sequential and parallel computers: in the
latter, there are potentially very large overheads in communication (or memory
accesses) and in task management. Independently of these overheads and be-
yond the NC class [12], the notion “amenable to a good parallel solution” may
be captured by classifying problems and parallel algorithms with respect to their
nonoptimality or inefficiency, i.e the extra amount of work done by the parallel
algorithm as compared to a sequential algorithm [43, 45]. This can be also ex-
pressed using the concept of scalability, i.e the ability to provide a linear scaling
of performance as function of the cost of the machine [65].

Communications: locality. The communication overhead may be modeled using
various models of the parallel random access machine, PRAM, family [26, 43].
Much work has been done in this field. This has led to classify problems and
parallel algorithms with respect to their gross locality, locality for short, i.e. the
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ratio of the computational complexity by the communication complexity [56].
Non local algorithms require high performance communication capabilities to
be efficiently implemented. As long as communication overheads are significant
on the existing parallel computers or in other words, as long as the PRAM cannot
be efficiently simulated, to exploit locality will be a main issue to acheive high
performance.

The notion of locality may also be understood as a notion of irregularity.
Indeed, problems that have regular, oblivious or predictable patterns of mem-
ory accesses, give rise more easily to programs organized so that they have low
communication costs. It may be argued that the more an algorithm is local
the more it is regular. But this is not sufficient [13]: another relevant criterion
for the irregularity of an algorithm is the irregularity of the communication pat-
terns 1t involves: “a key factor success is the use of regular global communication
patterns”. The locality concept relies on the fact that models of parallel compu-
tation emphasizes that the tasks of computation and of communication can be

distinguished [67].

Scheduling: worst-case irregularity. Obviously, task management is also a main
issue toward efficiency of parallel programs. Optimal solutions for key problems
such as list ranking may rely on task scheduling solutions [11]. There is also a con-
text for parallelism where tasks have costs that cannot be determined in advance
(e.g. indata dependent costs). From that angle, concepts are not so well estab-
lished than concerning communication overheads. For instance, Brent’s theorem
does not handle the problem of assigning processors to their jobs. One can divide
algorithms into two classes: static and dynamic. The former are characterized by
that the structure of their executions is known in advance, the computational
steps remain the same regardless of indata; on the other hand, the latter may ex-
ecute differently depending on the indata. Dynamic algorithms often have static
parts which may be referred as basic blocks [2]. But this division into static and
dynamic algorithms is very poor and focus more on the way a schedule can be
computed than on the quality of the executions that it provides.

Thus, since the scheduling is a key point for efficiency of executions, it is
much interesting to try to classify algorithms with respect to the difficulty to
schedule them finely ¢.e. in some sense, with respect to the cost-overhead due to
scheduling. In this paper we are going to capture this by defining the irreqularity
of problems and algorithms. This will be done in a natural way, one may have
an approach dual to the one used for communication overheads. Following the
definitions of locality and informally, the more an algorithm is irregular, the
more it must be difficult or costly to schedule the tasks it generates so that
the resulting execution is efficient. Even if resources needed for executions may
heavily depend on the indata, only worst-case executions are usually considered
from a theoretical point of view: this first notion of irregularity will be called
worst-case irregularity at section 2.

Local efficiency and irreqularity. When measuring invariants of an algorithm, the
yardstick that is used is either a sequential algorithm to capture the inherent



parallelism, or a parallel algorithm to capture the communication complexity.
Quite often, only worst-case execution times are considered. We think this can
be far from reality when execution time varies a lot with the indata, and we will
revisit the definition of efficiency at section 3. Indeed, from a practical point of
view, one usually compare the parallel execution to the sequential one with the
same indata. Limitations of worst-case definitions are crucial for NP-complete
problems or algorithms that require exponential serial time. These latter may
well be classified as “efficient algorithm” in the EP class (Efficient/Polynomially
fast [45]), even if it is inherently difficult to dynamically load-balance their execu-
tions, so that, for any fixed indata, the implementation is efficient (we will speak
of local efficiency). This is well known and has been also somehow illustrated
by now anectotal superlinear speed-ups in various domains [46, 70, 57, 48]. This
will lead to a second measure of irregularity in the definitions at section 3, where
usual efficiency will be preferably computed for executions (local efficiency) than
for algorithms (worst-case efficiency).

Irregular algorithms versus irregular data-structures. Irregularity is often con-
sidered in the literature. Two aspects of the notion appear: irreqular algorithms
and rreqular data structures. As it can be underlined, we have chosen to mea-
sure irregularity on algorithms rather than on data structures. However we will
consider both approaches to be equivalent. This is true in many cases, especially
when a “satisfying distribution of the data structure” on which the algorithm
operates is a “satisfying distribution of the work-load” and thus corresponds to
a task scheduling with efficient execution. Indeed, a data structure is irregular
when the cost to operate on parts of it is not exactly known or is unknown
by advance. Parallelization approaches that are based on the splitting of such
structures may consequently lead to a bad distribution of the load a priori and
require dynamic load-balancing. Examples among various others can be found
in [21, 22]. Especially for image processing [49], for a dictionary machine [15, 18]
and for branch and bound algorithms [23], the irregularity of the data structure
is an imbalance of the load.

Organization of the paper. The paper is organized as follows. We focus at section
2 on worst-case studies and try to define irregularity with respect to scheduling
complexity. Regular and irregular strategies (or patterns) of scheduling will be
associated to different costs. As noticed earlier by several authors we try to
emphasize a duality between routing and scheduling. We believe that this leads
to a better understanding of irregularity (at least in worst-case studies). This
is formalized by the definition of the parallel execution problem [68]. Then at
section 3 we recall well known facts on efficiency: from many practical points of
view, when executions times are indata-dependent, a local efficiency (for fixed
indata) better suits to measurements. Load-balancing will be necessary to have
globally efficient algorithms (locally efficient everywhere): this will be another
aspect of irregularity.

From these two first sections, some basic concepts will appear to be useful
for parallel programming of irregular algorithms. We identify them at section 4



and show how they can be implemented using generic C++ classes at section 5.

2 Worst-case irregularity

The model of parallel computer we use consists of a set P of p processors. A
processor, at a first level, works sequentially with its local memory and, at a
second level, communicates with other processors via a global memory. We con-
sider that an execution of a parallel algorithm is a set 7 of tasks each executing
on an indatum taken from a set X'. Let O be the subset of 7 x X’ of the couples
(¢, z) such that ¢ executes with z in input.

2.1 The parallel execution problem

Abstractions of the communication overhead is usually formalized as routing
problem or memory access scheduling problem. The task management overhead
leads to the scheduling problem. If we abstract the whole overheads as the parallel
ezxecution problem, a solution to this problem can be given as a solution to the
routing problem and a solution to the scheduling problem. The quality of a
solution to the routing problem governs the time needed to simulate a PRAM
by other machines with communications like the DCM [44, 45], the LPRAM [1]
or the XRAM [68].

Following [68] we propose a unique framework, and we formalize a solution
to the parallel execution problem as a parallel execution scheme (PES). A PES is
a couple (P, 8) where § is a scheduler that handles objects in @. An initialized
PES is a quadruple (P, S,Z, D), where Z is the input specification i.e. a mapping
O CT xX — P x P, this mapping indicates where the data and the tasks are
initially situated. In the same way, D is the output specification. It is a mapping
O C T x X — P that specifies where the tasks in 7 will execute and thus where
the data in X has to be routed. We assume that having started one task, a
processor will complete it (we refer to [6] for a detailed discussion using process
migration). We also assume that tasks are indivisible.

The two problems of routing and scheduling are often considered separately
but have, at least from a theoretical point of view, remarkably similar properties
and are handled in similar ways. For instance, when the model of machine incor-
porates barrier synchronization [39, 67], it is noticed in [67] that in a “general
dynamic load-balancing situation there also exist phenomena that are compat-
ible with barrier synchronization” (this is not clear from a practical point of
view [8, 3, 29]). Similarities between the two problems may also be pointed out
when load-balancing are characterized by the communication patterns they in-
volve [25]; a scheduling overhead can be viewed as a communication overhead.
Further, as surprisingly noticed in [66], “general many to many routing can be
reduced to sorting plus load-balancing”.

The routing problem. If routing problem is addressed alone, we have O = X" a set
of packets. The scheduler § manages the transfers (or equivalentely the memory



accesses). It consists of a routing algorithm which actually routes the packets that
have been scheduled by the queing discipline [68]. The communication overhead
is usually the cost of the communications themselves (on a real machine, links
have a given bandwidth or accesses to a common memory can be quantified). Tt is
unusual to associate an overhead to the computation of the specifications Z and
D. When the routing problem is considered, these specifications are known. The
problem of routing can be solved before execution (off-line) or during execution
(on-line). An execution may consists of alternative phases of computations and
of synchronizations [67] or such phases may execute asynchronously [13]. Every
synchronization phase may consists in structured communication patterns like
permutations or message may be generated dynamically and ask for unstructured
patterns.

The scheduling problem. If scheduling problem is addressed, we take O = T a
set of tasks. The scheduler § handles the computational tasks generated by the
algorithm. It consists of a load estimater that measures the load of the machine
and of a decider that assigns a schedules to the tasks [72, 9]. As opposed to
the routing problem, the scheduling overhead is usually the cost of measuring
the load [24] and of deciding task creation and the schedule. In other words,
at task creation, the input and output specifications has to be computed. This
duality leads to formalize the irregularity (as it has been done by locality) of an
algorithm as being related to a scheduling complexity. The more the scheduler is
working, the more the algorithm is irregular. The problem of scheduling can be
solved before execution (static scheduling) or during execution (dynamic load-
balancing and load-sharing). An execution may consists of alternative phases
of computations and of scheduling [11] or phases can be done asynchronously.
Associated patterns may be regular (e.g. constant unit time tasks to distribute
on processors at a given moment) or irregular if tasks are created dynamically
with varying time requirements that cannot be determined in advance.

Routing and scheduling may be handled simultaneously. In static scheduling
studies such as in [63, 20, 37, 71], the problem is to schedule tasks given that
a communication between two tasks that are mapped onto different processors
has a nonzero cost. There, the problem is to compute an output specification
D:T x X - P to minimize a given cost [52].

2.2 Worst-case irregularity

In the following we focus on overheads that take place during execution. Both
communication and scheduling overheads have to be considered, the former usu-
ally corresponds to carry out the data exchanges whilst the latter corresponds
to compute the specifications. In [56] the locality of a problem is the ratio of
the parallel work of the best PRAM algorithm that solves the problem by the
communication complexity on two processors. From there it will be easy to ex-
press the worst-case irregularity of algorithms and problems provided we can
measure a scheduling complexity. The model of parallel machine we use for that



will be a p-PRAM (CREW P-RAM with p processors). The parallelism is usu-
ally achieved by the following statement:

for all j € J in parallel do instruction(j)
this statement assignes to each element j in J the processor indexed code(y)
that is uniquely determined by j in constant time.

Instead, generalizing the fork instruction [26, 4], a program will generate par-
allelism through statements of the following type:

for all¢ € 7 in parallel do schedule(t) (1)
Here the execution of the statement consists of scheduling the tasks in 7' so
that they are completed in optimal time. A task is a program to be run by one
processor. The length of a task is its sequential time: it may not be known un-
til the execution completes. Processors are chosen by a scheduling mechanism
that solves the Task Scheduling Problem, TSP. This problems is defined as fol-
lows [11]. Polynomially many tasks are given, each of length between 1 and ¢(n)
and the total length of the tasks is bounded by w(n) (¢(n) and w(n) are at most
polynomials in n). The problem is to schedule the tasks on a p-PRAM so that
the tasks are completed in time O(max{w(n)/p,c(n)}). If p is upper bounded
by w(n)/e(n) the time is optimal.

We assume the TSP is solved in time the ratio of the number tasks #7
divided by the number of processors. We will say that the scheduling complexity
of one call to the scheduler is max(1, #7 /p); the scheduling complerity of an
algorithm is the sum of the scheduling complexity of all the calls to the scheduler.

Definition1. The worst-case regularity p, (n) of an algorithm on p processors
written with schedule instructions is the ratio: the parallel work w(n) required
to run the algorithm divided by the scheduling complexity. The worst-case ir-
regularity ¢y, (n) is the scheduling complexity.

This definition focus much more on practical algorithms than on problems.
A dynamic algorithm, that can be easily expressed using dynamic scheduling
and attain good efficiency, will be irregular if the scheduler contributes a lot to
the efficiency. Solving the TSP it has been established in [11] that list ranking
can be computed in optimal logarithmic time on a PRAM. We can easily write
the corresponding algorithm using the scheduler, since only one call is sufficient
to schedule n tasks on p = n/logn processors, the irregularity is ¢, (n) = log n.
Conversely, a static algorithm that is easily expressed using a static mapping will
be regular. The computation of an n-point FFT graph is implemented with no
effort with irregularity O(1) on n processors. To implement the time optimal list
ranking with irregularity O(1) (without calling the scheduler) using the rather
sophisticated method in [11] would be tedious; but an inefficient list ranking on
n processors (see [38, 43] for instance) is obviously also of irregularity O(1).

2.3 Granularity and irregularity

The irregularity of one call to the scheduler is the ratio of the number of parallel
tasks generated by the number of processors. Consequently, for a given input



size, if the number of task creations remains constant for a size-dependent algo-
rithm (following the terminology in [45]), the irregularity may increase when the
number p of processors decreases. To make irregularity bounded independently
of the number of processors, it 1s thus necessary to consider a size-independent
algorithm such that the number of tasks is related to p.

For instance, let us consider the two previous examples on a p-PRAM with
p < n processors. The n-point FFT is easily implemented using p parallel tasks,
in time #(n log n/p): the irregularity remains O(1). To modify the granularity al-
lows to keep the same irregularity. More generally, for any given size of problem,
if the algorithm is static (the execution graph remains the same regardless of
indata), using clustering and scheduling techniques it is possible in a compilation
phase, to produce a graph for a p tasks parallel algorithm [37]. The irregularity
is always O(1). But the efficient list-ranking using the scheduler has irregular-
ity O(n/p) on p processors. The number of tasks generated by the algorithms
remains equal to n.

To conclude this section, we may point out that remarks in [13] may also be
applied to scheduling: synchronizations should be avoided between computations
and scheduling and it is important to distinguish between regular and irregular
behaviours of the load-balancer itself. We above all suggest that load-balancing
should not be considered separately but as part of the algorithm itself as it is
done for communications.

3 Efficiency and irregularity

Dynamic algorithms are defined to be algorithms that execute differently de-
pending on the input. It may be that only the execution graph depends on the
indata with the execution time remaining constant, but in a more general con-
text we must consider situations where also the execution time varies. Indeed, for
instance for algorithms such as branch-and-bound, used to solve NP-complete
problems, a worst-case execution can be efficiently parallelized (in EP). Instead,
a main concern from a practical point of view is to ensure that, for fixed entries,
the execution will be efficient and in particular to ensure that a good speed-up
is obtained with respect to a sequential execution with the same entries. How
much the execution time depends on the indata will be a measure of irregularity.

3.1 Local and global inefficiency.

In the following, we extend the definitions in [45] to take into account the above
comments. For a sequential algorithm A, we denote by #(z,n) its sequential
running time on an input z of size |z| = n. For a parallel size-independent [40]
algorithm B that solves the same problem, we denote by t,(z, n) its running time
on a p-PRAM with 1 < p < h(n). Thus, ¢, is a function of z, n and p, p being
a free parameter. As in [42], the parallel work w,(z,n) denotes the number of
operations effectively performed by the algorithm B. We have for all z:

wp(z, |2)) < ply (2, |2]).



Let t(n) = max, |p|=n t(x,n) be the worst-case sequential running time and
similarly define ¢,(n) and w,(n), the number p of processors being constant for
a constant input size n. We are interested in the performances of algorithm B
with respect to the yardstick sequential algorithm A (which will be when possible
the best known sequential algorithm). In this framework, we focus on parallel
algorithms that are in EP when worst-case complexity is considered.

To take into account execution time variations, we define the global ineffi-
ciency np(n) of B with respect to A to be the maximum of the local inefficiency:

_ wy(z,n)
np(n) - z,|z|=n t((L‘, n) ’
Assuming that B is in EP and that the worst-case is attained, for all n there
exist g, |2o| = n, such that ¢(zg,n) = t(n) = wy(xo,n) = wp(n). If one assume
that ¢,(z,n) < t(z,n) then n,(n) < p; if w,(z,n) > t(z, n) then n,(n) = £2(1).
We have defined the global inefficiency as a maximum, this seems to be
reasonable from a practical point of view 2. For difficult problems or highly
dynamic ones, difficulties arise when every particular case has to be handled
efficiently. Despite the fact that often no analytic information on the variations
of the execution time is available, the minimization of the global inefficiency is
related to the scheduling mechanism, nothingly when speculative parallelism is
involved. This makes that efficiency relies on frequent calls to a scheduler and
thus increases the irregularity of the algorithm (following definition 1).
The main concern is then to build an algorithm that firstly minimizes the
global inefficiency and secondly the irregularity in order to limit the use of the
scheduler.

3.2 Iterative executions and highly unstructured problems

A similar model of execution than above, that breaks the distinction between
static and dynamic approaches, is evoked in [36] for the N-body problem and can
be generalized to many iterative solutions. The performances of a static schedul-
ing deteriorates when the solved problem is dynamic, a “static scheduling” can
be re-computed dynamically when needed. Examples also include back-tracking
search and branch-and-bound optimization [17, 5, 66]: algorithms alternate be-
tween computational phases, “expansion phases”, where the repartition of the
load becomes skewed and load-balancing phases.

In many of these applications the duration of the tasks is not known, this
information slackness makes that only heuristics can be developped. An interest-
ing question that is often raised is how frequent one need to call the load-balancer
(this frequency may vary dynamically). Following the definition, if on p proces-
sors the load-balancer is called every v(n) units of time on #7 (n) tasks for an
algorithm with parallel time ¢,(n) = w(n)/p, the irregularity could be defined

v (1) = (1 (m)/(n))  (#7 /)

2 Other possible choices are to define an average inefficiencyor to compute the variance
of the inefficiency. Many strategies tend in fact to reduce these latter quantities.



but, as underlined previously, this is currently of limited interest since it seems
difficult to establish such a formula for real highly unstructured problems. But
if it is known that scheduling is called on tasks of equal size s(n), i.e. on every
task at a given level of granularity, then we deduce that ¢, (n) = t,(n)/s(n).

3.3 Gaussian elimination

For an input square matrix A of dimension n, we are going to consider parallel
algorithms that implement the following one to compute the rank of A.

r:=n;
for k, 1..n
if A(k,k) = 0 then search a row 1 such that A(1,k) '= 0;
if A(1,k) = 0 then r:=r-1
else
swap row k and row 1;
for i, k+1..n if A(i,k) != 0 then zero A(i,k) using row k; endfor;
enfor;

The sequential cost is at least O(n?) (number of tests if A is a regular upper
triangular matrix) and O(n®) in the worst-case. It is obvious to give a p-PRAM
algorithm that runs in O(n3/p) using p < n tasks, which is both efficient and
polynomially fast following the classification in [45] and having irregularity O(1).
This is not satisfying from a practical point of view since such an algorithm may
run in the same time O(n?) in parallel than in sequential for certain matrices
in input (e.g. consider a row repartition of A and a matrix having diagonal
and lower diagonal unity with zeros elsewhere). Tts global inefficiency is thus
np(n) = O(n).

Instead, the operations can be scheduled at each phase k of the elimination.
One will easily get convinced that a balanced load-distribution is obtained using
p tasks at each step. Since n steps are performed this gives a satisfying algorithm
with irregularity O(n) and a global inefficiency n,(n) = O(1).

3.4 Array and lists redistribution

The Task Scheduling Problem and the Object Redistribution Problem as speci-
fied in [11] leads to useful and efficient practical implementations. We also refer
to [53] for the Token Distribution Problem and for other formulations to [14] in
the synchronous case and to [7] in the asynchronous case. A plethora of examples
of such implementations could be chosen. Among them we find works for ray trac-
ing [27, 51], image processing [49], particles movement simulation [54, 64] or for
dictionary machine [15, 18]. These solutions consist in dynamically load-balance
tasks in arrays or lists at barrier synchronizations, by solving in particular cases
the two former scheduling problems, with irregularity O(1) (the scheduler’s job
is hand-coded).

If we go back to Gaussian elimination, we have previously obtained a balanced
load-distribution by scheduling p new tasks at each elimination step. Instead, we



may now use an array redistribution to balance “by hand” the tasks after each
elimination step. Such a computation involves an O(n) work overhead at each
step, this does not affect the asymptotic cost of the whole algorithm. Moreover,
we can write this new algorithm using p tasks, each task performing a sequence
of elimination steps, each followed by a redistribution step. The irregularity is
now O(1) with a global inefficiency remaining constant.

4 Parallel programmation of irregular algorithms

From the previous sections, some “paradigms” (key observations) for parallel
programmation can be given if target algorithms are irregular:

- load-balancing should be considered as part of the algorithm itself,

- there is no major reason that lead to distinguish between static and dy-
namic scheduling, a mixed approach may be considered,

- the formalization mainly rely on the notion of task,

- attributes such as cost informations should be associated to tasks,

- attributes such as scheduling informations should be associated to tasks,

- even if highly irregular, many applications may execute efficiently with
synchronized load-balancing.

These remarks have directed the design of the library Parallel Algebraic Com-
puting ++, PAC++4, that provides high level facilities to program and execute
efficiently irregular algorithms on distributed memory machines [33, 34]. The li-
brary itself will be briefly described at next section. The main target application
of the library is computer algebra [30, 58, 35], the example we have chosen to
illustrate the PAC+4 programming model is taken from this field. However,
as it will be shown, the way PAC++ takes advantage of underlying automa-
tisms such as static scheduling or load-balancing, can be used in various other
areas involving algorithms which behaviours at execution cannot be statically
predicted.

We now focus on main concepts only to provide a “high-level” description of
the model which aim is to free the user from task scheduling. We rely in part on
preliminary studies in [59, 60, 69] for the notions of cost prediction informations
and of poly-algorithm and on [55, 10] for the run-time support ATHAPASCAN of
PACH++ (this support provides a fork/join mechanism of threads and a load-
balancer). The main objective is to write programs such that a description of
the precedence graph can be easily computed (e.g. by a symbolic execution or by
detecting static parts [47]) and scheduled (statically or during execution), or such
that tasks are well specified so that they can be handled by a load-balancer [32].
Our purpose is not to give a model of a scheduler and of a load-balancer, but to
see how they can be easily interfaced in a common framework.

4.1 Overview

We consider that an execution of a parallel algorithm is a set 7 of tasks (a
task will be a function) that execute either sequentially or simultaneously on n



processors. Such an execution can be represented as a dependence directed graph,
an execution graph, which vertices are sequential tasks and which arcs indicate
precedence constraints between these tasks. If the graph does not depend on
the values of the entries of the algorithm, it is viewed as a representation of the
algorithm itself.

Given a set T, if we assume that no task migration is possible, the problem
of executing the graph on n processors (of determining completely a parallel
execution), reduces to specify a scheduling for each task of 7 (see section 2.1):

- a date of execution that indicates when the task will execute, this date can
be for instance an absolute time if a clock is available or a relative time (e.g.
task T will execute when 7 has completed),

- a site of execution that gives the processor that will execute the task.
Once the date and the site have been fixed we will say that the task has been
scheduled for parallel execution, the couple (date, site) will be called a schedule
of the task.

Various strategies can be used to schedule the tasks on a target parallel
machine. But obviously the strategy that can be used heavily depends on the
knowledge available on T before execution. A static scheduling can be used
if the graph and the costs of the tasks are known. Conversely, any decision
concerning the date and the site will be taken during execution by a dynamic
load-balancer if no information is available before execution. Anyway, whatever
the stategy that is used, the key objects are the tasks and their schedules. This
appears directly in the model of programmation we propose, as explained at
section 4.2 below, functions and algorithms will play the role of tasks. Since the
notions naturally extend to graphs of tasks [7], we construct and use weighted
graphs at section 4.3. Once these are defined, the job of either a static scheduler
or a load-balancer is to assign values to schedules of functions, algorithms or
graphs. In addition, a load-balancer also take structural decisions concerning
the execution graph. Depending on the load of the machine and depending on
the indata, a load-balancer will have to choose between several algorithms to
solve the same problem, the one that is currently the best [65]. Tt may also
indicate if a problem has to be splitted (and in how many parts) or not. These
aspects will be developped at section 4.3.

The programming model is based on a C-like programming language: a se-
quential program is a function that may recursively call other functions. We as-
sume the parallel machine to be a set of n processors that work simultaneously.
Since programs will reduce to n-ary Remote Procedure Calls each processor is
viewed as a computational server and is associated to a unique identification
P;, 1 < i < n. Each server is able to execute a given set of functions, this set
may vary from a server to another. A server has its own memory that can be
addressed by all the functions it executes. There is no global memory: a function
cannot access the memory of a server but the one it executes on.



4.2 Functions and algorithms

Any function f executing on a given server can ask for the execution of another
function g on another server. In a simple sequential framework such a request
would be mainly characterized by the actual values of the arguments of g. From
a parallel point of view, independently of the function and of its arguments a
request will also be associated to a site and a date.

These informations will be given by a description d of the request on g: a
description of the actual execution of g. As said previously, such a description
will be called a schedule of g. Once a schedule d has been updated to give relevant
informations it can be used to start a request Y:=g(X) where X stands for values
of the arguments of ¢ and Y for the corresponding returned values. We use call
as usually to manipulate threads in the following way:

-Y :=d.call(yg(X)), the function g will execute as specified by d, the result
is assigned to Y.

Parallelism between such calls will be generated by n-ary calls at next section.

Clearly for these calls, at least the site has to be known. We will see later how
the updating of d will be let to static schedulers and dynamic load-balancers, but
we can notice that, using the statically known identifications P; of the servers
to assign the site indicated by d, this yet gives us a standard model based on
Remote Procedure Call, RPC.

To reach the notion of task, to a function must be associated characteristics
understandable by the mechanism that will handle the tasks to schedule them.
Further, we can assume that such a mechanism will take decisions considering
only these informations i.e. without considering the function itself. For instance,
using a Unit Ezecution Time model, graphs are scheduled independently of the
operations that tasks actually realize. Consequently, to couple together informa-
tions and functions appears to be a key point. We introduce for that the notion
of algorithm.

An algorithm is a couple formed by a function g and an information con-
cerning this function. To simplify, we will assume that this information is a cost
information and is a function Cj of the arguments of g, the values returned by
such a function will be used as inputs of schedulers and load-balancers. These
include static informations i.e. that do not depend on the values of the argu-
ments of g (Cy is a constant function): for instance resource requirements (e.g.
the subset of the servers that can execute g) or a static cost (all basic functions
in a Unit Ezecution Time model).

More generally, the cost of a function may not be known as a constant value
but may depend on its arguments. In this case C;; may be a function that gives
a cost a prior: of the algorithm given by g in terms of the sizes of the argu-
ments [59, 60]. If X is a value of the arguments of g, we will denote by | X| its
size then C,(|X]) is the algorithmical cost of the computation of g(X). For in-
stance, to formulate that the cost of a matrix product is O(n?), is an information
that can be given statically and which can be relevant at execution and exploited
automatically as soon as n is known. We will say that such an information is
quasi-dynamic: it depends on the sizes of the arguments but not on their values.



The updating of the static and quasi-dynamic informations will partly rely on
the user; it may also be done by a symbolic execution.

Conversely, when an algorithm leads to highly dynamic executions, if no
static or even quasi-dynamic information is known, the cost of the algorithm
may be updated only by the load-balancer (for instance following statitics), in
this case we say the information to be dynamic.

From now we will denote by G = [g, C,] the algorithm defined by functions
g and Cjy. In the same way we have associated to a function a description of a
request on it, we associate to an algorithm G and values X of the arguments of
g, a schedule D of a corresponding execution. Once D is updated, the algorithm
can be manipulated as follows:

- Y := D.call(G(X)), the function g will execute as specified by D.

We will refer to the information function €y concerning G' by:

- G.cost(|X]), returns C,y(]X]).

The notion of algorithm corresponds to a task and its cost, we now construct
graphs.

4.3 Scheduling and load-balancing

As specified above either a function, an algorithm and we will see, a graph of
algorithms have their executions described by a schedule. This schedule can be
assigned “by hand” by the users for instance if a description of the machine
is known. In the general case this can be done automatically. A scheduler will
take in input a static graph of algorithms. A load-balancer will manage expres-
sions involving dynamic choices. In both cases they will be invoked using the
instruction schedule (from the p-PRAM model at section 2.2).

For a graph of algorithms G = {G1, ..., Gi} (each with input Xj), provided a
corresponding weighted graph C|X| = {C1(|X1]), ..., Cx(|Xk|)} of informations
is known, a static scheduling can be computed. The execution will be directed
by a graph of schedules D = {Di,..., Dr} that can be initialized using the
instruction schedule:

- D.schedule(C|X|), computes a scheduling and assigns it to D.

If we denote by X the inputs of the input nodes of G and by Y the outputs of
the output nodes, then execution can be started using:

- Y = D.call(G(X)), executes the graph G using sites and dates given

by D.
We can see that this reduces to call for functions if the graph G is simply
a function g with no informations attached to it and D is a schedule d of g.
Thus, before calling a function g, the site can be chosen automatically using
d.schedule(). In the same way, an n-ary call of functions corresponds to a special
case of graphs, for any fixed k the simultaneous execution of & functions may be
specified as follows:

- Y :=D.call (g1(X1) A ... Agr(Xk)).

In the above we have asked for the execution graph to be known. We will
see at section 4.4 that this can be overcomed in some cases when the graph



is not known: an interpretation of the program can generate the graph for the
scheduler.

When a static approach is not possible, a lack of schedule instructions will
make decisions fall into the load-balancer hands. As underlined previously, an-
other goal is to offer alternatives. We consider for that the two basic operations
with choices or and split.

Given two algorithms G; and G5 to solve the same problem, depending on
the current state of the machine when the solution of the problem is needed, the
best choice (the cheapest one for instance) may be either Gy or Ga. For input
costs C;(|X]), 1 < i < k, we propose an or operator on the algorithms. Choices
are made using the instruction choose:

- G.choose(G1 V...V Gy, |X|), assigns G to one of the G;.

Then, as previously seen, we can schedule G and execute it. This implements
the notion of poly-algorithm.

In the same way, let G be an algorithm to be executed with X in input and
let the potential degree of parallelism that can be generated by splitting G be
described by a set K of integers. More precisely, we assume that for any integer
k chosen among { values in K = {k1,..., ki } executing g(k, X) (g is the function
given by G) consists of splitting X into X (1),..., X(k), next of simultaneously
executing algorithms G(X(1)),...,G(X(k)) and finally of merging the results
Y1,..., Yy to recover Y = g(X), then the choice of the best value k is let to the
load-balancer using:

- ('.choose(Ak (G), | X|), assigns G’ to an algorithm which consists in exe-
cuting G with the chosen value k for the splitting.

The cost information C(|X]) of G may indicate the overhead for the splitting
and the costs of the sub-algorithm G. Once the choice is made, we are led to the
schedule and the execution of G’.

The principle that has been applied for any object is firstly to initialize a
schedule of the object then to start the execution following indications of sites
and dates given by this schedule. These phases can be done automatically once
the user has described a graph or has written algorithms. Further, as briefly
discussed below, mixed static/dynamic scheduling can be used by automatically
constructing, at least partially, the execution graph

As announced, a preliminary version of a library using these concepts has
been implemented under C++. This will be presented at section 5 where C++
classes lead to implementations of Algorithms, of Schedule representing the
schedules and of CostInfo representing the cost informations. Further develop-
ments should be concerned with sequences of algorithms. Indeed, in the above
we are limited to situations where cost information is related to the indata of
a given algorithm. In general cases an algorithm may also give relevant infor-
mations on its outdata, that can be subsequently used as input cost of other
algorithms.



4.4 Interpretation and execution

Once a program involving algorithms is written, it can be executed in a way
mixing static and dynamic scheduling. A description of the execution graph may
be obtained via a partial evaluation (symbolic unfolding) of the program. Two
extreme cases may be distinguished. On the one hand, if the program is static,
the obtained graph describes the whole execution, a unique schedule has to be
computed. This schedule may be computed statically. On the other hand, when
the program countains branching (resp. indirect accesses) where the conditions
(resp. adresses) cannot be decided form the sole knowledge of the indata, the
program is referred as dynamic [47]. In this case, a symbolic execution (also
partial evaluation [47]) of the whole input program, generates a set of possible
execution graphs, only one of them being valid for a given indata. In order to
provide a valid graph, the execution of the program is dynamically splitted into
successive static parallel steps. Each step firstly consists in building the graph
description of the corresponding computations, then the scheduling of the graph
is proceeded and the execution started.

At the highest level, the partial evaluation of a general program allows to
build a graph, which nodes represent either elementary tasks, either nested sub-
graphs which will be dynamically built before their scheduling. Following sec-
tion 2, the irregularity of the program, related to the number of calls to the
scheduler, here appears as a consequence of the dynamic behaviour of the pro-
gram.

5 An application: Parallel Algebraic Computing ++

To illustrate this section we have chosen a central problem in computer algebra:
the manipulation of algebraic numbers. Let us look at an example. Following [50]
the matrix

—149 —50 —154
A= 537 180 546
-27 -9 =25

can be brought into Jordan normal form [28]:

300
J=1020
001

Now how does J vary under a small perturbation A, of A7 We take

130 e — 149 —50 — 390 € —154 —148.9999 —50.0003 —154
Ac=| 537+ 43¢ 180 —129¢ 546 | =~ | 537.0000 179.9999 546
133e¢—-27 —-9—-399¢ —25 —26.9999 —-9.0003 —25

where € &~ 0.000000784 is such that

4 — 5910096 € 4 1403772863224 > — 477857003880091920 €” + 242563185060 * = 0.



In this case it should be computed that two distinct eigenvalues have col-
lapsed to a double eigenvalue with one unique eigenvector [50]. Such a result can
be obtained by means of computer algebra provided one can manipulate € as
an algebraic number i.e. as a root of the above polynomial. This an example of
application of computations with algebraic numbers. After a short presentation
of the problem we show below how its directly enters the scope of PAC++ as
an application of algorithms and cost information for irregular algorithms.

5.1 Computations on algebraic numbers

An algebraic number over a field F is a root of a polynomial over F [41]. As
proposed in [16], a convenient way to manipulate these numbers with a computer
is precisely to represent them by polynomials whom they are roots. For instance
V/2 can be represented by A\2—2 = 0. Now consider the problem of triangularizing
the following matrix by a Gaussian elimination:

Al) = [W + 1{(# -3) (1)]

where y is an algebraic number such that x(p) = (u? + 1)(p — 1) = 0. The
computation leads to a “discussion”: the first entry of the matrix is zero if y is
such that g2 4+ 1 = 0 and is nonzero if 4 — 1 = 0. These two cases may lead to
two different upper triangular matrices:

_ [+ 1) (e =3) 1
h= [ 0 (4 + 1><u—3)>]

by zeroing the entry A, with the nonzero pivot A, if u—1=20 (/12 + 1 #0);
or to:

T, — [1 (* + 1) (n— 3)]
0 1

after a column swap since the pivot is zero if u? +1 = 0 (g — 1 # 0). Thus
for a n x n matrix A(p) with g being the root of a polynomial x(u) of degree
n, the elimination may produce new branches each time an equality to zero
has to be tested for a pivot. A step k of the elimination, a test for pivoting
may split the computation into two sub-computations that consist in continuing
the elimination on two sub-matrices of dimension n — k with respectively two
polynomials xg1(¢) and xga2(p) (divisors of the initial polynomial x()). These
two branches of computations can be handled simultaneously and thus provide
rough-grain parallelism:

- two tasks are created that have to be scheduled dynamically,

- two relevant cost information should be taken into account: the new tasks
consist in triangularizing matrices of dimension n — k, the polynomials defining
the algebraic numbers are of new degrees dg; and dgs.



Since it cannot be determined in advance when splittings will occur, we see
that algorithms using algebraic numbers in this way will be irregular. From a the-
oretical point of view, manipulating algebraic numbers and algorithms involving
algebraic numbers may well be classified in complexity classes like NC [61, 62]
(worst-case studies). But we think that efficient parallel algorithms will strongly
rely on dynamic scheduling as it is presented below. Notice that if we refer to
section 2.2, the triangularization above may lead to at most n splittings since
the degree of the polynomial x () in input is n. In the worst-case these splittings
may occur sequentially and give a worst-case irregularity ¢, (n) = O(n).

5.2 PAC++: Basic classes for parallel computation

We now describe an implementation of some of the concepts introduced at section
4. In two parts, we begin with the implementation of basic objects. Then at
section 5.3 we focus on main features needed for parallel handling of algebraic
numbers. For further insights the reader will refer to [33, 34, 31].

As shown with the examples above, data strutures and execution times may
vary a lot: most of computer algebra algorithms are irregular but also provides
quasi-dynamic cost informations (as defined at section 4.2). To take into account
this irregularity and these informations, a set of C4++ classes is offer to the user
for developping portable programs that can be efficiently executed on different
machines.

5.2.1 Remote calls of functions. A parallel program in PAC++ is written
using a set of virtual processors mapped at execution on physical processors.
Each processor is a server for algebraic computations: can execute a prescribed
set of functions given by a library. This set is extended by the user’s defined
functions. The parallelism of an application is expressed through asynchronous
or synchronous remote calls to these functions. The call of a function on a pro-
cessor 1s executed by a thread using the above cited runtime support ATHA-
PASCAN [55, 10]. ATHAPASCAN is a parallel extension of C which includes an
adaptative granularity scheme and static/dynamic scheduling mechanisms.

A function that can be remotely called is called an entrypoint. This is im-
plemented via the EntryPoint class of objects. To execute a remote call, the
arguments of the function are bufferized in an object of type iBuffer (input
Buffer). When the call is completed, the result is got out an object of type
oBuffer (output Buffer). Thus an entrypoint has the following prototype:

void MyEntryPointFunction (iBuffer& , oBuffer& ) ;

5.2.2 Algorithms. An algorithm is an entrypoint plus quasi-dynamic cost
informations. For most of parallel algebraic algorithms, the arithmetic and com-
munication costs are known at certain levels of granularity [59, 60]. In our current
implementation a cost information is couple formed by these costs:



class CostInfo {
public:

// CostInfo cstor :

CostInfo ( double ArithCost, double CommCost ) ;
Y}

All algorithms in PAC++ are objects rather than functions. They have in

common the following main features:

(1) informations to instanciate the computation for given input data de-
pending on the algorithm,;

(1) quasi-dynamic cost informations;

(m) a main function giving the task to perform;

(1v) temporary data on which the algorithm works;

(v) output data.
Only features (1) and (1) are implemented as virtual member functions of the
basic class Algorithm from which derive all other algorithms. Since data struc-
tures depend on the algorithm, four functions for packing (to put into an iBuffer)
and unpacking (to get out an oBuffer) are purely virtual:

class Algorithm {

public:
virtual void main( ) = 0 ;
virtual CostInfo cost( ) const = 0 ;
virtual packargs ( oBuffer& ) = 0 ;
virtual packres ( oBuffer& ) = 0 ;
virtual unpackargs ( iBuffer& ) = 0 ;
virtual unpackres ( iBuffer& ) = 0 ;

}

Two global operators are defined over algorithms that provide structured
calls to parallel sub-algorithms:
- AND, indicates that several algorithms will be executed simultaneously;
- OR, indicates that a choice (which depends only on the cost information
and on the load of the machine) will be made between several algorithms.
In the current PAC++4 prototype of an interface for handling irregular algo-
rithms no other operator (e.g. sequence, composition) is offered. Only expressions
involving AND and OR operators are valid.

5.2.3 Schedules. The schedules of functions and algorithms are implemented
via the Schedule class. The member functions on an object of this type are
spawn, wait and call. In addition, any object of the class must be initialized
before used using the schedule member function. An outline of interface of the
class Schedule is as following;:

class Schedule {
public:
// Initialization :



void schedule ( const Algorithm& G ) ;
// Asynchronous remote call
Schedule& spawn( Algorithm& G ) ;
// Synchronization
void wait( Instance& Result ) ;
// Synchronous call
Schedule& call ( Algorithm& G ) ;
r

The implementation of this class relies on the tools available. The schedule
function makes use of underlying static and dynamic schedulers. The three other
functions are written upon the runtime support ATHAPASCAN.

5.2.4 Execution of programs. From the user point of view the different
phases to initialize and start an execution should be gathered. Thus an important
function is

Algorithm& Execute ( const Algorithm& G ) ;

This function executes an expression of algorithms and returns the result as an
other expression of algorithms. The choices between algorithms, the initialization
of the schedules and the execution itself are automatically performed.

Let us look at an example. We derive an algorithm to compute the rank of a
square matrix from the basic class Algorithm. In particular, the virtual member
functions are re-defined. The algorithm takes in input a matrix and returns an
integer:

class RankAlgorithm : public Algorithm {
public:

// Ctsor and initialization

RankAlgorithm ( const Matrix& inputMatrix ) ;

// Return the cost information (arithmetic and communication)
CostInfo cost( )
{ int n = indata.rowdim() ;

return CostInfo( n*n*n, n*n ) } ;

// The main function
void main( ) ;

// Packing and unpacking of argument and result
packargs ( oBuffer& B ) {B << indata } ;
packres ( oBuffer& B ) {B << outdata } ;
unpackargs ( iBuffer& B ) { B >> indata } ;
unpackres ( iBuffer& B ) { B >> outdata } ;

protected:



Matrix A ; // input: a matrix

int Step ; // internal variable: the current step
public:
int rank ; // output: the (current computed) rank of the matrix

¥

To execute such an algorithm for computing the rank of a given matrix M
we proceed as follows. Firstly, an object Rank is declared and instanciated with
the indata M (a matrix). Then, the above function execute is called:

Matrix M ;

// here some initializations of M
RankAlgorithm Rank ( M ) ;
Execute( Rank ) ;

if (Rank.outdata ==1) { .... }
else {....}

5.3 Parallel handling of algebraic numbers splitting

As described in introduction at section 5.1, in the example of the computation of
the rank of a matrix A(u) which entries are algebraic numbers, splittings during
Gaussian elimination may occur when a nonzero pivot has to be chosen. If we
denote by Rank the previous algorithm, then on a matrix A(y) several values
should be returned: each time a splitting occurs the number of returned values
may be incremented by one. If A(y) is given by

=g ,2%]

where p is an input algebraic number defined by x(u) = (p? + 1)(u? — 1) = 0,
then the rank will be either equal to 2 if u? +1 =0 or equal to 1 if u? — 1 =10.

Anyway, one may want to get one of the possible results or all the results. This
choice is let to the responsability of the user. PAC++ offers two main managers
of computation for this purpose: the computation with one root (arbitrarily
chosen) and with all roots [19]. In this latter case, the whole computation (e.g the
rank computation) is embedded in a manager which creates new parallel threads
whenever a new splitting occurs. The completion is ensured by a synchronization
barrier to recover all the results of the different parallel computations (the AND
of algorithms provides such a synchronization).

In addition to the previously mentioned facilities, the implementation re-
quires to spawn functions following the fork instruction of the PRAM model [26,
4]. Indeed, the contezt of the spawned function, i.e. the data needed to the com-
putation following the splitting, must be recopied and associated to the spawned
executions of the sub-algorithms. In the example of the rank, this context is es-
sentially the sub-matrix that remains to eliminate after a nonzero pivot is found.

This context highly depends on the algorithm. In the current version of the
library, this context is identified by the user-defined restart member function



to restart the computation after a splitting. For such a type of algorithms, the
class ForkAlgorithm is derived from the basic class Algorithm:

class ForkAlgorithm : public Algorithm {
public:
virtual ForkAlgorithm* getstate() const = 0 ;
virtual void restart() = 0 ;

¥

When a splitting happens, the manager creates a copy of the current algorithm
by calling the getstate member function and calls the restart function to
continue the computation (on the same site or on another site depending on the
scheduler answer).

On the rank example, the class ForkRankAlgorithm over algebraic numbers
may be derived and implemented from the RankAlgorithm:

class ForkRankAlgorithm :
public ForkAlgorithm, public RankAlgorithm

{

public:
// Same ctsor than for RankAlgorithm :
ForkRankAlgorithm ( const Matrix& M ) : RankAlgorithm (M) {3} ;
// getstate returns a copy at step k of the (n-k)x(n-k)
// sub-matrix and save the current value of the rank
ForkAlgorithm* getstate() const ;
// restart the computation on a sub-matrix, at the end of
// the computation, the returned rank if the one of the
// input nxn matrix.
void restart() ;

protected:

int saved_rank ;
}

The example we have chosen demonstrates the use of algorithms and of cost
informations for linear algebra. Notice that clearly, a cost information need not
be complexity in terms of the input’s size: a “cost” may be a priority, a statis-
tical cost or any other relevant information on the computation. Together with
schedules, this can implemented and used for a wide range of applications.

6 Conclusion

Inspired by the notion of locality we have proposed a definition of irregularity
based on a scheduling complexity. By this preliminary study on the subject we
want to emphasize that:



- routing and scheduling present many similar aspects and lead to somehow
dual problems,

- scheduling should be considered as part of the algorithm itself.
This last point implies that no difference should be made between static or dy-
namic scheduling. In addition, while complexity definitions are usually given in
a worst-case context, we believe that this is unappropriated to many irregular
algorithms and other directions exist. Another way to define irregularity could
have been to use task graphs. Intuitively, the irregularity of a nonstatic algorithm
is related to the number of graphs corresponding to the possible executions and
to the difficulty to compute these graphs. It seems harder to derive a satisfy-
ing definition from these aspects. This would need analysis tools and ways of
comparing graphs and is an interesting direction for further studies.
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