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ABSTRACT

We establish that the problem of computing the Jordan normal form of a matrix
over a field F'is in ./V‘ng; for F' being a field of characteristic zero or a finite field.
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1. Introduction

Computing normal forms of matrices is a basic problem in linear algebra. In
particular the Jordan form is widely used for computing matrix functions and for
solving differential equations. Since the computation of the Jordan form involves
a set of rank decisions, its computation by means of numerical arithmetic is a
difficult problem and the development of new algebraic methods is of great practical
importance for ill-posed problems. The form is well known from a theoretical point
of view [1] and sequential algorithms are known, but to find a fast parallel algorithm
for its computation was still an open question (question 6.5 in [2]).

In the existing sequential algorithms for the Jordan form, two main approaches
are used. The Jordan form of a matrix A whose coefficients are in a field F', is
derived either from the Frobenius form of A or from the Smith form of A—AI. The
Smith form involves computations on polynomials; for this reason, the Frobenius
form which is entirely computed within the field F' is often prefered. But there is
no relevant theoretical criterion to choose between the two approaches: they both
consist in computing the nvariant factors of A. In [3,4,5,6] the Jordan form is
computed using the Frobenius form; concerning the Smith form, algorithms may
be found in [7,8,9]. In all cases polynomial time solutions are proposed, but none
of them is helpful in deriving the parallel complexity of the computation since they
all consist of elimination processes requiring O(n) steps.



From a parallel point of view, few algorithms are reported in the literature.
Kaltofen, Krishnamoorthy and Saunders [7,8] give parallel algorithms to compute
the Smith, the Frobenius, then the Jordan form, but their algorithms use random
choices so the problems were only known to be in RA'C. In [6] Giesbrecht gives
processor efficient probabilistic algorithms for the same problems. We refer to [10]
for the definitions of the boolean complexity classes N'C and RNC of problems
deterministically and probabilistically solvable by boolean circuits. In analogy with
these classes von zur Gathen [11] has defined the classes NCp and RANCp of
problems solvable by arithmetic circuits over F'.

After some basic reminders in section 2 we present, in section 3, a new exact
algorithm in N'Cr that avoids random choices for the computation of the Jordan
normal form. Since our algorithm makes use of the squarefree decomposition of
polynomials, we will assume that F' is a field of characteristic zero or is a finite
field.

Let A be a matrix of F?*" having [ distinct eigenvalues A1, As,..., Ay with
respective multiplicities in the characteristic polynomial mq, ms, ..., m;. Our algo-
rithm directly computes the number and the dimensions of the diagonal blocks in
the Jordan form of A from the nullities (dimension of the kernels) of the successive
powers

A=NI(A=XND% . (A=XD™ 1<i<L
It is shown that the problem of computing the form is in N'Ch. As an intermediate
result we obtain that the problem of computing the invariant factors of A is in NC%.
2. Basic Concepts

In the following, F' is a field of characteristic zero or a finite field and A is
a matrix of dimension n whose entries are in F, having [ distinct eigenvalues

A Ass A

2.1. Jordan Normal Form

Any matrix A is similar to a unique (up to permutation) block-diagonal matrix
J whose diagonal blocks are matrices of the form:

No1o0 .00
0 N 1 0
JkA)=10 0 XN | € FRxE
: 1
0 ... ... 0 X

where A; is an eigenvalue of A; Ji is a k x k banded matrix, which is called a
k-Jordan block associated with A;. We refer to [1] for the proof; J is the Jordan
normal form of A. Two similar matrices have the same Jordan normal form.
When the field F' is not algebraically closed, the eigenvalues of A lie in an
algebraic extension of F'. If these are given our algorithm will compute the Jordan



form. In general, since we do not know how to factor polynomials fast in parallel [2]
we will compute a variant of the Jordan form consisting of blocks corresponding to
generalized eigenvalues, i.e. to eigenvalues belonging to the same factors in a partial
factorization of the characteristic polynomial of A [8,2]. This form is the symbolic
Jordan form. It gives the structure of J using symbols that take the place of the
eigenvalues.

2.2. Symbolic Jordan Normal Form

With any matrix A we may associate its symbolic Jordan form J. The structure
of J is the same as the structure of J with { distinct symbols i taking the place
of the eigenvalues. Each symbol J\; is associated with a polynomial A;(A) in F[A],
with the understanding that A; is a representation of A;, i.e. A;(A;) = 0. We may
assume that the A; are monic squarefree factors of the characteristic polynomial
of A.

Clearly, the symbolic Jordan form is not unique, since different choices are pos-
sible for the A;. It coincides with the Jordan form if the eigenvalues are known, z.e.
if the A; are the linear factors (A — ;).

But the A; need not be irreducible. Otherwise, polynomial factorization would
be required. In the following, as in [8], we will consider the unique symbolic Jordan
form corresponding to the A; satisfying:

(i) Tf there exists a dimension k such that A; and A; do not have the same number
of k-Jordan blocks, then A; and A; are relatively prime.

(ii) If for all integers k, 1 < k < n, A; and A; have the same number of k-Jordan
blocks, then A; = A;.

When the eigenvalues are not known, this unique matrix J will be improperly called
the Jordan form of A. The main fact is that it can be computed by polynomial ged
operations only and does not require polynomial factorization [8].

We conclude those reminders with another way to specify the symbolic Jordan
form: defining a form with entries in F', thus avoiding the use of symbols.

2.3. Rational Jordan Form

The symbolic Jordan form gives rise to a block-diagonal normal form Jg in F7*"
similar to A, called the rational Jordan form of A. Each block of Jp corresponds to
a set of eigenvalues of A, called a generalized eigenvalue of A, the set of the roots
of a A;.

More precisely, if the roots A}, A2, ..., A of a given A; of degree d are associated
with k-Jordan blocks Ji(A}), Js(A2), ..., Je(AY) (from (i) and (ii) above we know
they have the same Jordan blocks), then Jr has a diagonal block in “block-Jordan”



form:

[ Cay I 0 0
0 Cagy I
Je(Cy,) = 0 0 Casn) g phaxkd
: 1
Lo 0 Cag

where, if A;(A) = A4+ ag1 A+ L+ a, Ca,(x) 1s the companion matrix

0 0 0 ... =—ag

1 0 0 —aq
Cay=10 1 0 : e Fixd,

: —Qq—2

0o ... ... 1 —Qq4_1

As for the symbolic Jordan form, if the A; are linear factors, Jp coincides with the
usual Jordan form. Furthermore, if the A; are irreducible over F[A], Jp is called
the primary rational normal form of A [1].

Clearly, it makes no difference to consider either J or Jp. From here, if the
eigenvalues are not known, “Jordan form” will equally stand for “symbolic Jordan
form” or for “rational Jordan form”.

3. A Fast Parallel Algorithm

We now give a deterministic fast parallel algorithm for computing the Jordan
form. We begin with a standard lemma giving a method of computing the number
of Jordan blocks. From this lemma we will then develop the algorithm computing
also the representations A; of the eigenvalues.

Using the above notation, for any eigenvalue A; of A, let us consider the kernels
of the successive powers of A — \;I. It is widely known that

ker(A — A1) C ker(A — )\iI)Q C...Cker(A—NI" = ... =ker(A— NI,

where p; and m; are respectively the multiplicities of A; in the minimal polynomial
a4 and in the characteristic polynomial y4 of A. For each 7, 1 < ¢ <[, and &,
1<k<n+1(orl<k<m),let

d®) = dim(ker(A — X T)F).

Lemma 1 If dl(»k) is the dimension of the kernel of (A — M I)%, then the number

Jfk) of blocks Ji,(X\;) of dimension k associated with X; in the Jordan normal form
of A is given by:
69 = 24(0) _ ¥ _ 440,

K3 (3 K3



Proof. First notice that only the Jordan blocks associated with A; have an influence
on the dimension of ker(A — \;I)%. For all h, 1 < h < n, the matrices Jj (A\;) — A1
are nilpotent, so we have:

. p k, 1<k<h,
dim (ker(Jh()\z’) —Ail) ) - { h, k>h,
then
| . 1, h>k,
dim (ker(Ja(A) = X 1)**1) — dim (ker (Ju (Ar) = \i1)*) = { 0, h<k.

Now, d§k+1) - dl(-k) is the number of Jordan blocks of dimension strictly greater than
k associated with A;. The number of blocks of dimension & associated with A; is
59 = )~ )~ ) — ) = 2 — 40—

which completes the proof. a

The problem consequently reduces to rank, or equivalently, to nullity computa-
tions. From [12] when F' is a subfield of R, and from [13] for an arbitrary field, we
know that the problem of rank determination is in /\/C%: it can be read from the
coefficients of a well chosen characteristic polynomial. We now extend those algo-
rithms in order to compute both the nullities of the successive powers (A — A, T)*
and the representations A; of the A;.

We proceed in two main steps, computing at first, in lemma 2 below, a set of
invariant polynomials of A. This set is analogous but slightly different from the
set of the invariant factors [1] of A. Tt is related to an algebraic expression of the
previous lemma which leads to the Jordan blocks given by dimensions. The second
step, given by theorem 2, will consist in computing the target representations A;
from these invariant polynomials.

Lemma 2 For F' a field of characteristic zero or a finite field, let A be in F"*"
with | distinct eigenvalues A1, Aq, ..., N, and let (52@) denote the number of Jordan
blocks Jx(A;) of dimension k associated with A\;. The set of polynomials

l
Ta= {A(k) =TI - Ai)éfk)}
1<k<n

i=1

1s tnvariant up to similarity, it can be computed within NC%‘
Proof. Given the Jordan form of A, Z4 is unique. Conversely, the Jordan form
is entirely determined from the the A®)  therefore Z, is invariant up to similarity.
We focus on its computation.

Let us recall at first the algorithm of Mulmuley [13] for the rank or the nullity
of a matrix A over an arbitrary field. Consider the symmetric matrix

x 0 A
i=l a0l



Let Z be a diagonal matrix in an indeterminate z such that Z; = 2~!, 1 < i < 2n.
The highest degree d such that z? divides the characteristic polynomial X 4(z) =
det(z] — ZA) is twice the nullity of A. Moreover, since for any matrices Ay, As, A3
and Ay of equal dimensions, we have the following identity on determinants:

A1 A2 _ —A1 A2
Az Ay || Az —Ag |’
we deduce that
- ~ xl —71A —xI —-7Z1A -
W) =der(er - zA) = | 2 BN A )

In other words, x4 (z) is of degree 2n and is an even function of z. Now, to compute
the nullities of (A — A\;1)*, in the same way as Mulmuley’s algorithm associates
Xa(z) with A, we associate the characteristic polynomials f(l(k)(az) with the powers
(A= XNID)¥*, and x*)(x,\) with (A — M\)* viewing X as an indeterminate. As for
Xa(z), these polynomials are of degree 2n in 2 and are even functions, so we can

write: . .
W@y = Siieal @Y 1<i<],
~ n k ;
WA = i, ;m

Furthermore, since these polynomials are determinants, we know by homomorphism
that:

[
, 1

I/\
I/\

From the above definitions, the highest degree d such that z? divides )ng)(:z:) is
(k).

twice d;

di —max{j/akh):o 0<h<j}—max{j/a (i):0,0§h<j}.

)

Using this characterization of the dgk) we may now develop the main point of the
proof. To work with a squarefree polynomial instead of the characteristic polynomial

xa of A, let x(\) be the greatest squarefree monic divisor of x4 (A), and define
7 = ged (x(V), (1), V), el N) 0 <n—1, 1<k <n L,

By construction, the q](.k)()\) are products of distinct (A — A;). From identity (1), if
dl(»k) = d then (A — X;) divides aék)()\), a(lk)()\), ...and afili)l(A), but not afik)(A). In
the same way, (A — A;) divides qj(-k)()\) for all j, 1 < j < d— 1, but not for higher
values of j. Now consider the polynomials

n—1

QUMW =1 QW =T] "N, 1<k<n+1.

7j=0



We know that
!
QUMW =1, QBN =TI - %" 1<k <nt1.

i=1

These Q(k)()\) yield the desired invariant polynomials since, applying lemma 1, 1t
1s easily verified that

(@W) 7 (@ DM@ED () = ABM), 1<k <n

It remains to establish that the computation can be done within ./\/C%. Using the
algorithm in [14] the problem of computing the characteristic polynomials x4 and
X
for the computation of the distinct power decomposition of polynomials (and [13]

(k)

)

) is in NC%. From ya, x is computed within A’'C% using the algorithm in [15]

for the rank). The computation of the ¢;"/ consists in calculating the ged of the

polynomials agk) which are the coefficients of the previous polynomials ¥(*). These
coefficients are of degree O(n?) in z and in . Using the algorithm for the ged of
many polynomialsin [15] (and [13] for the rank) this is done within A’'C%. Obviously
the computation of the Q*) and of the A%) from the ql(k) is done within NC%. m]
Before computing the Jordan normal form, we may point out that lemma 2
leads to a first interesting result: the following theorem establishes that the problem
of computing the invariant factors of A is in N'C%. Obviously, this also gives an
algorithm for testing similarity of matrices, however for this latter problem a simpler
and more general solution may be found in [16].
Theorem 1 For F a field of characteristic zero or a finite field and A in F"*",
the problem of computing the invariant factors of A, or equivalently, the Frobenius
normal form of A is in NC%‘
Proof. Let us recall the definition of the invariant factors. We assume that each
eigenvalue A; of A is associated with n; Jordan blocks of dimension greater than
or equal to 1, and for the sake of simplicity, we consider that A; is associated with
n —n; blocks of dimension 0. Those blocks are numbered by decreasing dimensions,
let ; ; be the dimension of the j-th block associated with );. The invariant factors
of A are the n polynomialsin F[)\] given by:

l
S; = H()\— )\Z')’Yi’j, 1 S _] S n.

i=1

We show that the invariant factors can be computed within A'C% from the invariant
polynomials A%) of lemma 2. Let us define

M9 =T[AW, 1<d<n
j=d
For the Jgk) blocks of dimension k associated with an eigenvalue A;, the factor

(A= A;) appears to the power 5%) in the & polynomials T T . T®*) Now it

)



suffices to compute the distinct power decompositions of the T'(4) | let:

where the I; are monic and ged(I,lq;) = 1for 1 <i< j<nand1l<d<n.
By construction, for any ¢, d and k, the factor (A — ;) appears in I if and only if
A; 1s associated with k& blocks of dimension greater than or equal to d. In the same
way, (A — A;) divides szj I if and only if ); is associated with at least j blocks
of dimension greater than or equal to d. The j-th block corresponding to A; is then
obtained by taking the product for all d z.e. the invariant factors are given by:

s; = II Illik,lfgjf§n~

1<d<nk>j

The complexity is dominated by the distinct power decompositions of the T'(%):
using the algorithm in [15] this problem is in AC%. The Frobenius form of A is the
block-diagonal matrix whose blocks are the companion matrices associated to the
invariant factors of A. a

In lemma 2 we have computed the structure of the Jordan form, it remains to
compute representations A;(A) of the eigenvalues satisfying the properties given in
section 2.2. They will be the finest possible representations A;(A) of the eigen-
values that can be found by gcd operations as described below, without complete
polynomial factorization.

Theorem 2 For F a field of characteristic zero or a finite field and A in F™*™,
the problem of computing the symbolic Jordan normal form of A s in /\/C%‘

Proof. We use a result in [8]. The process makes use of the following definition.
A squarefree relatively prime basis of polynomials { Py, P, ..., P,} in F[A] consists
of polynomials {I1, I, ..., I, } in F[}] that satisfy:

e [; is squarefree for 1 < i < m.
e [; and I; are relatively prime for 1 <12 < j < m.
o There exist positive integers ¢; ; such that P; = [];- I’ for 1 < j <n.

i=1"1

In a way analogous to the non-uniqueness of the representations of the eigenvalues,
for a given set of polynomials, a squarefree relatively prime basis is not unique.
But it is shown in [8] that the coarsest such basis (i.e. with a minimum number
of elements), called the standard basis, is unique and can be computed by ged
operations only. Furthermore, the standard relatively prime basis of the invariant
polynomials given by Z4, is equal to the standard relatively prime basis of the
invariant factors of A (both sets are invariant up to similarity) and consists of the
desired representations A;(A) of the eigenvalues [8] (without repetition).

In conclusion, the invariant polynomials of Z4 can be computed within NC%,
and from [8] the problem of computing their standard squarefree relatively prime
basis is in NC%: this latter complexity dominates the whole computation of the
Jordan form. a

The next result follows immediately, its proof is omitted.



Corollary 1 For F a field of characteristic zero or a finite field, given A in F"*"
and qiven Xi,..., A\; € F the l distinct eigenvalues of A, the problem of computing
the Jordan normal form of A is in ./\/C%‘

Since it appears to be quite huge, we will now spend only a few words on the
processor demand of our algorithm. The steps that require the most processors are
the computations of the n characteristic polynomials ¥*) and of the n? polynomials
ql(k) (proof of lemma 2). The ) are characteristic polynomials of matrices which
entries are polynomialsin two variables A and z. If O(M (n)) operations are sufficient
to multiply two n x n matrices over F', each )Z(k)(lg)an be calculated with O(n3M (n))

processors using the algorithm in [14]. The ¢;"/ are the ged of the polynomials
ag.k) which are of degree O(n) in A and O(n?) in z (the degree in X can be reduced
modulo x(A)). Using the algorithm for the ged of many polynomials in [15], each
can be computed with O(n®M (n)) processors.

Thus the overall demand of our algorithm is O(n® M (n)) processors. The sequen-
tial deterministic algorithms in [3] and in [4] require O(n*) operations in F', and the
cost of a deterministic version of the algorithm in [6] appears to be O(nM (n) logn).
In parallel, the best known probabilistic algorithm is given in [6], it runs in time
(logn)°M) on O(M (n)(log n)®M) processors. Tt is processor efficient since a demon-

strated lower bound for the problem is Q(M (n)) operations in F.

4. Conclusion

We have provided a fast parallel algorithm for a crucial problem in linear algebra:
the computation of the Jordan normal form of matrices. Moreover, a similarity
matrix P for the Jordan form, i.e. J = P 'AP, could also be obtained in ./\/C‘?m,
and we have recently obtained a new algorithm which allows to compute a slightly
different form which runs over any commutative field [17]. Those results have various
applications especially in linear algebra [1,6,18].
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