
Parallel Computer Algebra1

Jean-Louis Roch and Gilles Villard

LMC-IMAG

Institut Fourier, BP 53X
100, rue des Mathématiques

38041 Grenoble Cedex 9, France
Email:[Jean-Louis.Roch, Gilles.Villard]@imag.fr

July 15, 1997

1Updated versions may be found athttp://www-lmc.imag.fr/ gvillard/CFPAR/

2

Building and implementing parallel algorithms in the area of computer algebra hasbecome
an important thread of research for more than a decade with the increasing availability of various
parallel architectures, from dedicated machines to network of workstations. New algorithms have
been built and implemented to solve high performance computing challenges.

The aim of this tutorial is to give an introduction to parallel algorithms in computer algebra,
from the building of an efficient algorithm to its effective implementationon a given architec-
ture. Parallel computer algebra systems, that exploit the parallelism of analgorithm on a given
architecture, play a central role to ensure efficient executions. Due to thevariety of parallel pro-
gramming models, several such systems propose various approaches to express parallelism, from
data distribution to functional parallelism.

After an introduction to algorithmic techniques and classical programming models, the tuto-
rial will focus on parallel computer algebra systems, parallel linear algebra algorithms and their
effective implementations. The tutorial is organized in four parts :

1. Parallel efficient algorithms. The major techniques used to build efficient algorithms on theo-
retical machine models are presented. They are illustrated by various basic computer algebra
algorithms. Due to the non-uniformity of memory access, communication complexityis a
key point to take into account in the analysis of the algorithm.

2. Programming models and scheduling.To combine expressive power and portability, several
programming models have been proposed, from message-passing to bulk-synchronous pro-
gramming and functional languages. The inherent overhead due to their emulation makes
each of them suited to a specific range of applications.

3. Parallel computer algebra systems.Different parallel systems are proposed that are based on
the coupling of a sequential system and a parallel programming model. They are often
guided by the classes of applications on which they have been experimented.

4. Parallel linear algebra. The parallelization techniques introduced before are illustrated on var-
ious research problems in parallel linear algebra : system solving, gcd, rank andnormal
forms.

Chapter 1

Parallel efficient algorithms

3

4 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

Parallel algorithmic is a successful theory. Several methods, techniques and paradigms, which are
presented in several books and surveys [60, 5, 30, 38, 35, 20, 41, 28, 39, 45] have been developed
to build powerful theoretical algorithms. Furthermore, they stand as a basis for implementation
of performant programs on effective parallel architectures. Those general techniques overflow
computer algebra framework even if arithmetic and algebraic computations are of specific interest.

In this chapter, we introduce the main techniques involved in the building of parallel algorithms.
They are illustrated on elementary computer algebra problems. The underlying model is PRAM but
the data-flow graph representation is also introduced. It is used to describe executions of a parallel
algorithm and to define its cost. Three factors are here preponderant: parallel execution time,
number of operations and granularity which is related to the required volume of communications.
An efficient algorithm realizes a compromise solution between those three factors.

The organization of the chapter is as follows. Section 1 describes the local PRAM model,
the data-flow graph representation and cost analysis. Following sections illustrate, using simple
examples, the main techniques involved in the building of:

� section 2: a coarse granularity algorithm from a fine grain optimal one;

� section 3: a fast optimal algorithm from a very fast but non optimal one;

� section 4: an very fast optimal randomized algorithm from a deterministic but non optimal
one.

Finally, in the last section, we give an overview of parallel time complexity, focusing on boolean-
arithmetic circuits which are commonly used in computer algebra.

1.1 PRAM, DFG and cost analysis

The Parallel Random Access Machine (PRAM) [18, 4] is the most common execution model used
to build and analyze parallel algorithms. Its major feature is to be independentfrom the number
of processors used. In this section we focus on the local PRAM model introduced in [38]. Cost
analysis takes into account both arithmetic and communication complexities.

In the following,
�

denotes an algorithm and
� �

its restriction for input of size� � � � .
1.1.1 The PRAM model

A Local Parallel Random Access Machine (PRAM) is setted of:
� an (infinite) number of processors� � 	

 	 � � 	

, each indexed by an integer (processor

identifier or pid in short). Each processor is a RAM (Random Access Machine [2]) and
gets its own local memory which contains its own pid.

� a global (or shared) memory. Each processor can copy data from the global memory intoits
own local memory: this operation is calledglobal read or read in short. Conversely,
each processor can copy a data from its own local memory into the global one: this operation
is awrite operation.
Initially, input variables are available in global memory. At the end of computation, final
outputs are also stored there.

1.1. PRAM, DFG AND COST ANALYSIS 5

� A program that consists in a finite sequence of RAM elementary instructions, extended by
the global elementary (i.e. single word location) read and write instructions.

� a global clock that ensures a synchronous mode of computation. After initialization (first
top), processors are ready to execute the first instruction of the program. At each top (or
step), each processor executes the next RAM instruction in the program. Thus it performs
either an elementary arithmetic operation within its local memory or anaccess to the shared
memory (read or write).
The program terminates when processor with pid 0 executes thehalt instruction.

Note that the program may contain branching instructions eventually depending on the pid value.
Due to branching instructions, at a given top, processors may execute different instructions (Mul-
tiple Instruction Multiple Data – MIMD – type).

Shared Memory

P0 M1 P1M0 Mp Pp

A
cc

es
s

C
om

pl
et

io
n

S
ig

na
l

Sequencer

Figure 1.1: The local PRAM execution model

Semantics of access in shared memory.Due to the synchronous mode of computation, seman-
tics of global memory access is simple and only depends on the behavior when, at a same top,
several processors concurrently accede to a same single location in the shared memory.

At a same top, two processors can’t perform both a read and a write in the samelocation. But
concurrent read (or concurrent write) access may be allowed, depending on the PRAM:

� an EREW-PRAM (Exclusive Read Exclusive Write) does not allow concurrent access to a
single location.

6 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

� a CREW-PRAM (Concurrent Read Exclusive Write) allows only concurrent read access.

� a CRCW-PRAM (Concurrent Read Concurrent Write) allows concurrent access(all in the
same mode, either read or write).

When a concurrent write operation is performed into a single location in the shared memory, dif-
ferent semantics are considered depending on the reduction operation performed toproduce the
final value:

� COMMON: all processors have to write the same value. If not, an error is produced.

� ARBITRARY: an arbitrary processor writes its value.

� PRIORITY: the processor with the minimum pid writes its value.

� CUMULATIVE: the sum of all the concurrent values is written. The addition operation
(defined between single location values) is assumed to be associative. Furthermore, it is
assumed to be commutative to have, like concurrent read and common or arbitrary write
operations, a semantic independent from the pids of the writing processors. This concurrent
write mode is also calledcombining[41].

As detailed further, those different variants of the PRAM are relatively closed to each others:
each one can simulate the other one with small overheads [14, 41, 28].

Dynamic task creation The above definition presents two drawbacks:

� it assumed that, after initialization, an unbounded number of processors start execution;

� dynamic creation of parallelism has to be described in the program using busy-waiting; this
means that the scheduling of the program is completely described in the program.

In the initial definition from [18], only the processor with pid 0 starts execution of the program.
To generate parallelism, an elementaryfork � e� instruction is defined. When a processor�
executes this instruction, an inactive processor� �

is reset. The accumulator of� (which may
contain an address in the shared memory where some parameters are stored) is first copied into
the one of� �

. The pid of� �
is then put into the accumulator of� . This allows� and � �

to later
communicate via the shared memory.
At the next step,� executes the following instruction (the one that follows thefork) and� �

starts
the execution of the program at the instruction labelede.
Usingfork, dynamic task creation is made possible, scheduling (allocation of inactive processors)
being ensured by the PRAM machine. However, this modification implies that any PRAM program
that uses a polynomial number� � � � �

of processors takes a time� � � 	
 � � , forbidding the building
of constant time algorithms; if an algorithm is involved during the execution of aprogram (e.g.
inside the body of a loop), this overhead may easily be avoided. Analysis of costs in this chapter
are made under the previous model, thus without taking into account task allocation overhead.

1.1. PRAM, DFG AND COST ANALYSIS 7

Randomized PRAM To support execution of randomized algorithms, the PRAM is extended in
the following way. A newrandom instruction is introduced that allows each processor to generate
(in one top) a random bit (or a random number that fits in a single memory location).

Random generations (i.e.random instructions) performed by a processor during the execution
are assumed to be independent realizations of an uniform law. Moreover, generations performed
in parallel at a given top by different processors are also assumed to be independent.

1.1.2 Execution of a PRAM program and data-flow graphs

Being given the input data, the execution of a PRAM program may be represented as adirect
acyclic graph. Vertices correspond to instructions that are executed (one vertex, one instruction)
and edges to precedence relations between instructions. Basically, if� (resp. �) is the vertex
representing an instruction executed1 at step

�
(resp.

� � �
), then there is an edge from� to � .

However, the finest representation of a parallel algorithm is given by the data-flow graph (DFG)
of any of its executions. DFG is direct acyclic and bipartite with node sets� � � � � 	

 	 � � 	

corre-
sponding to instructions (� meaningjob) and
 � � � � 	

 	 � � 	

corresponding to single assignment
data (� meaning transition). An edge goes from�
 (resp. � �) to � � (resp. �
) if � � is a read (resp.
write) instruction of the global data related to�
 .

In the DFG, any memory access, either global or local, is represented by anedge between a
location (represented by a transition node) and an instruction (a job node) that requires the ac-
cess. Except for transitions related to input, immediate ancestors of eachtransition �
 are write
instructions: only one on an exclusive-write PRAM, eventually more on a concurrent-write one.
Conversely, its immediate successors (except for transitions relatedto output) are read instructions:
only one on an exclusive PRAM, eventually more on a concurrent-read one. This meansthat when
all immediate successors (job nodes) of a transition have been executed, the location related to it
in global memory may be garbaged.

Let us considered the DFG related to a tree computation scheme. As an illustration, we consider
two algorithms that solve theiterated product2 problem: it consists in computing the product
of � elements. In order to exhibit parallelism, multiplication is assumed tobe associative and
commutative. A balanced binary tree scheme gives an algorithm that works on anEREW PRAM;
related DFG is shown in figure 1.2. On a CUMULATIVE-ERCW PRAM all products may be
performed concurrently and cumulated on a shared location (fig. 1.2.b).

This graph defines a precedence relation, denoted� , between instruction nodes in� . Let
� � 	 � � be two nodes in� ; � � � � � if there is a path in DFG from� � to � � . In the following, we
will consider the subgraph� � � � � � 	 � � of � � � , where only arithmetic instructions and their
precedence relations are represented.

Remark 1. The data-flow description of the algorithm is roughly equivalent to astraight-line
program [32].

Remark 2. Note that symmetry of input (resp. output) edges to a transition node assumes com-
mutativity of access. This is verified for any concurrent write (resp. read) access defined on the

1Instructions corresponding to� and� may be executed by different processors.
2also callediterated sumwhen an addition law is considered

8 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

a3

*

res

*

*

*

a1 a4a2 a5

tmp2tmp1

tmp2.2

a1 a2 a4 a5a3

res *

(a) (b)

Figure 1.2: DFG of two iterated products: (a) EREW (b) cumulative-ERCW

PRAM.

1.1.3 Describing PRAM algorithms: ATH language

PRAM stands as an abstract model virtualizing any parallel architecture. In order to describe
PRAM algorithms, we need an elementary programming language which leads to easy description
of algorithms.

Sine evaluation of a parallel algorithm is directly related to the analysis of DFG, a sequential
description should be sufficient since data-dependencies appear implicitly: eachread access to a
location gets the value put by the last write in a sequential execution. However, two characteristics,
which not appear in a sequential description, are to be taken in account:

� two levels of memory access are distinguished: local and global. Global memoryaccess
support CUMULATIVE-CRCW semantics.

� the elementary unit of instruction is the block. A block is a sequence of elementaryRAM
instructions. A block is executed in sequential; it takes benefit of local access.

In the following, we consider an extension of the basic PRAM basic language introducedin [18]
based on those two considerations. This abstract language is calledATH, an acronym forAsyn-
chronous Tasks Handling.

Blocks of instructions are defined as procedures body. Execution of such a block is atask.
Tasks may be ordered either in sequence using synchronous procedure call or in parallelusing
asynchronous procedure calls (prefixed byfork). In this last case, precedence relation between
tasks is defined in a natural way, according to shared-data dependencies that appear in a sequential
execution of the program. Data dependencies concerning local data are then not considered in the
relative DFG.

1.1. PRAM, DFG AND COST ANALYSIS 9

Figure 1.3 gives two different recursive programs for the iterated product. Version (a) works
on an EREW PRAM and is related to DFG presented in figure 1.2.a. Version (b)works on a
CUMULATIVE-ERCW; corresponding DFG is presented in figure 1.2.b.

Product(a : in E,
b : in E,
c : out E)

begin
c.Write(a.Read()*b.Read());

end

IterProd(n : in integer,
a[1..n] : in array of shared E,
res : out shared E)

begin
if(n==1)
res.Write(a[1].Read());

else
tmp1i, tmp2 : shared E;

fork IterProd(n/2, a[1..n/2], tmp1);
fork IterProd(n-n/2, a[n/2+1..n], tmp2);
fork Product(tmp1, tmp2, res);

end if
end

IterProd(n : in integer,
a[1..n] : in array of shared E,
res : out shared E)

begin
if(n==1)

res.Cumul<*>(a[1].Read());
else

fork IterProd(n/2, a[1..n/2], res);
fork IterProd(n-n/2, a[n/2+1..n], res);

end if
end

(a) (b)

Figure 1.3: ATH code of two iterated products: (a) EREW, (b) cumulative-ERCW. Data in shared
memory are explicitly declared by the prefixshared. Notationx.f() means that functionf
is called on the data in shared memoryx. In program (b), the function callx.Cumul� *� (v
)specifies a cumulative concurrent write on the data in shared memoryx; the commutative and
associative binary function implementing the operation is*.

1.1.4 Time, work and communication costs

Consider a PRAM program. In the following,� denotes the size of the input. The arithmetic cost
is characterized by:

� theparallel time
 � � � which corresponds to the number of executed steps;

� thearithmetic work� � � � � , i.e. the whole number of operations performed.

Those quantities are independent of the number of processors and thus may be defined directly
from the DFG description of the execution.

Definition 1 The parallel time
 � � � is the maximal depth of DFG(�) for any input� of size� :

 � � � � � � �� � � � � � � � 	
 � � � � � � � � � � � (1.1)

The arithmetic work� � � � � is the number of instruction nodes of DFG(�) for any input� of size
� :

� � � � � � � � �� � � � � � � �
 � � � � � � � � � (1.2)

10 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

The arithmetic cost is denoted:
� � �
 � � � 	 � � � � � � (1.3)

Similarly, the communication cost is characterized by two factors:

� thecommunication delay3 � � � � � is the maximal number of global memory access performed
by a processor;

� thecommunication work� � � � � , i.e. the whole number of global memory access performed.

The PRAM program implements a scheduling of the DFG on an infinite number of processors:
any access to the local memory on each processor is not considered as a communication. Thus, the
communication cost may vary depending on the number of processors used in the program.
To define communication cost with respect to a parallel algorithm (independent of anumber of
processors, and so more general than the program that implements it), we will refer to its DFG.

Definition 2 The communication work� � � � � is the maximal number of edges for any input of size
� :

� � � � � � � � �� � � � � � � � � � � � � � � � � (1.4)

The communication delay� � � � � is the maximal length of a path in� � � from an input data to an
output one:

� � � � � � � � �� � � � � � � � 	
 � � � � � � � � � � (1.5)

The communication cost is denoted:

� � � � � � � � 	 � � � � � � (1.6)

In order to compare arithmetic and communication costs, the granularity� � � � is defined.

Definition 3 Thegranularity� � � � is the ratio between the arithmetic and communication works:

� � � � � � � � � �
� � � � � (1.7)

1.1.5 Efficient algorithms

Let � be an algorithm with cost
 � � � 	 � � � � � 	 � � � � � 	 � � � � � . Let � � � � � the work of the best
known (sequential) algorithm that solves the same problem.

The building of a parallel algorithm to solve a given problem may be aimed at different direc-
tions:

� either finding the smallest amount of time required to solve a problem. In this context,
the class� � of problems that may be solved in parallel time
 � � � � � 	

� � � � � using a
polynomial number of processors� � � � � � � � � � �

plays a central role.

3� 	
 � � is calledcommunication complexityin [28].

1.1. PRAM, DFG AND COST ANALYSIS 11

� or building anefficientprogram that leads to solve larger problems in a reasonable amount
of time taking benefit of the ability to use several processors, let us say
 . Here, arithmetic
and communication overheads (i.e.� � � � � and� � � � �) are to be carefully taken into account
in order to guarantee efficient executions.

A common trade-off [38] consists in building parallel algorithms that:

� havepolynomial speed-up, i.e.

 � � � � � � � � � � � � � with � � �
(1.8)

� arework-preserving, i.e.
� � � � � � � � � � � � � � (1.9)

The inefficiency� measures the arithmetic overhead:

� � � � � � � � � �
� � � � � (1.10)

� requirefew communications, i.e

� � � � � � � � � � � � � � � with � � �
(1.11)

Definition 4 � is said:

� fastif it achieves poly-logarithmic parallel time with a polynomial number of operations, i.e.

 � � � � � 	

� � � � � and � � � � � � � � � � �
.

� optimal if it is fast and has constant inefficiency.

� efficientif it has a polynomial speed-up and a constant efficiency.

� of coarse-granularityif it has polynomial granularity, i.e.� � � � � � � � � �
.

In order to not absolutely reject fast algorithms involving a small overhead in arithmetic opera-
tions, fast algorithms with poly-logarithmic inefficiency will be considered asefficientalso.

In the following, some main techniques that lead to the building of an efficientandof coarse-
granularity algorithm are overviewed. It turns out that minimizing time withoutpreserving work
(i.e. building� � algorithm) is of specific interest:

� algorithmic techniques involved for both are very close;

� it gives a lower bound on the best parallel time that may be achieved;

� an inefficient but fast algorithm may successfully be coupled to a slower butefficient one to
build a faster program.

12 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

1.1.6 Example

We illustrate previous definitions on the iterated sum algorithm presented in figure 1.3.a. Scalar
product of two vectors is directly reduced from iterated sum; it may be applied to perform matrix
multiplication in a semi-ring.

Iterated sum

For the EREW algorithm presented in figures 1.3.a and 1.2.a (balanced tree computation scheme),
we have assuming� � � � :

 � � � � � 	
 �
� � � � � � � � � � � � � � � � 	
 � � �

� � � � � � � � � � (1.12)

This algorithm is optimal since its cost is – asymptotically – a lower bound.
As a consequence, the scalar product of two vectors is computed on an EREW with cost:

� � � � 	
 � 	 � � and � � � � 	
 � 	 � �
 (1.13)

On a semi-ring,
�

is commutative. Thus, on a cumulative-CRCW PRAM, this problem may
be computed with parallel cost (fig. 1.2.a):

� � � � 	 � � and � � � � 	 � �
 (1.14)

However, description of the computation scheme (cf program in fig. 1.3.b) may require � � � � 	
 � 	 � � .
Matrix product

Consider the problem of computing a square matrix product� � � �
in a semi-ring (i.e. using

only
�

and � operations).
Let � be the dimension of the matrices: since� � � � � �

�

 � � � � �
 �
 � � , the problem reduces to� �

independent scalar products. Using 1.13, we obtain a parallel algorithm with cost:

� � � � 	
 � 	 � � � and � � � � 	
 � 	 � � �
 (1.15)

Since� � � � � � � � � � � [37], this algorithm is efficient.
However,� � � � � � � � � and it is not coarse-granularity. Besides, it can be seen that, if� is a

field (or ring), the above algorithm is not efficient (polynomial inefficiency) neither theoretically
since� � � � � � � � � � 	 � [15, 45] nor practically since� � � � �
 � � algorithms are of practical use [3, 40,
17]. We will see in following sections how to overcome those problems.

1.1.7 Relations between PRAMs

We consider the cost of the execution of a parallel algorithm (defined on a CUMULATIVE-CRCW
PRAM for instance) on a given PRAM with a fixed number of processors and with its own seman-
tics for access in shared memory. Two cases are distinguished: when the number of processors is
decreased and when memory access are restricted. We consider here only arithmetic costs. The
main consequence is the existence of optimal – within a constant factor – simulations of a CRCW
algorithm that uses an unbounded number of processors on an EREW machine with a fixed number
of processors.

1.2. INCREASING GRANULARITY 13

Theorem 1 Fine grain simulation with fewer processors - Brent’s principle [9, 28]. Let �
be an algorithm that can be implemented to run in (arithmetic) parallel time
 and work � �
on a given PRAM with an unbounded number of processors. If each local access corresponds
to a global one, then� can be scheduled on the same PRAM, but with
 processors, to run in
(arithmetic) parallel time
 � � � � :�

� � � � �

 � �
 � � � � � � � � � � �

 � �
 � � � (1.16)

It can be noted that this fine grain simulation does not take into account additive costdue to the
computation of the schedule [12, 22].

Remark. In chapter 2, a constructive coarse grain simulation for DFGs where arithmetic nodes
may represent a sequence of elementary instructions.

Theorem 2 Simulation with restricted access in global memory[28, 38]. Let � be an algo-
rithm that can be implemented to run in (arithmetic) parallel time
 � on a CUMULATIVE-CRCW
PRAM with
 processor. Then,� can be implemented on an EREW PRAM with
 processors to
run in time� �
 � � 	

 � .

1.2 Increasing granularity

Efficient parallel algorithms require near-optimal work; obviously, the careful analysis of the small-
est depth DFG induced by a sequential algorithm among the best is then of practical interest.

As a major example, sequential algorithms based on a partitioning of the problem into– many –
independent subproblems have intrinsic parallelism if partitioning and merging (torecover the
global solution) steps are either parallel or of neglected cost. This situation appears frequently
in numerous divide&conquer algorithms (let us sayparallel divide&conquer). As a computer
algebra instance, modular methods based on Chinese remainder computations [2, 10] amounts to
this scheme.

Once a fine grain fast parallel algorithm built, increasing granularity is required to obtain and
efficient algorithm with coarse-granularity. In this section, the technique consisting in stopping
recursivity is illustrated on the matrix product problem; we prove an optimalgranularity for this
problem.

1.2.1 Parallel divide and conquer

Let us consider the example of matrix multiplication using a standard bi-dimensional block algo-
rithm: � � � � � � �� � � � � � �

�
� � � � � �� � � � � � � �

� ��
 (1.17)

All block matrices products, of dimension� � � , can be multiplied in parallel. Applying recursively
this splitting scheme leads to a parallel algorithm with cost:

� � � � 	
 � 	 � � � � � � � 	
 � 	 � � � (1.18)

14 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

Note that, since coefficient addition is associative, each entry in the outputmatrix may be computed
as an iterated sum of� values. This allows the whole computation to take a time� 	
 � (instead
of � 	
 � � if additions where performed naively at each step). This remark appears directly on the
DFG description for a CUMULATIVE-CRCW PRAM 1.4: all final sums are made in O(1) time.
But the splitting process, which involves no arithmetic operation but recursive forks (cf fig. 1.3.b),
requires� � � 	
 � � time using recursive forks4. Another technique to obtain� � � � 	
 � 	 � � � consists
in pipelining additions [1].

CumulProductTerm(a : in E,
b : in E,
c : out E)

begin
c.Cumul<+>(a.Read()*b.Read());

end

MatrixProduct(n : in integer;
a : in array[1..n,1..n] of E,
b : in array[1..n,1..n] of E,
c : out array[1..n,1..n] of E)

begin
i, j, k : local integer;

for i = 1..n loop
for j = 1..n loop
for k = 1..n loop
fork CumulProductTerm(a[i,k], b[k,j], c[i,j]);

end loop
end loop

end loop
end

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

c13 c21 c32

c31

c33

c23

c22

c12

c11

a11 a12 a13 a21 a22 a23 a31 a32 a33

b11 b21 b31 b12 b22 b13 b23b32 b33

Figure 1.4: DFG of the multiplication of two� � � matrix (cumulative-CRCW)

4Note that the brute force program (fig. 1.4) which performs iteratively fork instructions requires� �
 � � � � � � !

1.2. INCREASING GRANULARITY 15

Remark. The same strategy applied to Strassen’s algorithm leads to a parallel algorithm with
cost:

� � � � 	
 � 	 � � � � �
� � � � � � 	
 � 	 � � � � �

� � (1.19)

Optimal in work (on a semi-ring), this algorithm has granularity� � � � � � � � � : it is roughly
equivalent to a recursive version of 1.15). In the next section, we detail how toincrease granularity
in order to build an efficient algorithm with coarse-granularity.

1.2.2 Minimizing communication work

Obtaining a coarse-granularity algorithm requires to minimize communications. This can be done
by stopping the recursive parallel splitting process at a given depth, let us saywhen sub-matrices
are of size lesser than

�
(i.e. depth� 	

�

). Operations – resp. sums and products – on matrices

of dimension
�

are then performed sequentially, using an optimal algorithm – resp. in time� � � � �
and� � � � � –. The cost is then:

� �
� � � � � 	
 � 	 � � � � � � � � � � 	
 �� 	 � �� � (1.20)

which gives an algorithm with granularity� � � � � �
. We thus obtain a parallel efficient algorithm

with arbitrary (polynomial) granularity.

Theorem 3 For any � , � 	

� 	

� � � � � � , two � � � matrices can be multiplied by an algorithm
of granularity � with parallel cost:

� �
�
� � 	 � � � � � � � � � � 	
 � 	 � �

� �

The previous algorithm 1.20 proves the upper bound.
 .

The following theorem gives lower bounds for communication costs. It shows that theprevious
algorithm achieves an optimal communication delay and an optimal granularity among algorithms
that achieves an optimal communication delay.

Theorem 4 Let � be an efficient parallel algorithm that multiplies two matrices of dimension�
in time
 using � � 	 � � only and performing

� � � � � operations. Then,

� � � �
�

 � 	

� � � 	
 � � � � � � � � �
� � 	 �� �

Since � is efficient,
 � � � � � � with � � � ; by reduction from iterative sum, we thus have
� � � � � � 	
 � � .
Kerr [37, 1] shows the lower bound� � � � � on the arithmetic work. Since� performs

� � � � �
operations, its execution can be scheduled in time

� �
 � using
 �
� �� processors. Let
 � , � � � �
 ,

be the number of shared memory access performed by processor
�
. We then have� � � � �� � �
 �

and� � � � � � �� � �
 � . To obtain a lower bound on� � and� � , we use the following lemma [1, 25]:
if a processor reads at most
 elements of input matrices and computes at most
 partial sums of
their product, then this processor can compute no more than
 �

	 � multiplicative terms for these

16 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

partial sums.
Applying this lemma to
 � which reads or writes at most
 � elements and since� � � � � multiplicative
terms are to be computed, we have: ��

� � �
 �
	 �� � � � � � �
 (1.21)

Bounding
 � by � � and replacing
 by
� �� leads to:

� � � �
�

 � 	

� �
 (1.22)

Noticing that� �� � �
 �
	 �� � � � 	 �� � �� � �
 � , we obtain:

� � � � � � �
� � 	 �� � (1.23)

which concludes the proof
 .

Recursive multiplication algorithms. A similar study can be applied to other recursive matrix
multiplication algorithms (e.g. Strassen). It leads also to efficient parallel algorithms with both
polynomial speed-up and polynomial granularity that leads to performant implementations [17].

1.2.3 Conclusion

In this section, we have studied the DFG of a sequential algorithm, based on a divide&conquer
scheme, that contains inherent parallelism. By halting the recursive process in order to minimize
communications, we have exhibited a family of efficient parallel algorithms with arbitrary coarse-
grain granularity.

Due to its practical interest, this technique has been successfully appliedto various problems.
One of significant interest in computer algebra is the discrete Fourier transform. The direct analysis
of the FFT algorithm leads to a parallel algorithm with cost:

� � � � 	
 � 	 � � 	
 � � � � � � 	
 � 	 � � 	
 � �

A clustering of elementary instructions (block clustering on the first

� � � �
� steps and cyclic clustering

on the last
� � � �

� steps, cf fig. 1.5) leads to an algorithm with parallel cost [41, 39]:

� � � � � � 	
 � 	 � � 	
 � � � � � � � 	 � �

This algorithm has polynomial speed-up, optimal work and achieves also optimal granularity [1].

The resulting algorithm is based on coupling a very fast parallel algorithm, optimal in time but
requiring many communications, to a sequential one which minimizes communication. Such an
algorithm is called “poly-algorithm”; the technique that underlies this coupling is called “cascading
divide&conquer”.

Cascading divide&conquer may be applied in a more general context, by coupling a very fast
parallel algorithm, yet requiring many operations, to a slower one which performs an optimal
number of operations. This technique makes the building of very fast algorithms attractive even if
the required number of operations is larger.

1.2. INCREASING GRANULARITY 17

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

X
0

X
1

X
4

X
2

X
10

X
9

X
5

X
6

X
15

X
14

X
11

X
13

X
7

X
12

X
3

X
8

X
0

X
1

X
4

X
2

X
10

X
9

X
5

X
6

X
15

X
14

X
11

X
13

X
7

X
12

X
3

X
8

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

Figure 1.5: DFG of the EREW� � � � � � � � � � � � � � � 	 FFT algorithm of 16 points. There are
 � � arithmetic tasks (represented by square boxes embedding elementary operationsand local
dependencies), each corresponding to a sequential FFT computation on� � points. For any task
on the left, shared data dependencies imply a precedence relation with the� � tasks on the right.

18 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

1.3 Breaking data-flow dependencies by redundancy and cas-
cading divide&conquer

It may appear that DFGs related to a sequential algorithm contain data-dependencies that bound
parallelism. Introducing redundant computations may then allow to break dependencies in order
to minimize parallel time. Cascading divide&Conquer may then be used to obtainan optimal
arithmetic work. In this section we illustrate this technique on the computation of the solution of a
triangular linear system presented in [46]. We focus on communication costs.

Let
�

be an� � � nonsingular triangular matrix with coefficients in a field� . We assume by
convenience� � � � . Let � a vector in�

�
. We consider the computation of� � � � �

� .

1.3.1 DFG of the best sequential algorithm

The simple forward substitution algorithm has sequential cost� � � � � � � � � � � . Direct analysis of
its DFG (see fig. 1.6) gives its parallel cost:

� � � � 	 � � � � � � � 	 � � � 	 (1.24)

which leads to an algorithm with polynomial speed-up but small granularity� � � � � � � � � .
If entries of

�
are in global memory after initialization, we have� � � � � � � � � � � . In a view

to minimizing the communications involved by the algorithm itself, in the following we do not
consider the access to

�
in the communication work� � � � � .

In order to increase granularity, we consider a divide&conquer version of this algorithm [7].
Let

�
, � and� be divided into blocks:

� �
� � � � �� � � � � � � � �

�
� �
� � � � �

�
� �
� � �
 (1.25)

Here
� � � is of size� � � , � � and� � are of size� . We have:

� � � � � � � � and
� � � � � � � � � � � � � �
 (1.26)

where� � and � � are computed recursively using the same algorithm;
� � � � � is computed using a

scalar product (see 1.13). Note that the use of a pipeline scheme leads to the previous parallel cost
1.24.

We may then stop the recursive splitting when matrices are of size
� � �

, and use sequential
algorithms (triangular system inversion and matrix-vector product) on matrices of size lesser than�
. The resulting parallel cost is:

� � � � � 	 � � � � � � � � 	 � �� � (1.27)

which leads to an algorithm with granularity� � � � � � � � � .
Theorem 5 For any � � �

, a triangular nonsingular linear system can be solved by an efficient
parallel algorithm of coarse granularity� � in time � � � � �

� � .
Choosing

� � � � � � � � � in 1.27 proves the upper bound.
 .

1.3. REDUNDANCY AND CASCADING DIVIDE&CONQUER 19

Update(x : out E,
a : in E,
y : in E)

begin
x.Cumul<+>(-a.Read()*y.Read());

end

FinalDivision(x : in and out E,
a : in E)

begin
x.Write(x.Read() / a.Read());

end

TriangularSolve (n : in integer,
a : in array[1..n, 1..n] of E,
b : in array[1..n] of E,
x : out array[1..n] of E)

begin
i,j : local integer;

for i = 1..n loop
x[i].Cumul<+>(b[i].Read());
fork FinalDivision(x[i], a[i,i]);
for j = (i+1)..n loop
fork Update(x[j], a[j,i], x[i]);

end loop
end loop

end

b1 a11

X1 a31

a21

b2

a22

-*

/

-*

+

/

X2 a32

-*
b3

a33

/

X3

X2

X3+

Figure 1.6: DFG for the solving of a� � � nonsingular triangular matrix

1.3.2 Breaking dependencies

The linear time lower bound on previous algorithm time comes from the dependency in formula
1.26 between computations of� � and � � . This dependency may be broken by directly computing
the inverses of the triangular nonsingular matrices� � � and� � � .

Consider the matrix� split in four blocks of dimension� �

(1.25 with � � � �

). Then we
have: � 	 � �
 � 	 �� � �� � 	 �� � � � � � 	 �� � � 	 �� �
 (1.28)

From theorem 3, the product of two matrices of dimension� is computed with parallel cost
� � � � � � � � � � 	 . In the following, we will refer to this cost.

To compute the inverse of� from 1.28, we first compute recursively and in parallel� 	 �� � and� 	 �� � . Then we compute the last block of� 	 � by performing sequentially two parallel matrix
products. The parallel cost for inverting� is then:

� � � � � � � � � � � 	 � � � � � � � � � � �
� � � � � � � � (1.29)

Once� 	 � is computed,� � � 	 � � can be computed with the same cost. However, even if polylog-

20 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

arithmic in time, this algorithm has polynomial inefficiency. In the next paragraph, we use it on� � � in 1.26 in order to decrease parallel time.

Remark. The above algorithm is efficient for computing the inverse of a nonsingular triangular
matrix. Note that by using fast matrix multiplication, the parallel cost isreduced to� � � � 	
 � � 	 � � �
with � � �
 � �

[46]. Besides, if computations are performed sequentially when the dimensions of
the matrices are lesser than

� � � � , � � � � � , the obtained algorithm is efficient and has polynomial
speed-up and polynomial granularity.

1.3.3 Cascading divide&conquer to minimize time

The previous algorithm is not efficient but may be combined to the recursive sequential algorithm
(formula 1.26). The trick is to use it on small dimension matrices (let us say �) when the overhead
� � � � � due to the fast inversion of such a matrix becomes neglectible compared to coefficients
updates (roughly� �). This leads to the following algorithm of Pan&Preparata [46].

Theorem 6 The solution of a nonsingular triangular system can be computed in

� � � � � 	 � � 	
 � 	 � � �
using a standard� � matrix multiplication algorithm.
If a fast � � multiplication is used then the parallel cost is:

� � � � �
�

� � � 	 �
�

� � �
� 	
 � � 	 � � �

of size h.log(h) * h.log(h)
n/h.log(h) blocks

log(h) blocks
of size h * h

Figure 1.7: Splitting used for� � �
, � � 	
 � � � � , � � � �

Following 1.27, let
�

be split in� � � � � blocks of size� � � . Though, note that a direct computation
(see theorem 1.27) leads to a parallel time� � � � 	 � � 	
 � � � . To avoid the� 	
 � overhead factor in
the parallel time, we proceed by gathering computation on� 	
 � � blocks.
Let

� � � � 	
 � ; the matrix
�

may be seen as split in� � � � � � blocks, each block consisting in� 	
 � �

1.3. REDUNDANCY AND CASCADING DIVIDE&CONQUER 21

sub-blocks of dimension� (cf fig. 1.7).
We use the sequential iterative algorithm on the� � � � � � � � � � � coarse grain matrix. At step

�
, we

have to invert the triangular system corresponding to the diagonal block� � 	 � � . For this compu-
tation, we first invert concurrently the� 	
 � diagonal sub-blocks of this block. Then, we update
others sub-blocks of� � . At the end of the step, blocks� � , for � � �

, are updated.
The algorithm is the following:

Initialization.
Let

�
be split into� � �

blocks� � � � of dimension
�

(
� � � � 	
 �). For

� � � � � � � � �
, let

� � � � be split into� 	
 � � � 	
 � block �
 � �� � � of dimension� .
Let � be initialized to� and split according to

�
.

for
� � �

 � � �

do

1. for � � �

 � 	
 � do

fork
�
�

� � �� � � � � �
� invert� � � � �� � � � .

Using fast inversion and Brent’s principle, the cost is� � � � 	
 � � 	 � � � 	
 � � .
2. for � � �

 � 	
 � do

update� �� in parallel

� �� �
�
�

� � �� � � � � � �
� �� � � � � �

� � � �
� � �� � � � �� �

Scalar product are performed in parallel: thus� � is computed with a cost� � � � 	
 � � 	 � � � 	
 � � .
3. for � � � � �

 � � �

fork update� � in parallel
� � � � � � � � � � � �
Performing scalar product in parallel, the cost is� � � � 	
 � 	 � � � 	
 � � .

The final cost is :� � � � � 	
 � � � � 	 � � � � � � � � � � 	
 � 	 � � � 	
 � � � . Since
� � � � 	
 � , it reduces to:

� � � � � 	
 � � � 	 � � � � � � � 	 � � � � 	
and the optimal value for� is the larger one that leads to a work� � � � � � � � � � � . Thus, we choose
� � � � 	 � and we obtain the upper bound.
The same technique is applied to obtain the upper bound when a fast matrix multiplication algo-
rithm is used.

1.3.4 Applications in linear algebra

Many linear algebra algorithms are based on a Gaussian elimination scheme: linear system solving,
normal forms (Hessenberg, Smith, Frobenius, symbolic Jordan). Such a scheme provides parallel
algorithms with polynomial speed-up: at each step, a transformation is computed that can then be
applied in parallel to each coefficient of the matrix. For instance, solving anon-singular linear
system using standard Gaussian elimination leads to a parallel algorithm with cost:

� � � � 	 � � � � � � � 	 � � � (1.30)

22 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

Moreover, very fast deterministic algorithms (polylogarithmic paralleltime) are known for most
problems [45, 24, 58, 57] but they are often inefficient (� � � � � � � � � � �

� � � � �). For instance,
solving a non-singular linear system can be computed in parallel with cost:

� � � � � � � � 	 � �
� � � (1.31)

with � � � � � in characteristic zero [16, 50] and� � �
in the general case [11]. Applying the same

cascading divide and conquer strategy leads to sub-linear parallel algorithms with optimal5 work
[46]:

� � � � � 	 �
� 	
 � � 	 � � �
 (1.32)

Remark. The same technique applied on Strassen formulation [56] (which may take benefit of
fast � � � � � � � 	 � matrix multiplication algorithms), does not succeed in the building of a sub-linear
algorithm with parallel time� � , � � �

.

1.3.5 Conclusion

In this paragraph, we have used bi-dimensional block matrix partitioning in order to:

� increase the granularity to build polynomial speed-up algorithms with polynomial granular-
ity; the technique used is cascading divide and conquer with a sequential algorithm in order
to decrease communication costs.

� decrease parallel time while preserving the work; the technique used is cascading divide and
conquer with a very fast but inefficient algorithm in order to make the computationfaster.

In [46], the same technique, calledwork-preserving speed-up, is applied to several linear algebra
algorithms: LU factorization, inversion, quasi-inversion, solution of linear structured systems.

1.4 Randomization to decrease time or preserve work.

When an algorithm has a bounded degree of parallelism or a polynomial efficiency, randomization
may help in order to either decrease time or preserve work, eventually both. This section illustrates
both aspects on the computation of the rank of a matrix.

In computer algebra, randomization is most often introduced via the verificationof a polyno-
mial identity by evaluation on a random value. Testing whether a polynomial is identically zero
can deterministically be solved by evaluating the polynomial, represented as a straight-line pro-
gram, at a sufficient number of points. However, depending on the degree and on the number of
indeterminates, such a deterministic test can require a huge number of evaluations. Following the-
orem, due to Schwartz [54], uses randomization in order to reduce this number while bounding the
probability of failure.

5relatively to the standard�
 � � � sequential algorithm

1.4. RANDOMIZATION TO DECREASE TIME OR PRESERVE WORK. 23

Theorem 7 [54, 28] Let � � � � 	

 	 � � � be a polynomial in the variables� � � � , � � � � � , over a
field � . Let � be a finite subset of� with cardinal � . Let � � � 	

 	 � � � a vector selected at random
in �

�
. If � is not identically zero then

Prob � � � � � 	

 	 � � � � � deg� � �
�

Once a problem is reduced to the verification of a polynomial identity, this theoremallows
to build a Monte-Carlo algorithm to solve it (for an introduction on Monte-Carlo and Las Vegas
algorithms, see [36]). It is sufficient to build a parallel algorithm that evaluates the polynomial at
a given input point. By choosing this point at random in a large enough finite subset6 we obtain a
Monte-Carlo algorithm whose probability of error is at most

� � � . This technique may be applied
in a very large framework [36, 28] and is commonly used in computer algebra [45] tobuild fast
algorithms with optimal work. We illustrate it on the problem of computing the rank ofa matrix.

In the following,
�

denotes a matrix of dimension� � � with coefficients in a field� . For the
sake of simplicity,� is assumed infinite.

1.4.1 Randomization to suppress dependencies

The rank of a matrix can be computed using a standard pivoting Gaussian elimination. Similarly
to 1.24, this results in an algorithm with parallel cost:

� � � � 	 � � � � � � � 	 � � � (1.33)

Contrary to triangular system solving, the computation scheme (DFG) is relatively unknown: co-
efficients to modify are determined at each step only once the pivot element has been chosen.

In [8], randomization is used in order to reduce the whole problem to a fixed DFG onwhich
parallelization techniques can be applied. The algorithm is based on the following characterization
of the rank: rank� � � � � iff there exist two non-singular matrices� and � such that the principal
minor of dimension� in � � � is non zero while principal minors of dimension larger than� are
zero. Moreover,� and � can be taken at random with a high probability of success: the use of
theorem 7 to evaluate this probability requires to express the problem as a polynomial identity.

Let � � � � 	 � � denote the principal minor of dimension
�

of � � � . Due to multi-linearity of the
determinant,� � is a polynomial of degree� � with indeterminates� � � � and � � � � (

� � � 	 � � �).
Previous rank characterization leads to the following polynomial identities:

� � �� � � � � � �
� � � � � � � � � (1.34)

This suggests the following Monte-Carlo algorithm to compute� :

1. Choose two random non-singular matrices� and � with coefficients in a finite subset of
cardinal� of � ;

2. Compute:� � � � � ;

6Note that, if� is not large enough, this may require to work in an extension of � [24].

24 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

3. For
� � � � � , compute� � � det� � � � and let� � � �

;

4. Return
 � Max
 � � � � � � � � � � � �
 �� � 	
.

(Note that step 3 and 4 may be replaced by a logarithmic search to compute
).

In any case,
 � � . The probability of error, which occurs when
 � � , corresponds to executions
where the evaluation� � of polynomial� � is zero although� � , of degree� � , is not identically zero.
From theorem 7, this probability is bounded by� �

� . Choosing� � � � results in a Monte-Carlo
algorithm with probability of error lesser than

�
� .

Arithmetic cost is dominated by the computation of the� determinants. If Chistov’s method
[11] is used (see chapter 4), this cost is:

� � � � � � � � 	 � �
� � � (1.35)

In order to improve efficiency, determination of
 may be computed using a logarithmic scheme
instead of the previous brute force method. Using the efficient randomized algorithm ofKaltofen
and Pan [33] to compute the determinant (see chapter 4), the parallel cost becomes

� � � � � � � � 	 � � � 	
 � � 	 (1.36)

Note that such an algorithm uses mainly randomization in order to provide a parallel computation
scheme for the rank.

1.4.2 From Monte-Carlo to Las Vegas

The building of a Las Vegas algorithm from a Monte-Carlo one consists mainly in verifying that
the output is a correct solution to the initial problem. Such a verification is easy from the previous
algorithm; it suffices to verify that all columns (resp. rows) of the matrix � � � � � are linear
combinations of
 independent columns (resp. rows) in� ,
 being the output of the algorithm.

Consider the following splitting for� , the first block� � � being of size
 �
 :

� �
�

� � � � � �
� � � � � � �
 (1.37)

� � � is a non-singular matrix. Let� � � � � �
� �� � and � � �

� �� � � � � ; note that� and � � are of
size � � �
 � �
 . Since� and � are non-singular,

�
is of rank
 iff the last � � �
 � rows and

columns of� are respectively linear combinations of the
 first ones. This relies on the following
identities: ���

��

	
� � � � � �
 � � 	

� � � � � �
�
� � �
� � � � �

�
� � �
� � � � � (1.38)

Assuming a Las Vegas algorithm to compute�
� �� � with parallel cost� � � � 	
 � � 	 � � � 	
 � � ([33],

see chapter 4), those identities can be verified with a parallel cost:

� � � � 	
 � � 	 � � � 	
 � �
 (1.39)

This results in an optimal randomized Las Vegas algorithm to compute the rank.

1.4. RANDOMIZATION TO DECREASE TIME OR PRESERVE WORK. 25

In this algorithm, randomization is strongly used for preconditionning the input (computation
on � � � instead of

�
) in order to suppress data dependencies that bounds parallelism. A natural

question is then the existence of a fast deterministic algorithm, i.e. withfew dependencies. In [44],
Mulmuley provided such a deterministic algorithm for computing the rank: it achieves parallel
time � � � 	
 � � � but polynomial inefficiency. Then, randomization is required to provide efficiency.

1.4.3 Randomization to provide efficiency

Based on a generalization of a method developed in [27] for arbitrary fields, Mulmuley algorithm
[44] reduces the problem of computing the rank to the computation of a characteristicpolynomial
in an extension of the ground field� .
In the following,

�
is assumed symmetric; this is done without loss of generality since

rank� � � �
�
� rank �

�
� �

� � � � �

Theorem 8 [44] Let
�

be a square symmetric matrix over a field� and let � be the highest
integer such that� � divides the characteristic polynomial� � � � � � � �

�
� � � � � � � � � � of the matrix� �

over � � � � :
� � �

�
�����

�
� �

� ...
�

� � �

	

�

�

Then rank� � � � � � � .

Deterministic parallel algorithms for computing the characteristic polynomial in parallel time
� � � 	
 � � � are known [16, 11] (cf chapter 4) but they have polynomial� � � � inefficiency. Even if
we assume an optimal algorithm for computing the characteristic polynomial, the cost of the above
algorithm would be:

� � � � 	
 � � 	 � � � � � �
� � � � � � (1.40)

Since� � � � � are polynomials of degree� � � � , a way to obtain efficiency is to get rid off polynomial
arithmetic on� using evaluation at a random value.
Moreover, efficient� � � � � � � � 	 � � � 	
 � � randomized algorithm are known for computing the min-
imal polynomial. Multiplying

� �
by a random non-singular matrix over� results, with high

probability, in a matrix with distinct eigenvalues; then, minimal and characteristic polynomial are
equal.
Those two steps of randomization results in the following efficient Monte-Carlo algorithm for
computing the rank:

1. Choose a random non-singular matrix� ;

2. Choose a random value� in � (or in an extension if� is too small);

3. Compute the minimal polynomial� � �
 � � � of the matrix� � �
;

26 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

4. Return� � � where� is the highest integer such that� � divides� � �
 � � � .
The parallel cost is then:

� � � � 	
 � � 	 � � � 	
 � � (1.41)

which results also in an efficient Monte-Carlo algorithm.

Remark. The above algorithm is very close to the one presented in 1.4.1; Mulmuley algorithm
can effectively be considered as an inefficient deterministic versionof 1.4.1. This is not surprising
since both randomized algorithms solve efficiently the same problem. However, we point out two
different motivations for the use of randomization.

1.4.4 Conclusion

In the above examples, randomization is used to provide work-optimal computations from either
slow or fast but not efficient deterministic algorithms. Due to the fact thatonly randomized algo-
rithms are known for computing efficiently the solution of linear systems in polylogarithmic time
([33] cf chapter 4), randomization is an important tool in parallel computer algebra.

1.5 Parallel time complexity and NC Classification

An efficient parallel algorithm achieves polynomial speed-up within an optimal(or near optimal)
number of operations. Obtaining bounds on the parallel time required to solve a given problem
within a reasonable number of operations is then of fundamental interest. Moreover, as detailed in
previous sections, very fast parallel but inefficient algorithms may be of practical interest if they
can be coupled to an efficient but slow algorithm.

In the framework of parallel complexity,� � class [13] which includes polynomial sequential
time problems that have a polylogarithmic parallel time plays an important role [35]. The parallel
model used in the formal definition of� � is log-uniform family of boolean circuits [53].� �
 is
the class of problems that can be solved by such a family with depth� � � 	

 � � and� � � � �

boolean
gates7. For instance, integer arithmetic (

�
, � , � and Euclidean division) lies in� � �

. Introduction
of gates that deliver in output a random bit allows to define corresponding randomized classes:� � � for Monte-Carlo circuits and� � � for Las Vegas ones. Problems� -complete [28, 49, 35]
are in � � only iff � � � � ; among them, themonotone circuit value problem(MCVP) consists
in the evaluation of a boolean circuit, roughly equivalent to a DFG with boolean nodesas defined
in this chapter. The integer greatest common divisor remains an open question; only sub-linear
� �

�� � � � � algorithms are known [34, 35].
The algebraic extension [61] of this primitive model allows to build circuits which gates com-

pute compute arithmetic operations in an algebraic domain. A gate testing nullity(� � �) is intro-
duced in order to mix boolean and arithmetic operations. For instance� �
� (� stands forfield)
is the class of problems that can be solved by log-uniform family of circuits whosegates perform

7Gates compute bounded fan-in boolean operations (or, andandnot) and have unbounded fan-out [26]. Extensions
to unbounded fan-in gates leads to class� � [29].

1.6. CONCLUSION 27

arithmetic operations in any field, i.e.
�

, � , � , � and � � � . Complexity of basic computer alge-
bra problems has been extensively studied [8, 13, 59, 60, 35, 45]. Polynomial arithmetic(

�
, � , �

and Euclidean division) lies in� � �� [45]. An important class is� �
 � which contains problems
� � �

-reducible to the determinant of a matrix; matrix powering is complete for� �
 � . � �
 �
is included in� � �� . Most of linear algebra problems lie in� � �� : rank, null-space, minimal and
characteristic polynomial, gcd of many polynomials [8, 44], Hermite normal form ofpolynomial
matrices [31], Smith and symbolic Jordan forms [52, 58, 57, 21]. Note that those problems admit
an optimal� � � � 	
 � � 	 � � � � � � parallel algorithm but using randomization [33, 23, 24, 45]. Though,
in certain cases, some general techniques are known to remove randomness without increasing the
work [42], no work optimal deterministic algorithms with poly-logarithmic timeare known for
those problems.

As it appears for most computer algebra problems studied in this chapter, parallel algorithms
often appear as a restructuration of sequential ones, taking into account algebraic properties of the
arithmetic operations involved. Although evaluation of a boolean circuit is� -complete, several
algorithms have been developed to evaluate arithmetic DFGs (also called straight-line programs)
taking benefit of the underlying structure. In a semi-ring, DFG that are trees can be evaluated in
� � � 	
 � � time without increasing the number of operations performed [9]. Any DFG performing
� operations in a semi-ring and whose outputs are of arithmetic degree8 � can be evaluated in
� � � � 	
 � � 	
 � � � � 	 � � � [32]. This result has been extended to DFGs performing operations in a
lattice [51]. A more general simulation of a RAM machine on a PRAM one [43] shows that any
DFG can be evaluate in parallel on an unbounded number of processors with polynomial speed-up.

1.6 Conclusion

This chapter overviews the PRAM framework (execution model and main algorithmic techniques)
in which parallel algorithms are built and analyzed. The macro data-flow graph (DFG) related to
the execution plays a central role: it describes data-dependencies between blocks of instructions.

Abstract measures used to analyze algorithms aredepthandwork; arithmeticandcommuni-
cationcosts are distinguished. The one corresponds to operations performed (macro-instructions
nodes) while the other to access in the shared memory (data dependencies nodes). Arithmetic work
and depth are used for many years to analyze performances of parallel algorithms [9, 55, 35, 28, 6].
Due to experimental constraints, relevance of communications costs (i.e. total communication traf-
fic – work - and total communications delay) has been pointed out to obtain practical performant
programs [5, 19]. Since minimizing communications overhead and minimizing parallel time are
antagonist, good trade-offs have been studied for several common algorithms [47, 1, 48]. Granu-
larity, defined as the arithmetic-to-communication works ratio, appears asa good parameter.

8In such a DFG, any output may be equivalently seen as a polynomial whose indeterminates are the inputs. The
arithmetic degree is then the maximal degree of polynomialscorresponding to the outputs.

28 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

Bibliography

[1] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAM’s.Theoretical
Computer Science, 71:3–28, 1990.

[2] A. Aho, J. Hopcroft, and J. Ullman.The design and analysis of computer algorithms.
Addison-Wesley, 1974.

[3] D. Bailey. Extra high-speed matrix multiplication on the cray-2.SIAM J. Sci. Sta. Comput.,
9:603–607, 1988.

[4] J. L. Balcázar, J. Dı́az, and J. Gabarró.Structural Complexity II. Springer-Verlag, Berlin,
1990.

[5] D. Bertsekas and J. Tsitsiklis.Parallel and distributed computation. Prentice-Hall, New
York, 1989.

[6] G. E. Blelloch. Programming Parallel Algorithms.Communications of the ACM, 39(3):85–
97, 1996.

[7] A. Borodin and I. Munro. The Computational Complexity of Algebraic and Numeric Prob-
lems. Elsevier, New-York, 1975.

[8] A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and gcd computations.
Information and Control, 52:241–256, 1982.

[9] R. Brent. The parallel evaluation of general arithmetic expressions.Journal of the ACM,
21:201–206, 1974.

[10] T. Bubeck, M. Hiller, W. Küchlin, and W. Rosentiel. Distributed symbolic computation with
DTS. In Proc. of IRREGULAR’95, Lyon, France, pages 231–248. Springer-Verlag LNCS
980, Sep. 1995.

[11] A. L. Chistov. Fast parallel calculation of the rank of matrices over a field of arbitrary charac-
teristic. InProceedings of Fundamentals of Computation Theory’85, pages 63–68. Springer-
Verlag LNCS 199, 1995.

[12] R. Cole and U. Vishkin. Approximate Parallel Scheduling. Part I : The Basic Technique
with Applications to Optimal Parallel List Ranking in Logarithmic Time.SIAM Journal on
Computing, 17(1), 1988.

29

30 BIBLIOGRAPHY

[13] S. Cook. A taxonomy of problems with fast parallel algorithms.Information and Control,
64:2–22, 1985.

[14] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random
access machines with simultaneous writes.SIAM Journal on Computing, 15:87–97, 1986.

[15] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.Journal
of Symbolic Computation, 9:251–280, 1990.

[16] L. Csánky. Fast parallel matrix inversion algorithms.SIAM Journal on Computing, 5:618–
623, 1976.

[17] B. Dumitrescu, J.-L. Roch, and D. Trystram. Fast matrix multiplications algorithms on mimd
architectures.Parallel Algorithms and Applications, 4(2), 1994.

[18] S. Fortune and J. Wyllie. Parallelism in random access machines. InProceedings of the
10th ACM Symposium on Theory of Computing, pages 114–118, San Diego, CA, 1978. ACM
Press.

[19] I. Foster.Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-
ware Engineering. Addison-Wesley, Reading, MA, 1995. http://www.mcs.anl.gov/dbpp.

[20] K. A. Gallivan, R. Plemmons, and A. H. Sameh. Parallel Algorithms forDense Linear
Algebra Computations.SIAM Review, 32(1), 1990.

[21] T. Gautier and J.-L. Roch.� � � computation of a gcd-free basis and application to paral-
lel algebraic number computations. In E. Kaltofen, editor,Parallel Symbolic Computation
(PASCO’97), 1997.

[22] T. Gautier, J.-L. Roch, and G. Villard. Regular versus irregular problems and algorithms. In
Proc. of IRREGULAR’95, Lyon, France, pages 1–26. Springer-Verlag LNCS 980, Sep. 1995.

[23] M. Giesbrecht. Fast algorithms for matrix normal forms. In33rd IEEE Symposium FOCS,
Pittsburgh, pages 121–130, 1992.

[24] M. Giesbrecht.Nearly optimal algorithms for canonical matrix forms. PhD thesis, University
of Toronto, Department of Computer Science, Canada, 1993.

[25] J. W. Hong and H. T. Kung. I/O complexity: the red-blue pebble game. InProc. 13th ACM
Annual Symposium on Theory of Computing, pages 133–139, 1981.

[26] H. Hoover, M. Klawe, and N. Pippenger. Bounding fan-out in logical networks.J. ACM,
31:13–18, 1984.

[27] O. Ibarra, S. Moran, and L. E. Rosier. A note on the parallel complexity of computing the
rank of ordern matrices.Information Processing Letters, 11:162, 1980.

[28] J. Jájá.An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachussets,
1992.

BIBLIOGRAPHY 31

[29] D. Johnson. A Catalog of Complexity Classes. In J. van Leuwen, editor,Algorithms and
Complexity, pages 67–161. Elsevier, 1990.

[30] E. Kaltofen. Parallel algebraic algorithm design. Technical report, Rensselaer Polytechnic
Institute, 1989. Lecture notes for a tutorial, ISSAC’89.

[31] E. Kaltofen, M.-S. Krishnamoorthy, and B. Saunders. Parallel algorithmsfor matrix normal
forms. Linear Algebra and its Applications, 136:189–208, 1990.

[32] E. Kaltofen, G. Miller, and V. Ramachandran. Efficient parallel evaluation of straight-line
code and arithmetic circuits.SIAM Journal on Computing, 17:687–695, 1988.

[33] E. Kaltofen and V. Pan. Processor efficient parallel solutions of linear systems over an abstract
field. In Proc. Third Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 180–191, Hilton Head, SC, 1991. ACM Press.

[34] R. Kannan, G. Miller, and L. Rudolph. Sublinear parallel algorithm for computing the greatest
common divisor of two integers.SIAM Journal on Computing, 16-1:7–16, January 1987.

[35] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van
Leuwen, editor,Algorithms and Complexity, pages 869–932. Elsevier, 1990.

[36] R. M. Karp. An introduction to randomized algorithms.Disc. Appl. Math., 34:164–201,
1991.

[37] L. R. Kerr. The effect of algebraic structure on the computational complexity of matrix mul-
tiplications. PhD thesis, Cornell University, New-York, 1970.

[38] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms.
Theoretical Computer Science, 71:95–132, 1990.

[39] V. Kumar, A. Grama, A. Gupta, and G. Karypis.Introduction to Parallel Computing:Design
and Analysis of Algorithms. Benjamin Cummings, Redwood City, 1994.

[40] J. Ladreman, V. Pan, and X.-H. Sha. On practical acceleration of matrix multiplication.
Linear Algebra and its Applications, 1992.

[41] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays – Trees –
Hypercubes. Morgan Kaufmann, New-York, 1992.

[42] M. Luby. Removing Randomness in Parallel Computation without a Processor Penalty. J.
Computer and System Sciences, 47:250–286, 1993.

[43] L. Mak. Parallelism always help.SIAM Journal on Computing, 26(1):153–172, 1997.

[44] K. Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an arbitrary
field. Combinatorica, 7(1):101–104, 1987.

[45] V. Y. Pan and D. Bini.Polynomial and Matrix Computations I. Birkhauser, Boston, 1994.

32 BIBLIOGRAPHY

[46] V. Y. Pan and F. P. Preparata. Work-preserving speed-up of parallel matrix computations.
SIAM Journal on Computing, 24(4), 1995.

[47] C. H. Papadimitriou and J. D. Ullmann. A communication-time tradeoff.SIAM Journal on
Computing, 16:639–646, 1987.

[48] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independentanalysis of
parallel algorithms.SIAM Journal on Computing, 19(2):322–328, 1990.

[49] I. Parberry.Parallel Complexity Theory. Pitman, London, 1987.

[50] F. P. Preparata and D. V. Sarwate. An improved parallel processor boundin fast matrix
inversion.Information Processing Letters, 7:148–150, 1978.

[51] N. Revol and J.-L. Roch. Parallel evaluation of arithmetic circuits. Theoretical Computer
Science, 162:133–150, 1996.

[52] J.-L. Roch and G. Villard. Fast parallel computation of the Jordan normal form of matrices.
Parallel Processing Letters, 6(2):203–212, 1996.

[53] W. Ruzzo. On uniform circuit complexity.J. Computer and System Sciences, 22, 3:365–383,
1981.

[54] J. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities.J. ACM,
27(4):701–717, 80 1980.

[55] Y. Shiloach and U. Vishkin. An� � � � � 	
 � � parallel Max-Flow algorithm.Journal of Algo-
rithms, 3:128–146, 1982.

[56] V. Strassen. Gaussian elimination is not optimal.Numerische Math., pages 354–356, 1969.

[57] G. Villard. Fast parallel algorithms for matrix reduction to normal forms. Appli. Alg. Eng.,
Comm. Comp., to appear.

[58] G. Villard. Fast parallel computation of the Smith normal form of polynomial matrices. In
International Symposium on Symbolic and Algebraic Computation, Oxford, UK, pages 312 –
317. ACM Press, July 1994.

[59] J. von zur Gathen. Parallel algorithms for algebraic problems.SIAM Journal on Computing,
13:802–824, 1984.

[60] J. von zur Gathen. Parallel arithmetic computations : a survey. InProc. 12th Int. Symp. Math.
Found. Comput. Sci., Bratislava, pages 93–112. LNCS 233, Springer-Verlag, 1986.

[61] J. von zur Gathen. Algebraic complexity theory.Ann. Rev. Comput. Sci., 3:317–347, 1988.

Chapter 2

Programming models and scheduling

33

34 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

In order to analyze performance of algorithms, a formal model is needed to take thecosts into
account. The success of the PRAM model is mainly due to the fact that it does not attempt to
represent any parallel architecture but can be mapped onto various ones. Moreover, the simulation
on a realistic machine can be made efficient (up to a constant related to thegranularity), provided
many processors of the PRAM are mapped onto a single processor of a host machine. Thissuccess
is brought to evidence by the fact that most of the tricks used to optimize practicalperformances
when programming on a given architecture are relevant to algorithmic techniques that are theoret-
ically justified on the PRAM model.

Given an algorithm (let us say a macro data-flow graph – DFG – as presentedin chapter 1) and
a particular multiprocessor architecture, the problem then is reduced to:

� find a good (the best) schedule of the DFG;

� implement the resulting algorithm in a programming language.

Only now, the performance of the program, i.e. the completion time of an execution,may be
determined. Assuming fixed the initial algorithm, the machine and the input, this performance
depends directly on the scheduling strategy. Tuning the program ammounts to improving the
schedule it implements.

This chapter presents the main techniques used to schedule data-dependencies graph (DFG)
on a given architecture. As presented in chapter 1, a DFG is the abstract representation of the
execution of a particular program on a specific input data� . A fine grain description (elementary
instruction, elementary data dependency) is unrealistic for executions requiringhours of computa-
tion time.
We will thus assume that arithmetic nodes of the DFG correspond to sequence of instructions: each
arithmetic node is then weighted by the number of elementary instructions it performs. Arithmetic
depth
 � � � and work� � � � � are evaluated taking into account nodes weights.
 � � � is a lower
bound of the minimal time required by any schedule ignoring communications times.

� � � � is the exact number of operations required by a sequential execution of the algorithm.
Since the best schedule may replicate some arithmetic nodes in order to minimize completion time,
note that� � � � is also a lower bound on the number of operations performed by any schedule.
Similarly, transition nodes may correspond to a complex data structure (not a single word); each
transition node is weighted by the size of the data it corresponds to. Communication delay � � � � �
and work� � � � � are also evaluated accordingly. Ignoring arithmetic time,� � � � � is an upper bound
on the minimal communication time required by the best schedule for an infinite numberof pro-
cessors.� � � � � is an upper bound on the number of remote access (communications) performed
by any schedule.

As straightened in the previous chapter, the initial parallel algorithm is assumed efficient, i.e.
� � � � � � � � � � � � � where� � � � � is the time of the best known (uniform) sequential algorithm,�
being the size of the input. Moreover, in order to make performance evaluation with � in input, we
assume that there exists a constant� such that:

� � 	 � � � � � � � � � � � � � � � � � � � (2.1)

Note that, for a given input� , DFG� may be known only after completion: instructions or
transitions nodes and edges are dynamically built. In the language ATH introduced in chapter

2.1. ASYNCHRONOUS DISTRIBUTED ARCHITECTURES 35

1, those nodes are created either by execution of afork instruction or access to a shared data.
Similarly, the cost of any instruction node (resp. size of data related to any transition) is known
only after completion of the instruction (resp. communication). In such a generalcontext, DFG�
has to be scheduled using an on-line algorithm. Related to a functional programming model,
most of computer algebra algorithms present such a dynamic behavior; we thus focus on on-line
scheduling algorithms.

Organization of the chapter is as follows. In the first section, specific characteristics of asyn-
chronous distributed architectures are recalled. Costs of basic operations are modeled by theLogP
model introduced in [15]. Basic mechanisms allow parallel and distributedprogramming: com-
munications, threads, remote memory access and synchronizations tools. In the second section,
the scheduling of a PRAM algorithm on such a machine is discussed. Approaches may be distin-
guished in two classes. The first one [54, 28] is based on the simulation of a PRAMmachine on a
given architecture: the execution of the parallel algorithm is managed via thesimulation. Global
synchronization and emulation of the shared memory, which are at the basis of the PRAM model,
are key points. The second one [26, 51, 38, 50, 5, 19] is based on the direct scheduling of the
DFG. The execution of the algorithm is handled by a scheduling algorithm. Both approaches are
motivated by the availability of provably good approximation algorithms to solvethe underlying
theoretical problems (permutation routing [48, 42, 55, 40] or DAG off-line and on-line scheduling
[29, 49, 13, 36, 47, 14, 8, 6, 30]).
The last section focuses on on-line scheduling algorithms which are of main interest in computer
algebra. We recall upper and lower bounds on the competitive-ratio without taking into account
scheduling and communication overheads. As a corollary, we exhibit a list-scheduling algorithm
which achieves optimal simulation of any efficient PRAM algorithm, taking into account those
overheads. Finally, we overview some programming languages or libraries based on those ap-
proaches, focusing on the one suited to computer algebra algorithms. We describe an effective
implementation of the theoretical language ATH introduced in chapter 1, ATHAPASCAN, which
achieves provably performances.

2.1 Asynchronous distributed architectures

2.1.1 Realistic models of distributed architectures

There is an apparent convergence in the field of distributed architectures which are similar to a
network of workstations. A parallel machine consists in a set of independent processors, each with
considerable local memory, linked by an interconnection network. Fundamental differences with
the PRAM model are the following (compare 2.1 to 1.1 in 1):

� asynchrony: each processor works independently with its own local memory; there are no
global synchronization.

� contention: the network is a resource with bounded access.

Like the local PRAM introduced in chapter 1, two levels of access may then be distinguished: local
and remote access (parallel machines are often called NUMA for non-uniformmemory access1.

1Note that this non-uniformity appears also at the processorlevel between cache and RAM access.

36 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

P0 M1 P1M0 Mp Pp

Interconnection Network

Figure 2.1: General structure of a distributed architecture.Differences with the PRAM presented
in chapter 1 are the absence of a global sequencer and contention for access to the network.

2.1. ASYNCHRONOUS DISTRIBUTED ARCHITECTURES 37

Costs of remote access are mainly characterized by two factors:

� bandwidth: the rate at which each processor can access memory;

� latency: the time between making a remote access request and receiving the reply. Latency
accounts for overheads involved in resource allocation (solving contention on network), du-
ration of communication (related to physical distance).

The network bandwidth that is available on recent parallel computers (� 1 GB/s on SGI Power
Challenge, Cray T3E, SUN HPC) and even on local networks (typically 1 Gb/s using Mirynet
connection or DEC Memory Channel) is becoming large enough compared to the bandwidth to
local memory; thus it appears less and less as a bottleneck. However, latency is a more serious
problem since it is bounded by physical limits.

Several variations of the PRAM model have been proposed in order to take into account those
practical constraints [15]: memory contention [40, 54, 42, 45], asynchrony [27], memory hierarchy
[3, 34], latency and bandwidth [47, 1]. Considering that point-to-point communication is abasic
primitive, the modelLogPproposed in [16] characterizes a distributed architecture by the following
parameters (fig. 2.2):

� : latency: an upper bound on the delay incurred in communicating an unit size data (i.e. a small
number of words) from its source to its destination; an extension to longer messageshas also
been developed [2].

� : overhead: the time a processor is engaged in the transmission or reception of a message;

� : gap: minimum time interval between consecutive message transmissions or receptions.
The reciprocal of� corresponds to the available communication bandwidth per processor; it
is denoted� in [47].

� : the number ofprocessors.

This model has been successfully used on different architectures to predict the execution time
of some parallel algorithms [16, 20]. As a consequence, classical balanced tree schemes used on
the PRAM to perform iterated sum or broadcast appear as non optimal [41].

As a conclusion, the portability of a parallel program cannot be achieved if the characteristics
of the target architecture are not taken into account. Notingly, the communicationparameters, that
are partly modeled byLogP, have significant influence on the performances.

2.1.2 Basic programming tools

Reliable message-passing communication is the lowest-level feature required for programming a
distributed architecture. It allows both to exchange data between processors (the basic functionality
of the PRAM shared-memory) and to express synchronization (the functionality ensured by the
sequencer of the PRAM).

Since 10 years, several message basic interfaces have been built on top of the low level ones
provided on any specific architectures in order to allow portable programming. Most famous
ones are PVM [24] and MPI [53]. MPI has been standardized [18] and is nowadays available

38 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

P0 M1 P1M0 Mp Pp

Comm
Buffer

Comm
Buffer

Comm
Buffer

gap (g)

overhead (o)

gap (g)

overhead (o)

Interconnection Network

Latency (L)

Figure 2.2: Communication cost parameters in the LogP model.

on any distributed architecture or network of workstations. Basic featuresof MPI are point-to-
point and (blocking) collective communications, communication contexts (communicators), user-
defined data-types. Other extensions concern remote memory access, parallelinput and output
(MPI-F), active messages and dynamic process control.

In order to hide the communication latency by arithmetic computations, two tools may be
used: asynchronous communications and threads. Threads are lightweight processes whichre-
quire a small overhead for context switching. They are handled directly in the source program:
a standard interface, POSIX, has been defined [10]. Threads have firstly been defined for con-
current programming and efficient use of SMPs (Shared Memory Processor) on a single node.
Since threads access concurrently the same memory space, synchronization toolsare provided for
atomicity, such as locks and semaphores (sometimes monitors).

Threads are well suited to hide latency on a distributed architecture: when a thread waits for
the result of a communication, it may be preempted and a ready one scheduled. Thus, several
portable programming interfaces have been built to couple a message-passing library (usually not
thread-safe) and a thread library (available on a single node), providing an easy way to the user for
lightweight remote procedure calls or active messages [21, 46, 9].

2.1.3 Shared virtual memory

On many distributed architectures, remote memory access are possible: they provide a virtual
shared memory analogous to the one of the PRAM. On such machines, specific hardwareallows
to load transparently a local or remote data in the cache of a processor. In orderto hide the latency
of remote access, prefetching and multi-threading is used.

The simulations of the PRAM shared memory on a distributed architecture use hash functions
(randomly chosen from a universal class) to map shared memory cells onto theones of the ar-

2.2. HOW TO SCHEDULE A DFG 39

chitecture (i.e. memory modules) [48, 42]. The delay of a simulation is the timerequired for a
single access. It is related to the evaluation of the hash function, the memory contention (when
several access to a same module occur), and the routing time if the network isnot complete. In
[48], a simulation with delay

� � � 	

 � of an EREW PRAM on a butterfly network is given. In
[40], randomized simulations of EREW and CRCW PRAMs on a distributed architecture with a
complete interconnection network (contention is not taken into account) are presented with delay
� � � 	
 � 	

 � 	

�
 � . Note that, concerning the CRCW PRAM, this simulation is at a factor� 	

�

from optimal.
In order to obtain optimal simulations, such delays are to be hidden by arithmeticcomputa-

tions. The key idea is parallel slackness [42, 55, 40]: it consists in simulating aPRAM with �
processors on a distributed architecture with fewer processors
 � � . The simulation is optimal
(time-processor optimal) if the delay for an access is proportional to� �
 . For instance, the previous
mentioned simulation [40] leads to time-processor optimal simulation of an EREW PRAM with
� �
 � 	
 � 	

 � 	

�
 processors on a distributed architecture with less than
 processors. Note that
parallel slackness is also involved when using asynchronous communications and threads to hide
latency.

On the contrary of communications, remote access to shared memory do not basically provide
a way of synchronizing the computations. In the PRAM, such a synchronization mechanismis
provided by the global sequencer. On distributed architectures, intrinsically asynchronous, syn-
chronization tools classically used are communications, locks and semaphores.

2.2 How to schedule a DFG

Being given an algorithm, the problem considered here is to schedule the DFG related to the
execution on input data on a distributed architecture. The goal is to obtain an optimal schedule
related to the DFG.

2.2.1 Scheduling cost of a DFG

Computing such an optimal schedule is a difficult problem. Even if communication costs are
ignored and the DFG fixed (i.e. no dynamic task creation) with tasks of known duration, computing
an optimal schedule is� � -complete and deciding whether the length of the optimal schedule is a
given integer� is co-� � -complete [23]. However, on machines with
 identical processors, there
are several polynomial algorithms with bounded competitive ratio, the most famousbeing list-
scheduling [29]. Moreover, even on non-uniform machines, approximation algorithms are known
[52, 30].

Computing a schedule implies an overhead in the execution time; this schedulingoverhead
is governed by the time required to compute the schedule itself (i.e. the cost ofthe scheduling
algorithm) and to realize this schedule (i.e. the mapping of tasks, preemption, migration). The
scheduling overhead is included in the execution time
 � � � � of the algorithm with input� on the
target machine.

Definition 5 Being given a scheduling algorithm
 , the execution time of an algorithm with input
� on a machine with
 identical processors using the schedule delivered by
 is denoted
 � � �� � � � .

40 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

The minimum execution time over all scheduling algorithms
 is denoted
 �� � � �
When there is no confusion about
 ,
 � � �� � � � is denoted by
 � � � � .
The cost of computing a schedule is directly related to the size of the DFG, i.e. the number

of tasks and dependencies it contains. Note that those costs are different from the arithmetic and
communication works considered in the previous chapter which take into account the number
of operations performed in each task and the number of communications related to each data
dependency (transition).

Definition 6 Let DFG(�) be the macro data-flow graph corresponding to the execution of a par-
allel algorithm on an unbounded number of processors. We define the following measures:

� � � � � � is the number of task nodes in DFG� � � � ;
� � � � � � is the number of transition nodes in DFG� � � � ;
� � � � � � is the maximal degree of a task node in� � � � � � ; the degree is the number of input

and output edges on a task node (to or from a transition node).

The scheduling cost
� � of DFG(�) is:

� � � � � � � � � � � 	 � � � � � � � � � � � �
Note that other measures may be considered in the analysis of a scheduling algorithm. For instance,
other parameters considered in [7] are the maximum number of edges between any pair of nodes
and the width of� � � � � � � , i.e. the maximum number of tasks that may be executed concurrently.

The finer DFGx, the larger its scheduling cost and thus the more expensive will the computation
of its schedule. Similarly to granularity, the regularity� is defined as the ratio of the arithmetic
work to the size of the DFG.

Definition 7 The regularity� � � � is defined by:

� � � � � � � � � �
� � � � � � � � � � �

A PRAM algorithm (or equivalently its related DFGs) if said ofpolynomial regularityiff:

� � � � � � � �
� �

� with � � �

Notation. In the following, we will consider the execution of a given algorithm on a given

processors machine with an arbitrary input� of size � . Thus, all notations are implicitly related
to � and � . For instance,� � will denote � � � � � , the number of task nodes in the macro data-flow
graph related to the execution on an unbounded number of processors with� in input.

2.2.2 Off-line and on-line scheduling

The DFG corresponding to the execution may be partially determined at compile time by data flow
analysis of the code of the algorithm, or may be discovered during the execution (depending on the
value of computed data) and completely known only after the end of the execution. Depending on
this knowledge of the DFG, the scheduling can be then computed off-line or on-line.

2.2. HOW TO SCHEDULE A DFG 41

Static allocation of tasks to processors.

When the DFG corresponding to the execution can be analyzed at compile-time, itis possible to
find a good schedule by hand, eventually with help of static scheduling tools. The resultof the
scheduling is to assign each task of the DFG to one processor (or more if replication is required).
On a given processor, tasks are sequentially ordered2 in order to respect precedences; data depen-
dencies between them are emulated by access to shared data in the local memory. When tasks are
placed on different processors, data-dependencies (i.e. access to data and precedence relations)
may be emulated in two different ways:

� By communication. The data corresponding to a write-read dependency has then to be ex-
plicitly sent from the writing task to the reading one. This operation correspondsto a phys-
ical global copy of the data; locally unreferenced data have to be deleted (localgarbage-
collection).
An important point is that the completion of receiving instructions implicitly implements the
precedence relation (synchronization).

� By shared-memory access. Communications that implement remote access are then implicit.
However, the precedence relation between non local tasks has to be describedusing global
synchronization tools.

As a result, before execution, each processor gets its own program. Usually,this program is the
same for all the processors but is parameterized by the pid of the executing processor in order to
implement different behaviors. PYRROS uses this approach and a specific scheduling algorithm
which performs a clustering of tasks [26, 25].

Dynamic allocation of tasks to processors.

A problem that arises frequently in computer algebra is that elementary tasksare often of unknown
cost. For instance, costs of arithmetic operations (on rationals, polynomials or matrices) are usu-
ally unknown at compile time since their are related to characteristics of the values computed at
execution time (size of the data, degree of a polynomial, sparsity of a matrix).Depending on such
values, parallelism (i.e. creation of a task) may be generated during the execution. In such a case,
an on-line scheduling algorithm is used.

Most of on-line scheduling algorithms are based on the following greedy scheme called list-
scheduling[4, 11]:

� When a processor creates a new task (fork instruction of the PRAM language ATH), it
stores it in a list of tasks.
Note that, there may existready tasks, i.e. whose precedence relations are satisfied, and
non-ready tasks, i.e. whose one of the precedent tasks is not completed.

� When a processor becomesidle (i.e it has no ready task to execute), it gets a ready task in
the list.

2Multi-threading may be used to describe a partial executionorder.

42 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

Algorithms vary depending on the way the list is managed and processors put and get tasks in it.
The program that implements the algorithm expresses afunctional parallelism: tasks generally

correspond to procedure or function calls. Non-ready tasks or data are calledfuture. An important
point concerns the management of data, parameters of the task: they can be systematically copied
in a stack corresponding to the function call or passed by a reference to a data in the shared mem-
ory. Precedence relations between tasks may correspond either to data dependencies or to task
precedences.

Scheduling operations

The previous section does not specify which instructions a scheduling can perform, except classical
computations and the possibility of executing a basic task – an elementary node inthe DFG – on
a processor. Migration instructions allow to suspend a task during its execution in order to map it,
eventually later, on another processor [52, 4]:

� migration restricted to restart:when a task is moved to another processor, its execution
restarts from its beginning;

� migration: when a task is migrated to another processor, its execution restarts fromits last
instruction performed.

A scheduling algorithm withno-preemptionmakes no use of those operations: it has no control
on a task once it has assigned it to a processor, just getting information when thetask is finished.
Migration restricted to restart, denoted in [52] asno-preemption with restarts, is useful on machines
whose processors are not identical.

2.2.3 Which scheduling algorithms in computer algebra ?

An important point is that on-line and off-line scheduling algorithms have theoretical foundations
[29, 22, 35, 11, 30]. There exist provably good approximation algorithms for both with bounded
competitive ratio. For both, specific algorithms are developed to increase performances for certain
classes of graphs (for instance trees or SP11 graphs – fork-join –).

Of course, performances of off-line algorithms are better when the DFG is knownand the
machine fixed. However, since on-line algorithms make no hypothesis on the execution(or few for
the determination of tasks precedences), they can be used for any class of applications and thus are
of general interest.

Thus, both techniques are used in computer algebra. For instance, block-scatteringmatrix
mapping, which can be considered as an hand-made off-line algorithm, leads to near-optimal per-
formances for linear algebra problems like dense matrix multiplication or inversion (cf chapter 1)
over a small finite field (e.g. GF(2)) on a distributed architecture with identical processors.

However, due to their generality and their close relation with functional parallelism [31, 51],
on-line scheduling are of specific interest for a parallel computer algebra system. In the following
we thus focus of those algorithms.

2.3. ON-LINE SCHEDULING ALGORITHMS 43

2.3 On-line scheduling algorithms

2.3.1 Foundations of on-line scheduling

Theoretical foundation of on-line scheduling algorithms is due to Graham [29]. The following
theorem appears has an arbitrary grain version of Brent’s principle presented in chapter 1. We
recall its proof which is the basis of most of further results.

Theorem 9 [29] If scheduling overhead (i.e. the cost of computing the schedule and managing
the list of tasks) and communication costs are not considered, any list-scheduling algorithm has
competitive ratio

�
� �

�� � , i.e.

 � � � � �
�

 �
 ��

.

A list-scheduling algorithm is such that, at any time, at least one processoris executing a task.
Then, if at a given time a processor is idle then there exists at least one processor which executes a
task. Let� � � be one of the tasks completed at date
 � and let� � � be the date when execution of� � �

has been started. Two cases arise:

1. either no processor was idle before� � � .

2. either there was at least one processor idle at a certain date before� � � . Let
�

be the latest
date before� � � when a processor was idle. At

�
, � � � was not ready (else it would have been

started on an idle processor). Thus, there exists a task� � � such that� � � was being executed at
�

and � � � � � � � . Let � � � be the date when execution of� � � has been started.

Recursively applying this scheme until case 1 occurs, we build a sequence of tasks � � � �

 �
� � � � � � � such that, at any time where a processor is idle, there exist

� � � � �
such that� � is being

executed on one processor.
Similarly to chapter 1, let
 be the minimal arithmetic time on an unbounded number of pro-

cessors and� � be the total number of operations. The total idle time is defined by� � �

 � � � � .
For

� � � � �
, let � � be the duration of task� � � . We have:� � � �
 � � � �
� � � � � which leads to:

 � � � � � �
 � � �

�

� � � � �

Besides, since tasks� � , � � � � �

are on a critical path:�
� � � � � �
 . This leads to:

 � � � �

� � � �
�

 �
 (2.2)

We also have
 �
 �� . Moreover, since� � operations are to be executed in any schedule,� � �

 �� . Replacing in 2.2, we obtain:
 � � �
� �

�� �
 �� .

As a corollary, we obtain the following constructive version of the simulation of a PRAM with

an unbounded number of processors on one with
 . Note that tasks is the DFG are of arbitrary
durations; the only restriction which is respected in the DFG representation is that once a task is
ready, it can be executed sequentially with no interruption due to synchronization. been considered
in the proposed

44 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

Theorem 10 Let � be an ATH PRAM program that run in (arithmetic) parallel time
 and work
� � on a given PRAM with an unbounded number of processors. Then� can be executed by an
on-line list scheduling to run in (arithmetic) parallel time
 � :

Max

� �
� �

 � 	
 � �
 � � �

� �

� � � �
�

 �
 � (2.3)

The proof is direct from 2.2.

Theorem 9 is stated in a restricted version [4]. In fact the bounds 2.2 holds even if the prece-

dence relation� considered by the list scheduling algorithm is weaker than the one� �
considered

for defining the optimal schedule. The proof is direct since we will also have� � � � �

 � � � � � � �

� � � . Clearly, the same remark holds if duration of tasks is increased.
This implies that neither adding precedence constraints such as synchronization barriers to obtain
a well structured DFG nor inserting artificially null operations in order to have all tasks of the same
length help any on-line algorithm.

Remark. This theorem generalizes Brent’s principle (theorem 1 in chapter 1) to arbitrary DFGs,
i.e. any ATH program where tasks are generated dynamically with arbitrary shared-data depen-
dencies and are of unknown durations.

2.3.2 Lower bounds for competitive ratio

A natural question is then to determine if it is possible to have a better competitive ratio than�
� �

�� � , either on the same model or by considering larger classes of scheduling algorithms.
This problem has been studied in [52], in which the following proposition is proved.

Theorem 11 [52] On the
 -PRAM, the competitive ratio is lower bounded by
�
� �

�� � for any
scheduling algorithm of the following classes:

1. Deterministic with no preemption,

2. Deterministic with migration;

and is lower bounded by
�
� �

�� � � for any randomized scheduling with no preemption.

We only sketch the proof for the first case. The complete proof for this theorem is given in [52].
The adversary builds the following DFG instance� due to Graham [29].� contains

� �
 �
 � � �
independent tasks. One task� � is of length
 , while other tasks�
 , � � � �
 �
 � � � are of length
1.

The optimal schedule is of length
 . It executes the task� � on a given processor, and the

 �
 � � � unit tasks�
 on the
 � �

remaining processors.
The length of any schedule of� is equal to
 � � , where� is the time when the task� � starts

its execution. Since the tasks durations are unknown for the scheduling algorithm, the adversary
strategy will thus consist in making� as large as possible.
The tasks that are processed first are then the
 �
 � � � unit time tasks�
 , that are executed in
 � �

2.3. ON-LINE SCHEDULING ALGORITHMS 45

time units with no idle time. Then, at time� �
 � �
, the task� � starts its execution. The length of

the obtained schedule is then�
 � �
, which provides the desired lower bound.
 .

As a consequence, neither preemption nor randomization can improve consequently perfor-
mances compared to list-scheduling.

In order to increase the competitive ratio, it is then required to use additional informations on
the DFG such as its shape or duration of its tasks.

For instance, we consider the case where all tasks are independent and sorted according to their
durations; note that only the ordering is known but not durations. In this case, the on-lineLPT list-
scheduling algorithm that assigns the task of maximal duration when a processor becomes idle has
competitive-ratio [29][12]:

Min

� � �
� �

�
�
 � 	 � � � �

� �

 � �

 � � (2.4)

Note that the adversary considered in the proof of theorem 11) Note that if no information is
given on the durations tasks, then the fact that they are independent is of no help to decrease the
competitive ratio

�
� �

�� � (cf the adversary considered in the proof of theorem 11).

Remark. List scheduling algorithms are involved as a basic level in on-line approximation algo-
rithms used for other kind of machines such as [52, 30]:

� uniform machines: processors speeds are constant and differ each one from a constantun-
known factor;

� non-uniform machines: there are no relation between processors speeds; the duration of a
task varies depending on the processor which executes it.

In this case, at least migration restricted to restart is requiredin order to guarantee a competitive
ratio [52].

2.3.3 Communications and scheduling overheads

Previous theorems do not take into account neither the cost of tasks allocation (i.e.scheduling
overhead) neither communications required for access in shared memory.

Several authors have considered the theoretical influence of those overheads on list scheduling
algorithms in order to provide provably optimal on-line scheduling algorithms. In [13], Cole and
Vishkin give an algorithm to schedule� independent tasks optimally on a PRAM with

�� � � � proces-
sors; this algorithm is used to implement the first optimal algorithm for list-ranking [37, 39]. In [6],
Blelloch, Gibbons and Matias study the scheduling of nested fine grain computations, implemented
in the language NESL [5]. Blumofe and Leiserson give an optimal list-scheduling algorithm for
strict multi-threaded computations3 [8, 7], based on randomized work-stealing; this algorithm is
in the kernel of the Cilk language [38]. Any of those scheduling algorithms restricts to a shape of
DFG and do not take into account contention problems.

3There is always a dependency between a thread and one of its ancestor and access to shared data are not considered.

46 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

In this section, we give a near optimal scheduling algorithm for any DFG shape but with re-
strictions on the arithmetic and communication costs. We prove that, if input size is large enough,
efficient and coarse-granularity PRAM algorithms4 are executed optimally by a brute force cen-
tralized list-scheduling algorithm on a distributed architecture.

We assume that the target machine is a distributed architecture with
 identical processors. In
order to take into account communication costs and contention, we refer to the LogP model (cf
section 2.1.1). The duration between the sending and the reception of a small message (i.e. one
word) is bounded by� � � � � � � � � .

Furthermore, we assume that a shared memory is simulated on the architecture with the help
of hashing functions (see section 2.1.3); the delay occurring for any access in theshared memory
is bounded by� . Note that� is related to the number of processors if no slackness is used.

Like in chapter 1, let� � and � � denote respectively the communication delay and work in-
volved by the algorithm.

Theorem 12 Let � be an ATH PRAM program that has parallel arithmetic cost�
 	 � � � , commu-
nication cost� � � 	 � � � and scheduling cost� � � 	 � � � . Then� can be executed to run in parallel
time
 � (including scheduling and communication overheads):

 � � � � � � � �

 � � � � � �

�

 � � � �
 � � � � �

� � � � � � (2.5)

The proof is based on an adaptation of the scheme used in theorem 9.
We consider here an implementation of a list scheduling on
 � �

processors, indexed
 � 	

 � � � .
The last processor,
 � , handles the list of tasks and assigns tasks to other processors.

For the sake of simplicity, we restrict the proof to the case where any shared variable is written
only once and then read only once; after read access completed, the space related to the shared data
is garbaged. This corresponds to the case of an EREW program with single-assignmentvariables.

When a processor
 � completes the execution of a task, it sends a message to
 � and waits for
receiving from
 � a new ready task to perform.
When a processor
 � creates a new task (fork instruction) it sends asynchronously to
 � a message
of size bounded by� � that define all data dependencies of the new task (i.e. the shared data that it
will read before its execution or write after its completion).

Processor
 � manages a list of ready tasks� and a list of idle processors� . For this, it uses two
arrays: the one,

�
, stores the task nodes created and not completed, the other,

�
, the descriptors of

the shared variables allocated. Any descriptors in
�

points to the task that requires the correspond-
ing shared data in reading. Pointers from

�
to

�
are updated at task creation and task completion.

When a task in
�

is pointed to by no more elements in
�

, it is put in � . The cost of this arithmetic
computation on
 � is proportional to� � but independent from
 and� : we neglect it compared to
�
 � � � � � � � � .
When
 � receives a message of task completion, it first updates

�
and

�
, putting eventually, new

ready tasks in� . It puts the processor in� . Then, while there are ready tasks in� and idle
processors in� , it gets a task from� and a processor from� , removes them from the lists and
asynchronously sends a message assigning the task to the processor; length of the message is at

4i.e. with polynomial speed-up, constant inefficiency and� �
 � � � � ��
 � � with � � � (cf chapter 1).

2.3. ON-LINE SCHEDULING ALGORITHMS 47

most � � . For the whole execution, the computation time on
 � needed for the management of
those lists is proportional to� � and independent from
 , � � and� : we also neglect it compared to
�
 � � � � � � � � .

Note that due to contention, a processor which is idle may wait at most�
 � � � � � � after
 � has
assigned a new task to it and before it receives it. Conversely, when a processor completes a task,
processor� � receives the corresponding message at most�
 � � � � � � tops after.

Moreover, let� � be the length of the task� � , � � � � � � and let� � be the number of unit word
shared data read by� � before and written during its execution. A processor is said idle if it i For
 � ,
the processor executing� � is considered as active (i.e.not idle) when it is not in the list� , i.e. from
the moment
 � has send a task to it and until
 � receives the task completion message from it: this
duration is bounded by� � � � � � � � � � �
 � � � � .
Let � � be the total idle time seen from
 � on processors
 � 	

 	
 � � � . Let
 � be the length of the
schedule; we have:

�
 � � �
 � � � � � � ��
� � � � � � � � � � � � � �
 � � � � (2.6)

We now follow the scheme of theorem 9. Let� � � be the last task completion message received by

 � at date
 � and let� � � be the date when
 � has assigned� � � . Two cases arise:

1. either no processor was idle for
 � before� � � .

2. or there was at least one processor idle for
 � at a certain date before� � � . Let
�

be the latest
date before� � � when a processor was idle. At

�
, � � � was not ready (else it would have been

started on an idle processor). Thus, there exists a task� � � such that� � � have been assigned
by
 � before

�
and whose completion message has been received by
 � after

�
and such that

� � � � � � � . Let � � � be the date when
 � has assigned� � � .
Recursively applying this scheme until case 1 occurs, we built a sequence of tasks � � � �

 �
� � � � � � � such that, at any time where a processor is idle, there exists

� � � � �
such that
 � has

assigned� � � to a processor and not yet received the corresponding completion message. We thus
have: � � � �
 � � � �
� � � � � � �

� � � �
� � � � �
 � � � � � . Besides, since tasks� � � ,

� � � � �
are on a

critical path:�
� � � � � � �
 and�
� � � � � � � � � � which leads to:

� � � �
 � � � �
 � � � � � (2.7)

where
 denotes the minimal arithmetic time on an unbounded number of processors.
Let � � � � � �� � � � � be the arithmetic work and� � � � � �� � � � � be the communication work.

Replacing 2.7 in 2.6 leads to:

�
 � � �
 � � �
 � � � �
 � � � � � � � � � � � � �
� � � � � �
 � � � �

which concludes the proof.

As a corollary we consider a coarse-granularity efficient PRAM algorithm with polynomial

regularity and bounded degree. For the corresponding DFG, this implies that for an input� of size
large enough:

� polynomial speed-up:� � � and

 (note that
 is fixed): are neglected compared to� � ;

48 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

� polynomial granularity:� � � � � � and thus� � � (note that� is bounded and� � � � �) are
also neglected;

� polynomial granularity:� � � � � � (note that� and� � are bounded) is also neglected.

This leads to the following result.

Theorem 13 Let � be an efficient ATH PRAM program that has polynomial granularity and poly-
nomial regularity and which have bounded degree.
Then, for any� � � , execution time of� on a distributed architecture with
 processors is asymp-
totically bounded by:

 � � � � � � � � � � � �

 � �

This time includes communication and scheduling overheads.

Note that we do not make use of slackess but instead use granularity to decrease communication
overheads. An interesting question would be to use slackness in order to obtain time-processor
optimal simulation, whatever the delay of� of access in shared memory is.

An improvement would be to decrease the factor�
 � � � � �
to
 � �

: this could be possible if
a distributed list-scheduling strategy was used. A classical example israndomized work-stealing:
when a processor becomes idle, it selects uniformly at random a processor to steal a task. When a
processor creates a task, it keeps it locally. Such a strategy is theoretically studied in [7]. Asymp-
totic bounds are given in the framework of strict multi-threaded computations. Other variants
exports tasks when exceeding a certain numbers of task creations.
Such list scheduling strategies are very popular in parallel functional languages such as Multilisp
[32] or Prolog [17].

In the last section, we turn to an effective implementation of the ATH language which allows
the building of the DFG and thus the effective use of the above provably optimal on-line scheduling
algorithm.

2.3.4 Athapascan: a simulation of the ATH PRAM language

ATHAPASCAN [43] is a parallel procedural language, inspired by Jade [50], that allows the con-
struction of the DFG of an application during the execution. It thus makes possible theuse of
provably optimal on-line scheduling algorithms. We give in this section an overview of the main
features of the language.

Similar to the ATH language introduce in chapter 1, ATHAPASCAN supports CUMULATIVE-
CRCW PRAM algorithms. The building of the DFG is implicit; thefork operation (called
new task in Athapascan) may take in argument an optional scheduling strategy, default be-
ing a distributed list-scheduling algorithm. Taking benefit of knowledge on the graph, this allows
to choose a adapted scheduling algorithm such as block-scattering for dense matrixcomputations
or DSC for DAG with known durations [25].

2.3. ON-LINE SCHEDULING ALGORITHMS 49

2.3.5 The ATHAPASCAN programming model

The ATHAPASCAN language is a strict and para-functionnal one. It is implemented as a C++
library; it uses inheritance and templates to provide a friendly and easy-to-use interface.

In ATHAPASCAN, parallelism is expressed by asynchronous procedure calls, which correspond
to the building oftasks. A task describes the execution of a specific procedure (which is defined by
formal parameters and a block of instructions) with effective parameters. Two parameter-passing
modes are possible, the by value mode copies the effective parameter into the local memory of the
task and the by reference mode shares the data among different tasks.

References to shared data are typed according to their access modes. Four modes are defined
to access shared data:read(a1_shared_r), write (a1_shared_w), read/write
(a1_shared_r_w) andaccumulation(a1_shared_cw). The three first modes are standard
and are used in other parallel languages [38, 50]. Accumulation is realized fromthe initial value
of the object by incrementation; this incrementation is defined by a binary functionf (default is
the C++ operator+=) which is assumed to beassociativeandcommutative.
Thus, ATHAPASCAN allows implementation of CUMULATIVE-CRCW PRAM algorithms.

The semantics of ATHAPASCAN 5 are such that each reading of a shared datum gets the value
of the last update (writing) in the sequential order of task creations (depth-firstordering). In the
current implementation of ATHAPASCAN, these semantics are implemented in the following way:
a task becomesexecutablewhen all the effective parameters that it requires in read (or read/write)
mode have been updated by predecessor tasks (relative to the sequential order of task creations).

2.3.6 Execution model of ATHAPASCAN

The control of the execution is based on the building of a macro-DFG which is represented by
a direct acyclic hyper-graph, which is distributed among the processors. Vertices correspond to
tasks and edges to data dependencies related to shared objects: hyper-edges are used to describe
concurrent writings and concurrent readings of shared objects. This graph can be labeled with
information attributes (arithmetic costfor tasks anddata sizefor shared object dependencies). This
graph is used to implement both the semantics and the scheduling of tasks. Different scheduling
algorithms (denoted asscheduler) are available and user-specific ones may be added. The role
of the scheduler is restricted to informing the system where and when tasks have to be executed,
taking into account information available from the graph. This functionality makespossible the
implementation of different classical provably good scheduling algorithms (list scheduling, ETF
[11], DSC [26], work-stealing [38] for example).

The following rules define the development of an execution:

� The first executable task is thea1 main() function.

� During the execution of a task:

– when a task is created (call to thea1_new_task directive), the new task is inserted
into the graph;

5ATHAPASCAN [43] allows other accesses to shared objects: postponed (suffix p) accesses allow the expression of
a larger degree of parallelism and arrays of shared objects.

50 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

– when a task terminates, shared data that it accessed in write or read/write mode are
updated. The task is then removed from the graph and the scheduler is informed of new
ready tasks (i.e. all shared objects accessed in read or read/write mode are available).

� The scheduler analyzes the graph to make task mapping and starting decisions. The system
performs the scheduling decision. When all shared data required by a task in read/read-write
mode have been received at the affected node, the task is started.

2.3.7 An example of Athapascan program

The figure 2.3 presents an ATHAPASCAN source code for the triangular resolution of
� � � �

;
the algorithm is presented in ATH in chapter 1 (fig. 1.6).

struct Update : public a1_task_elem {
Update(int size) {
set_cost(size*size*size);

}
// Performs X += -1/A*Y
void operator() (a1_shared_cw<matrix<float> > X,

a1_shared_r<matrix<float> > A,
a1_shared_r<matrix<float> > Y) {

X.cumul(- A.read().inverse() * Y.read());
}

}

struct FinalDivision : public a1_task_elem {
FinalDivision(int size) {
set_cost(size*size*size);

}
// Performs X = 1/A*X
void operator() (a1_shared_rw<matrix<float> > X,

a1_shared_r<matrix<float> > A) {
X.write(A.read().inverse() * X.read());

}
}

struct TriangularSolve : public a1_task {
TriangularSolve(int nb_elem) {
set_cost(nb_elem*nb_elem/2);

}
// Performs triangular resolution A*X=B
// A is coded such that A[n*i+j] ::= A[i][j]
void operator() (int n,

a1_array_of_shared_rp<matrix<float> > A,
a1_array_of_shared_cw<<matrix<float> > X,
a1_array_of_shared_rp<matrix<float> > B) {

for(int i=0; i<n; i++) {
X[i].cumul(B[i].read());
a1_new_task(FinalDivision(), X[i], A[n*i+i]);
for(int j=i+1; j<n; j++)
a1_new_task(Update(), X[j], A[n*i+j], B[j]);

}
}

}

Figure 2.3: Triangular resolution of
� � � �

2.4. CONCLUSION 51

2.4 Conclusion

In this chapter, the on-line scheduling of a parallel PRAM program on a distributedarchitecture
with a bounded number of processors has been analyzed. List-scheduling, frequently arising in par-
allel language implementations, have theoretical foundations. An optimal simulation of a PRAM
program with polynomial speed-up, polynomial regularity and coarse-granularity is given; cost of
communications are considered under the model LogP and a shared-memory is emulated using
hash functions.

Due to its experimental good performances [57, 56], most of languages implementing dynamic
parallelism use heuristics based on list-scheduling. They essentially differ on the shape of the
DFG, depending on the programming model they implement. Thus, performance of list schedul-
ing may vary depending on this model. For instance, if synchronization are authorizedin the
language (waiting for some future value for instance), the scheduling has to use migration; if not,
no guarantee can be given on the competitive ratio.

We focus in this conclusion on languages that use a provably efficient on-line schedulingal-
gorithm. HPF 2 introduced groups of independent tasks of unknown durations via function calls.
A BSP [54] program execution consists in a sequence of super-steps, each setted of independent
tasks. All shared memory access performed at a step are effective at the next one. Dynamic load
balancing is possible [54] but requires task migration in the considered implementation [28].

Functional languages use list-scheduling since a long time. For a survey on parallelism in
functional languages, see [33], we just mention here some characteristic languages. Sisal[44] is
a data-flow based language which defines a fine grain DFG; however, programming macro-tasks
in order to obtain a coarse-granularity algorithm is not directly possible. NESL [5] provides a
nested parallel model: graphs corresponds to recursive� -ary set of independent tasks with no
data-dependencies but synchronization at the join point. Access are emulated on a virtual shared
memory. Cilk [7, 38] is inspired from Multilisp and implements on the C language amodel of
strict functional computation. Tasks are mapped on functions; all data are accessed in the stack.
Function can be migrated at a synchronization point, explicitly defined in the program. Migrations
is reduced to a copy of the stack. ATHAPASCAN [19, 43] is inspired from Jade [50]; it implements
in a C++ library a programming model similar to the language ATH presented in the previous
chapter. Data-dependencies are defined by access to a shared data. Tasks corresponds to procedure
calls; parameters can be passed by value or by reference to a shared-data.This last mode defines
the precedence. When a task is ready, it can be executed till completion with no synchronization.

In computer algebra, list scheduling occurs frequently. The next chapter is devotedto a de-
scription of the different approaches considered in parallel computer algebra.,

52 CHAPTER 2. PROGRAMMING MODELS AND SCHEDULING

Bibliography

[1] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of PRAM’s.Theoretical
Computer Science, 71:3–28, 1990.

[2] A. Alexander, M. Ionescu, K. Schauser, and C. Scheiman. Incorporating long messages
into the LogP model. InProceedings of the 7th Symposium on Parallel Algorithms and
Architectures. ACM Press, 1995.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model of com-
putation.Algorithmica, 1993.

[4] J. Blazewicz, K. Exker, G. Schmidt, and J. Wȩglarz.Scheduling in Computer and Manufac-
turing Systems. Springer-Verlag, Germany, 1993.

[5] G. E. Blelloch. Programming Parallel Algorithms.Communications of the ACM, 39(3):85–
97, 1996.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient scheduling for languages
with fine-grained parallelism. InProceedings of the 7th Symposium on Parallel Algorithms
and Architectures, pages 1–12, Santa-Barbara, California, 1995. ACM Press.

[7] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Massachussets
Institute of Technology, Boston, 1995.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 356–368,
Santa-Fe, New Mexico, 1994.

[9] J. Briat, I. Ginzburg, M. Pasin, and B. Plateau. Athapascan runtime: Efficiency for irregular
problems. InProceedings of EuroPar’97. Springer-Verlag, Aug. 1997.

[10] D. R. Butenhof.Programming with POSIX threads. Addison-Wesley Professional Computing
Series, 1997.

[11] P. Chretienne, E. J. Coffman, J. K. Lenstra, and Z. Liu.Scheduling Theory and its Applica-
tions. John Wiley and Sons, England, 1995.

[12] E. Coffman and S. R. A Generalized Bound on LPT Sequencing.RAIRO Informatique,
10:17–25, 1976.

53

54 BIBLIOGRAPHY

[13] R. Cole and U. Vishkin. Approximate Parallel Scheduling. Part I : The Basic Technique
with Applications to Optimal Parallel List Ranking in Logarithmic Time.SIAM Journal on
Computing, 17(1), 1988.

[14] J. Colin and P. Chretienne. C.P.M. Scheduling with small communication delays and task
dupli cation.Operations Research, 39:680–684, 1991.

[15] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schausser, and T. v. E.
Ramesh Subramonian. LogP: A Practical Model of Parallel Computation.Communications
ACM, 39(11):78–85, 1996.

[16] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schausser, and T. v. E.
Ramesh Subramonian. LogP: Towards a realistic model of parallel computation. In proceed-
ings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 1–12, May 1993.

[17] J. C. de Kergommeaux and P. Codognet. Parallel logic programming systems.ACM Com-
puting Surveys, 26(3):295–336, september 1994.

[18] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A Message Passing Standard for MPP
and Workstations.Communications ACM, 39(7):84–90, 1996.

[19] B. Dumitrescu, M. Doreille, J.-L. Roch, and D. Trystram. Influence of scheduling on actual
high-performance computing applications: sparse cholesky factorization as a case study. In
Proceedings of PPAM’97 – 2nd International Conference on Parallel Processing and Applied
Mathematics, Zakopane, Poland, 1997.

[20] A. Dusseau, D. Culler, K. E. Schauser, and R. Mart in. Fast parallel sorting under LogP:
experiences with CM- 5.IEEE Transactions on Parallel and Distributed Systems, 7(8), 1996.

[21] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading
and communication.IEEEE Journal of Parallel and Distributed Computing, 1997.

[22] M. Garey, R. Graham, and D. Johnson. Performance guarantees for scheduling algorithms.
Operation Research, 26(1):3–21, Jan. 1978.

[23] M. Garey and D. Johnson.Computers and Intractability : A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[24] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, W. Manchek, and V. Sunderam.PVM: A
Users’Guide and Tutorial for Networking Parallel Computing. MIT Press, Cambridge,
Mass., 1994. Available electronically; see ftp://www.netlib.org/pvm3/book/pvm-book.ps.

[25] A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling DAG’s on
multiprocessors.Journal of Parallel and Distributed Computing, Dec. 1992.

[26] A. Gerasoulis and T. Yang. PYRROS : Static Task Scheduling and Code Generation for
Message-Passing Architectures. Technical report, Rutgers University, USA, 1993.

BIBLIOGRAPHY 55

[27] P. Gibbons. A more practical PRAM model. InProceedings of the 1989 ACM Symposium on
Parallel Algorithms and Architectures, 1989.

[28] M. Goudreau, J. Hill, K. Lang, and B. McColl. A Proposal for the BSP Worldwide Stan-
dard Library (preliminary version). Technical report, http://www.bsp-worldwide.org/, Oxford
University, GB, 1997.

[29] R. Graham. Bounds for Certain Multiprocessor Anomalies.Bell System Tech J., 45:1563–
1581, 1966.

[30] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to MinimizeAverage Com-
pletion Time: Off-line and On-line Approximation Algorithms. Technical Report516/1996,
Technishe Universität, Berlin, 1996.

[31] R. Halstead. Parallel symbolic computing.IEEE Computer, 19 (8):35–43, 1986.

[32] R. Halstead. Parallel computing using multilisp. In J. Kowalik, editor, Parallel Computation
and Computers for Artificial Intelligence, pages 21–49. Kluwer Academic Publishers, 1988.

[33] K. Hammond. Parallel functionnal programming: an introduction. In H. Hong, editor,First
International Symposium on Parallel Symbolic Computation (PASCÓ94), Lecture Notes Se-
ries in Computing, pages 181–194, 1994.

[34] T. Heywood and S. Ranka. A practical hierarchical model of parallel computation . Journal
on Parallel and Distributed Computing, 16(3), 1992.

[35] D. S. Hochbaum and Shmoys. Using dual approxiamtion algorithms for scheduling problems:
Theoretical and practical results.Journal of the ACM, 34:144–162, 1987.

[36] J.-J. Hwang, Y.-C. Chow, F. Anger, and C.-Y. Lee. Scheduling precedence graphs in systems
with interprocessor communication times.SIAM Journal on Computing, 18(2):244–257,
April 1989.

[37] J. Jájá.An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachussets,
1992.

[38] C. Joerg.The Cilk system for parallel multithreaded computing. PhD thesis, Massachussets
Institute of Technology, january 1996.

[39] R. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In J. van
Leuwen, editor,Algorithms and Complexity, pages 869–932. Elsevier, 1990.

[40] R. M. Karp, M. Luby, and F. M. auf der Heide. Efficient PRAM Simulation on aDistributed
Memory Machine.Algorithmica, 16:517–542, 1996.

[41] R. M. Karp, A. Sahay, E. Santos, and K. E. Schauser. Optimal broadcast andsummation in the
LogP model. InProceedings of the 5th Symposium on Parallel Algorithms and Architectures.
ACM Press, 1993.

56 BIBLIOGRAPHY

[42] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms.
Theoretical Computer Science, 71:95–132, 1990.

[43] J.-L. R. Mathias Doreille, François Galilée. Athapascan-1b: Présentation . Technical Report
http://navajo.imag.fr/ath1/, Projet APACHE, Grenoble, France, 1996.

[44] J. McGraw. SISAL: Streams and Iterations in a Sigle-Assignment Language – Reference
Manual. Technical Report Manual M-146, Lawrence Livermore National Lab., 1985.

[45] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by par-
allel machines with restricted granularity of parallel memories.Acta Informatica, 21, 1994.

[46] R. Namyst and J.-F. Méhaut. Pm� parallel multithreaded machine: a multithreaded envi-
ronment on top of pvm. InProceedings of EuroPVM’95, pages 179–184. HERMES (ISBN
2-86601-497-9), 1995.

[47] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independentanalysis of
parallel algorithms.SIAM Journal on Computing, 19(2):322–328, 1990.

[48] A. G. Ranade. How to emulate shared memory. InProceedings 28th Annual Symposium on
Foundations of Computer Science, pages 185–192. IEEE, 1987.

[49] V. Rayward-Smith. UET scheduling with unit interprocessor communication delays.Discrete
Applied Mathematics, 18:55–71, 1987.

[50] M. Rinard.The design, implementation and evaluation of Jade : a portable, implicitly paral-
lel programming language. PhD thesis, Stanford University, september 1994.

[51] W. Schreiner. A Para-Functional Programming Interface for a ParallelComputer Algebra
Package.Journal of Symbolic Computation, 21:593–614, 1996.

[52] D. B. Shmoys, J. Wein, and P. Williamson. Scheduling parallel machines on-line. SIAM
Journal on Computing, 24(6):1313–1331, 1995.

[53] M. Snir, S. W. Otto, S. Hess-Lederman, D. Walker, and J. J. Dongarra.MPI: The Com-
plete Reference. MIT Press, Cambridge, Mass., 1996. Available electronically; see
http://www.netlib.org/utk/papers/mpi-book.html.

[54] L. G. Valiant. A Bridging Model For Parallel Computation.Communications of the ACM,
33(8):103–111, 1990.

[55] L. G. Valiant. General purpose parallel architectures. In J. van Leuwen, editor,Algorithms
and Complexity, pages 944–971. Elsevier, 1990.

[56] A. S. Wagner and S. T. Chanson. Performance Models for the Processor Farm Paradigm.
IEEE Transactions on Parallel and Distributed Systems, 8(5):475–489, 1997.

[57] M. Willebeek-Le-Mair and P. Reeves. Strategies for dynamic load-balancing on higly parallel
computers.IEEE Transactions on Parallel and Distributed Systems, 4(9):979–993, 1993.

Chapter 3

Parallel computer algebra systems.

57

58 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

3.1 Introduction

In the following we overview and try to compare some existing softwares forparallel computer
algebra computations. Our aim is to point out the main research directions that could be applied in
general purpose situations.1

We focus more onparallel systems, parallel environments, parallel librariesor parallel exten-
sions of the existingto execute algebraic algorithms than on closely related topics such asparallel
deduction, parallel logic or functional parallel programming. In the same way, we will not refer
to the numerous implementations of specific algorithms that can be found in the literature. Well
known topics in computer algebra have been addressede.g. linear algebra, polynomial computa-
tions, Gröbner bases computations . . .But, even if important from an algorithmicpoint of view,
these particular implementations usually do not propose any new concept from the system point of
view.

Since the 80’s and the first conferences on the subject [13, 14] many experiments have been
done in parallel computer algebra. Two concurrent evolutions, the progress of the parallel com-
puters and networks, and the coming out of some common paradigms – we specially think tothe
use ofthreads– have given rise to numerous reports on such experiments. We will list and briefly
describe the main ones2 from

�
3.4 to

�
3.143. It may not be vain to note that even if each environ-

ment is usually tested and validated by its authors on few specific applications, most of them can
be used in much general contexts.

3.1.1 Simultaneous computations in computer algebra

In parallelizing computer algebra, one is faced to three main different tasks:

- Computer algebra aspects: one has to continue the efforts in sequential performance.

- Expressing parallelism: programming details, especially in parallel, can be very time-
consuming. One has to free the user from too technical details by providing a simple way to
express parallelism.

- Issues relating to parallel implementation: one has to study problems such asload-balancing,
scheduling, granularity and locality.

The first task concerns computer algebra and the two other ones concern parallelism, the main
problem is thus to determine how the two aspects have to interact. Depending on therelative
importance of these aspects for the end-user, three different approaches may be distinguished to
conceive a parallel computer algebra system or to provide parallel resources to the user:

A. Parallel aspects are transparent to the end-user who use a sequential systemas usually. This
can be accomplished by replacing calls to sequential routines to calls to parallel ones using
a parallel library. Sequential operators may be overloaded.
Advantages: the user is free from any parallel aspect. Codes do not need any modification.

1An overview by W. Küchlin appeared in [65] and provides manyrelevant complementary remarks and references.
2The author will appreciate any remark about forgettings to improve subsequent versions of this document.
3The ordering is not relevant.

3.1. INTRODUCTION 59

Drawbacks: the user relies on the available parallel library and cannot augment it.
This strategy can be viable and very interesting when key routines of the computeralgebra
kernel are parallelized. This is one of the target goals with the vectorization of the basic
arithmetic in [71, 72] (cf

�
3.7), or with its parallelization [17] (cf

�
3.13.6).

We may note that the same result could be obtained using automatic parallelization of
sequential codes, and generate parallelism at compilation. Such studies remains theoreti-
cal [37] (cf

�
3.13.4), especially in computer algebra, we are not aware of practical aspects of

this approach.

B. Using a sequential computer algebra system or library, the language is augmented toprovide
means to express parallelism. The sequential kernel is linked to or rely on a library that han-
dle the parallel tasks and the related data communications. This is currentlythe most com-
mon strategy. This uses either standard orad-hoccomputer algebra library (From MAPLE,
REDUCE . . . to C++ libraries from the scratch). Eithermessage passingor afork / join model
is used to express parallelism.
Advantages: efficiency should be obtained for any parallel algorithms if the parallel software
is efficient. Any level of task granularity is thinkable.
Drawbacks: the user is not free from parallel aspects.

As said above most of the references we have got enter this class. They willbe different in
the parallel programming model used and in the way the parallel tasks are mappedonto the
physical processors. We refer to

�
3.1.2 and to subsequent sections for more technical aspects

and descriptions.

C. In a distributed environment, several simultaneous sessions of a computer algebra system may
be launched and considered as servers of a unique application.
Advantages: parallel algebraic computations are made possible in an heterogeneous envi-
ronment (heterogeneous computational units).
Drawbacks: parallelism is generally used at a coarse-grain level of granularity.

This approach was somehow the one followed in [18] (cf
�
3.4), even if DSC mainly be-

long to the previous class of systems. The same remark is valid for the software in [31]
(cf

�
3.14.3). For distributed computer algebra the reader may refer to [28, 29] and refer-

ences therein. With the evolution of the machines and of the communication networks,the
boundary between distributed and parallel computations may be very indefinite. Further-
more, the two fields have strongly related concerns. One of these is to develop means of
communicating mathematical data. We refer to

�
3.15 for a brief discussion on this subject.

3.1.2 Parallel computer algebra

The parallel library in the first approach above relies either on the second approach or on the third
one. The distributed approach is not fully usable when communication is really intensive or when
efficiency is the main concern. Up to now, for these two main reasons, we will focus on the second
one, we mean on softwares to implement medium/fine grain parallel computer algebra algorithms.

Again, three main directions may be followed [4, 43]:

60 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

B1. A standard computer algebra systemis used as sequential kernel. Several such kernels are
connected to exchange data.
Advantages: easy to use for someone who yet knows the system. Quite easy to build. Exploit
proven codes.
Drawbacks: often implies amessage passingprogramming model or coarse grained applica-
tions. Indeed, the time required to transfer data between processes determines the problem
grain sizes that can be used. The costs of data format conversions in this approach may be
prohibitive.

Among the references in the text we may refer for instance to [20, 95, 19, 18] for experiments
with MAPLE or to [76, 77] with REDUCE.

B2. A sequential computer algebra librarywhose source is available is augmented for the expres-
sion of parallelism and/or for data communications.
Advantages: can exploit any grain of granularity and any type of memory. Can use proven
code as a basis.
Drawbacks: the parallel model or language must be an extension of the sequential one.

Typically this is the chosen strategy in [111, 65, 92] where SAC-2 is extended, in [55, 7, 107]
where SACLIB is used or in [9] with ALDOR4.

The main difference with the previous approach is usually the communication cost and con-
sequently, as remarked above, the target granularity.

B3. A new parallel computer algebra systemis built using existing or new parallel facilities (lan-
guage,library . . .).
Advantages: this is potentially more portable and efficient.
Drawbacks: requires more implementation efforts.

Such a point of view is followed in [44, 46, 43] where a parallel software and a computer
algebra library are simultaneously designed.

The difference with the two previous approaches is thus in the fact that the conception of the
parallel programming model can done with more care.

At present, these three approaches may sometimes5 be viewed as favoring computer algebra
(B1) or favoring parallel aspects (B3), (B2) being a compromise; as favoring studies on algorithms
(B1) (e.g. fast experimental studies with huge data and problem dimensions) or favoring studieson
parallel concepts (e.g. which criteria are relevant for dynamic load-balancing at a fine-grain level
of granularity).

The paper is organized as follows. In
�
3.2 we briefly have a look at the main evolutions in the

field. Since the first practical experimentations on networks of workstations or on parallel machines
around 1984, the main evolutions has obviously concerned the machines and as a consequence, the
programming model. This study is based on the aspects that are specifically relevant in computer
algebra in

�
3.2.1; on a fast description of three main types of programming models in

�
3.2.2;

4In fact, in most of these cases, since the sequential language is not too restricting, the difference between this
approach and the next one may be difficult to make.

5Even if the references cited usually address both computer algebra and parallel aspects.

3.2. PARALLEL COMPUTER ALGEBRA: WHAT CHANGED SINCE THE 80’S? 61

on some remarks about tasks scheduling and dynamic load-balancing in
�
3.2.3. Some possible

criteria for a comparison will be pointed out in
�
3.3 before the overview itself of existing softwares

from
�
3.4 to

�
3.14. Before concluding we make some remarks about links with the developments

of protocols for the communication of mathematical data.

3.2 Parallel computer algebra: what changed since the 80’s?

Ten years ago a change of parallel architecture and operating environment was requiring many
work – from the conception of the parallel algorithm to its implementation – to beredone. What
about the situation today? Since the – very early – experimental studies of [108], what can we
conclude about quite many existing works and experiments with parallel computer algebra?

Beyond the underlying evolution of the machines, two main facts are remarkable during this
period6:

De facto message-passing standardlibraries for connecting parallel tasks on either homogeneous
or heterogeneous networks of computers have appeared. These are PVM [47] and MPI [40]
(cf

�
3.14). The associated programming model is based on message passing.

Operating systems and threadsare now widely available on most of the parallel machines. This
provides an alternative programming model also very commonly used.

Thus in
� � years, machines became easier to program and codes became portable. Note that

from this standardization of the programming models7, the differences between the hardwares
(shared / distributed memories, workstation networks) has became blurred from the end-user point
of view.

Most of the old problems (84 – 94) was to design environments on particular machines and
to show – especially for computer algebra – that it was possible to obtain optimal speed-ups for
particular algorithms on specific architectures. Open questions now mainly concern the way to
easilyget asatisfying efficiencyin general situations, on possibly many processors (scalability)
and for various architectures (portability).

In the following me make some basic remarks to see how such questions are commonly ad-
dressed in computer algebra.

There are two main differences between sequential and parallel computers: in the latter there
are potentially large overheads in communication (or access to a shared memory) and in task
management.Related questions are thus to provide means to express communications and task
management, and then to provide means to route the data and map/schedule the tasks.

3.2.1 Specifically in computer algebra?

Clearly, computer algebra data and data structures are specifically of various types. This implies
sophisticated means to exchange them between computational units. But we put off the discussion

6See the conclusion concerning current trends
7Other standards have emerged during the same period, especially High Performance Fortranfor data parallel

computations [39]. This model seems to be too restrictive for general algebraic computations and have not be used for
this purpose to our knowledge. See also theBulk Synchronous Parallelmodel in � 3.2.2.

62 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

of this subject till
�
3.15 and will mainly focus on task expression and management.

Another distinctive feature of computer algebra algorithms is that they can behighly dynamic
(precise behavior known at execution). From a parallel point of view this can be understood using
the concepts oflocality and ofirregularity. Very intuitively, an algorithm is local if the computa-
tional complexity dominates the communication complexity [79]. An algorithm is irregular if it is
costly to map/schedule the tasks it generates [46].

The dynamic behavior of the algorithms implies8 dynamic tools to obtain satisfying perfor-
mances at execution in a portable manner. Mapping and scheduling are thus major issues in the
field.

We will see that some dynamic load-balancers are now designed and used in computeralgebra.
Again, due to the evolution of the parallel machine capabilities (operating systems), such tools
should now be widely recognized, as they are in other topics that share the same characteristics [46,
34, 35].

3.2.2 Parallel programming models

One main question in parallelism is to provide a programming model that could be easily translated
into the machine language and efficiently executed on a wide class of machines [101]9.

Three main parallel models are used10.

Data parallelism is data driven and generated by data splittings. A typical language for this
model is HPF [39]. A parallel program differ from a sequential one mainly in the parallel
iterators (e.g. parallel loops). Synchronizations, communications and tasks are generated at
compilation. With a unique flow of control, the model is particularly suited to regular data
structures.

Parallel iterators can be found in computer algebra. We refer for instance toparmap in [19],
to the parallel evaluation in [95] or to parallel loops in [51]. Anyway, in these cases, these
parallel constructs are build upon execution layers of the two other types below.

Message passingwas the only model available on the first distributed memory machines. This
partly explains the nowadays infatuation for the libraries PVM [47] and MPI [40, 36], or at a
lower level for the BSP model [101] and its implementations [52].

This model, introduced in [53], is based on the notion ofcommunicating processes. A pro-
cess is the execution of a program in differentstatesrelated toactions. With parallel compu-
tations actions correspond tocreate anddestroy for processes, tosend andreceive
for messages.

Processes areheavy processes(e.g. Unix ones) in PVM and MPI11, communications are
either from a process to another (point to point) or from a group of processes to another
group (global synchronizations and communications). A virtual global memory and a pro-
gramming style – based on super-steps – that depends on few machine parameters (flops,

8At present.
9This is so different from the sequential context where languages such C, LISP or FORTRAN exist.

10Or at least vaguely considered concerningData Parallelismin computer algebra.
11A lot of studies aim at including threads in these standards.

3.2. PARALLEL COMPUTER ALGEBRA: WHAT CHANGED SINCE THE 80’S? 63

bandwidth and synchronization cost) seems to provide a more portable (with respectto the
efficiency) model BSP [101, 52].

Message passing has been often used in the past and is still used essentially using PVM and
MPI, see [76] or [107] among other references.

Functional programming with fork / join provides a general MIMD model. A function (or a
procedure) is forkedi.e. a new task is created by an instructionfork (synchronous or
asynchronous). Results are obtained when the task resume by joining using an instruction
join together with the calling function. Practically this can be implemented using threads
(shared memory) or distributed threads12 (distributed memory). Threads create other threads,
this can be done recursively with no theoretical limit to the number of threads.The model
can also be implemented as in LINDA [48, 2] where the evaluation of a virtually shared
name space, permits to spawn procedures. There is no connection between this number
and the number of physical processors. When launched, the tasks can exchange data using
co-routines [26] (cf

�
3.4); or usingmulti-functions[5] (cf

�
3.11); or accessing to a shared

memory either physically (cf
�
3.5 and

�
3.8)) or virtually (cf

�
3.10 and

�
3.12).

This model is often associated to adivide and conquerprogramming style. It must be built
on a software layer or using an operating system, that will map and schedule the executions
of the tasks as we will see in next section.

Early work in the functional programming field and in computer algebra usedata-flow anal-
ysis[70, 38] for LISP or for REDUCE [37] (cf

�
3.13.4). Parallelism is achieved by evaluating

the arguments of a function in parallel. The parallelism is thus investigated at the level of
a function investigation, this is very similar to the approach based onfork / join. One main
difference is in the way the data-flow graph is computed: either staticallye.g.at compilation,
or dynamicallye.g.during execution13.

Anyway, the differences in the way to express parallelism and in the work that has to be
done at compilation in the latter approach, show that many practical studies remain to be
done to make a good choice. One important work in functional programming has also led to
the concept offuture[59, 49, 50]. Instructionsfork and threads are often similar tofutures.

Data parallelism language constructions can be very useful for regular computations in com-
puter algebra (e.g. for replicated computations, for amap operation on an array or a parallel loop).
However this model seems to be too restrictive forirregular algorithms.

Message-passing models are quite often preferred nowadays sincestandardssoftwares are
available on a very wide class of machines (machines dedicated to parallelism, homogeneous and
heterogeneous networks). Unfortunately the model, often available only with coarse-grained gran-
ularity, can be difficult to use when dynamic load-balancing, at a medium/fine grained granularity,
is an important issue.

We will definitely prefer thefork / join model at least in this latter case.

12By abuse of language, we will frequently omit “distributed”in “distributed threads”.
13A mixed approach is thinkable. See for instance the dynamical data-flow analysis in� 3.12.

64 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

3.2.3 Dynamic load-balancing

In [19] (for instance) we read: “Optimal scheduling of a set of tasks with a predetermined number
of homogeneous, unloaded processors is one thing; getting plausible performance during a com-
putation chock full of possibility of heterogeneous concurrent tasks on system with otherusers is
another”. Such a comment seems to be obvious to an aware reader and could be found in many
other papers in the field of parallelism. We repeat it for two main reasons.

On the one hand, it appears that the remark is too often forgotten. For example, one may
be easily tempted to work with few processors on a fixed problem, then to extend the particular
conclusion to a more general context. Fortunately, it seems that this is less common than before in
the literature. On the other hand many questions related to this remark remains open.

If parallel tasks defined at an abstract level by the programmer was mapped “by-hand” when
using the first distributed memory machines, this is no more true in most cases. Since the functional
programming model is well established in computer algebra, this model withfork / join instructions
is always used for dynamic load-balancing in parallel. When a task is created, it is generally
placed in a queue and wait to be mapped and scheduled on a target computational unit. Further,
by analyzing the task queue and in particular the dependence of the input/output one may deduce
a data-flow graph. Specific techniques may then be used to map and schedules the tasks from the
global information available from the graph. We refer to [16] (cf

�
3.12).

We are not aware14 15 of other types of approaches (with practical experiments) in computer
algebra.

Once the tasks are created many strategies can be used to map and schedulethem, and various
informations – including ones provided by the users – can be useful to optimize this process.
The main problem is to permit implementations that areexecution-portable(efficiency on various
machines) andscalable[98] (remain efficient when the number of processors is increased). We
may identify five main issues to attain this goal:

Mapping / Scheduling. By abuse we will callload-balancer, a tool which maps the tasks onto
computational units, give them a date to executei.e. schedules them and possibly make them
migrate, sleep or stop. A load-balancer is generally formed of two parts: theinformation
one to spy the current load of the machine and thecontrol part to actually do the mapping
and the scheduling (taking into account the informations about the load). (Active/passive,
centralized/distributed, . . .). We do not detail anymore this subject, the reader will refer
to [15] for an overview. We will just precise, during each description of existing softwares,
how the two parts have been conceived and how do they work.

Granularity. Strongly related to the cost of communications, this is a main issue. We have seen
that the programmer specifies parallelism at an abstract level of granularity. To prevent a
to large number of simultaneous tasks and data transmitted through the network (thatcould
overload the system) or too small tasks, it is necessary to limit this number eithera priori
or a posteriori. Using adivide and conquerstyle, it is possible toa priori limit the number,
by choosing to run the task on the same processor than their calling tasks as soon asenough

14Static approaches are very common in parallelism but seems to be too restrictive for computer algebra purposes.
15It is important to note that, as seen in previous section, thedata-flow analysis proposed in [38, 37] is a main

possible alternative to the model based onfork / join. Good performances could certainly be obtained this way.

3.3. WHICH CRITERIA FOR A CLASSIFICATION? 65

parallel tasks have been created [74, 19, 85].A posteriori, as proposed in [65], it is possible
to coalesce virtual tasks into bigger real ones according to the informations about the load.

Locality. Can be crucial when the state used by a task is large and cannot be replicated. Static or
dynamic strategies should be used to place tasks on units that own most of the relevant data
or to limit data replications. (cf

�
3.12).

Cost informations. In addition to the informations about the machine load, cost informations
about the tasks may be provided by the user. Such informations may be relevant for the
efficiency of the load-balancer [86, 46] (cf

�
3.4,3.6,3.12).

Poly-algorithms. For several algorithms solving a given problem, to know the best one for a
given machine, will depend on machine parameters (e.g. the number of processors) and on
problem parameters (e.g. the dimension). The use ofpoly-algorithms, we mean algorithm
that permit to differ the choice of the appropriate method (using machine parameters) till the
compilation or even the execution, is a natural way to solve the problem [98, 86] (cf

�
3.6).

We see that many relevant have to be taken into account to build an efficienttool to get good
performances. At present, there are quite few experiences in this field in computer algebra. A lot
of work remains to be done to test, tune and validate the strategies in meaningfulsituations.

3.3 Which criteria for a classification?

We summarize the main aspects presented in previous sections and a little bit more detailed in
subsequent ones. From

�
3.2.1 we know that dynamic load-balancing is at present the first issue of

domain.
In table 3.3 we consider the main16 softwares available : DSC (

�
3.4), PARSAC-2 (

�
3.5),

PAR. POLY. OP. (
�
3.6), SUGARBUSH (

�
3.8), STURM (

�
3.10), GIVARO (

�
3.11), GIVARO with

ATHAPASCAN-1 (
�
3.12), � �MAPLE � � (

�
3.13.2) and MUPAD (

�
3.13.3).

The first rows describe the GLOBAL DATA MODEL: the way the memory of a processor can
be accessed by another processor.
Then the TASK MODEL rows precise ifheavy processes(e.g. Unix ones),Remote Function call
non multi-threaded, or multi-threads is used. Thesynchronizationexplains how these process are
explicitly synchronized.
The ARCHITECTURE rows indicate if the software is designed for distributed or shared memory
machines17, and shows if the system can run on heterogeneous architectures.
The LOAD-BALANCING rows show if a dedicated tool has been conceived to handle the tasks and
give some precisions on the used strategies.

3.4 DSC

DSC is a general purpose tools, applied in particular to algebraic computing, that manages tasks
distributed over a network of workstations (Unix) [32, 30] for large computations. DSC has first

16And more recent.
17It is much easier to port a software from a distributed memoryto a shared one, than to do the converse.

66 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

Table 3.1: Classification of softwares for parallel computer algebra.

DSC PS-2 PPO SBSH STU GIV-1 GIV-2 � �M � � � P
GLOBAL DATA MODEL

- message passing � � � �
- async. comm. �
- virtually shared � � (�)
TASK MODEL

- heavy processes � �
- RFC � �
- multi-threading � � � � �
- preemptive � � �
- async. creation � � � � �
-SYNCHRONIZATION

join variable (�) � �
coroutine �
multi-procedure �

ARCHITECTURE

- dist. memory � � � � � � � � (�)
- shared. memory � � � � � �
- heterogeneous � � � �
LOAD-BALANCING

- distributed � �
- passive strategy � �
- load indicator � � � �
- user info. � � � (�) � �

been used by programming in C or LISP, an interface to MAPLE [22] has then been proposed
in [18].

The model of computation isclient /serverand hides both the interprocess communications
and processor allocation to the user. The communications are based on standard Unix capabilities
(TCP / IP and UDP). The library essentially permits to submit a task to the environment and to wait
for its completion. The subtasks themselves may recursively spawn further subtasks. An additional
mechanism – sayco-routines– whereby a subtask remains loaded in memory space on a return,
until it is subsequently awaken, appears to be very useful in DSC for real applications [30].

Table 3.2: Classification – DSC.

Languages Fork/Join Memory Load-balancing Grain

C / LISP / TCP-UDP Unix processes Distributed Yes / Task queue Coarse / Medium

The system has been primarily designed for large computer algebra applications on heteroge-

3.5. PARSAC-2 67

neous networks of workstations. A sophisticated scheduler is proposed [30]. On the one hand,the
scheduler receives the cpu and memory loads of the available machines. On the other hand the user
specifies a rough amount of needed usage. Then, on a request, the system makes the selection of
which processor is to handle the work, or decides to queue the request for later distribution. Such
a finely tuned feature seems to have been necessary to run the test on inputs aslarge as the ones
reported.

The design has been extensively tested on symbolic applications such as sparse linear system
solution [30, 67], primality testing and factorization [100]. The scheduler has been tested with a
common network of up to� � machines.

3.5 PARSAC-2

PARSAC-2 [62] is a programming environment belonging to the class of systems based on threads
of control. The support forfork / join parallelism initially for shared memory machines in [63,
64] (S-THREADS) has been extended to distributed ones in [10] (DTS). It relies on SAC-2 [25]
translated to C from ALDES [68] for its sequential computer algebra library. For a comprehensive
introduction we refer to [65].

The programming model is based onfork / join functionalities, the suggested way to program
is to use adivide and conquerstyle.

The system relies on S-THREADS for parallel programming on each node of the target ma-
chine. For portability, the design supports avirtual parallel programming model: an algorithm
is parallelized with respect to its logical parallel structure. The corresponding logical threads of
control are mapped at run-time. Another layer, DTS, is built upon PVM to handle fork / join across
a network.

For efficiency, a dynamic load-balancer is available. The current approach is centralized but
could be distributed. The chosen strategy runsMaxjobs on each processing unit and keeps the
others in a global queue. This maximum number depends on a constant (currently an heuristic)
and on the number of pending jobs with respect to the number of processors. This is designed in
order to avoid both the risk of unbalanced load and of overloading of the units.

Table 3.3: Classification – PARSAC-2.

Languages Fork/Join Memory Load-balancing Grain

SACLIB / C/ PVM Threads Shared / Distributed Yes / Task queue Medium / Fine

For good speed-ups on a network of workstations, the reader may refer to [10] (polynomial
resultants). Further parallel concepts (search parallelism and threadgroups) are used in [3] for
Gröbner bases computations. Load-balancing is completed by some user-specified key parameters
(e.g. number of concurrent reductions of polynomials). This clearly shows the need for further
studies about relevant parameters of automatic load balancers in computer algebra.

68 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

3.6 Parallel Polynomial Operations, MP / MPP

Research at Kent focuses since several years on parallel symbolic computations on polynomials.
The reader will refer to [103, 104, 105] for reports on experiments and timing date and to [106]
for a recent survey of the corresponding parallel algorithms. The experiences has been conducted
mainly on symmetric multi-processors and now turn towards general environments [107] as we
will see in

�
3.14.

The work is done using C language or a ported SACLIB package [11] together with a module
for data communication between tasks. Several libraries have been implemented, especially for
factorization of polynomials. This does not really form a parallel computer algebra system but
provides key ideas for a future realization of such a system. Parallel algorithms are implemented
by forking subprograms and waiting for the results.

Table 3.4: Classification – Parallel Polynomial Operations.

Languages Fork/Join Memory Load-balancing Grain

C, SACLIB System processes Shared By hand Medium / Fine

An interesting point concerns dynamic load-balancing. Depending on the number of available
processors and on the size of the problem to solve, “by hand” dynamic load-balancing is ensured
by the programs. We mean that a poly-algorithm is provided and that the subprogram which is
actually executed is chosen during the execution. This is a rough mechanism but implements an
interesting concept.

3.7 Parallel REDUCE

Vectorization has been proven to be efficient for big numbers and polynomial arithmetic in [71, 72,
73] (this include a vectorized garbage collection). These articles reports intensive experimentations
on CRAY machines with coarse-grain parallelism especially for Gröbnerbases computations. Fine
grain parallelism was judged to be useless on many processors. The main reason being that the
heuristics used in sequential seem to be somehow inconsistent with many concurrent tasks [72,
78]18.

Following the evolution of both the parallel machines and of the parallel tools, a parallel version
of REDUCE with PVM is under development [76, 77]. The basic protocol uses send/receive for
L ISP forms, the basic model of parallelism is master/slave. Applications arecoarse-grain computer
algebra ones, algorithms in linear algebra are currently under investigation.

18Since then, many papers have been published on parallel Gröbner basis computation. The reader will refer to
them for a discussion about the ability to take advantage of many parallel tasks or not.

3.8. MAPLE/LINDA 69

3.8 MAPLE /L INDA

A general-purpose parallel algebraic system is proposed in [20] as an association of MAPLE and
L INDA [48, 2]. A main feature of LINDA is that system and architecture-dependent details for
parallelism are hidden from the final programmer. LINDA provides a global name space where all
the processes can read and write. The user programs as if using a shared memory machine. The
C/LINDA used here extends the C with parallel procedures working ontuples(ordered sequences
of objects or names). Aglobalcollection of data is maintained by the system: it is viewed as shared
among all processes. Theevalprocedure on tuples spawns separate process for each element of the
tuple. Each process evaluates its element which can be a procedure call. LINDA tuple space leads
naturally to the notion of tasks into a homogeneous pool (or queue, stack, . . .). MAPLE/L INDA

appears to be a batch system with several copies of MAPLE running simultaneously and communi-
cating by LINDA operations. Amaster/slaveapproach is tested in [20] (parallel iterations, sparse
modular gcd) and speed-ups are given with three independent MAPLE processes (shared memory
Sequent Balance).

This parallel MAPLE has also been implemented for networks of workstations [21] under the
name SUGARBUSH. In [19] (for instance) empirical data are reported with up to� � processors
for parallel integer multiplications. Empirical data are obtained using load-balancing heuristics
(see also [66]). Even if user-specified, ways are provided by the system totune the granularity by
cutoff. These experiments show the consequences of a lack of dynamic scheduling when using
many processors. The authors also ask some important questions about the inclusion of dynamic
scheduling heuristics in parallel computer algebra systems. For instance, one problem is clearly to
tune thresholds to decide when a given task should be splitted (for subsequent concurrenttasks) or
not?

Table 3.5: Classification – MAPLE/L INDA .

Languages Fork/Join Memory Load-balancing Grain

C / MAPLE System processesShared / Distributed By hand / Task queue Medium

3.9 PACLIB with PD

The PACLIB kernel [55] is the parallel variant of the runtime system for SACLIB . The computer
algebra facilities are thus the ones of this latter library [11]. For the parallel aspects, PACLIB relies
on � SYSTEM task package (C functions for concurrency) [12]. A more sophisticated version of
PACLIB is using the high-level programming interfacePD proposed in [89, 91]. The reader will
refer to [57] and to [91] for detailed presentations of the corresponding programming models.

Using PD, at the lowest level, the programming model is based on thefork /join operations of
tasks, orstreams(semantically lists except for the type interface). At this level, the programmer
has to care for the insertion of synchronizations functions and the modification of the function

70 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

interfaces. This is avoided at the highest level by annotations. For instancef(x)@ will be trans-
formed tostart(f,x): a task executing� with entry � will be spawned. From one of these
levels, a compiler generates PACLIB C code with all explicit task creations and synchronizations.

Table 3.6: Classification – PACLIB with PD.

Languages Fork/Join Memory Load-balancing Grain

C andPD Threads Shared Task queue Medium / Fine

This provides a friendly interface for the end user. The problem of task mapping is notreally
addressed. It is handled by the running time system which is based on virtual processors [90] (cf
also

�
3.5) and light-weight processes. One global queue contains all the tasks that are active but

not yet running. The scheduler, provided by the� SYSTEM, selects tasks for execution from the
head of the queue. A global list is available for memory management.

The development of applications is illustrated either at the C level in [54],or at the highest
level usingPD in [91]. High speed-ups are reported on basic examples.

The PACLIB kernel is implemented on a shared memory machine, a Sequent Symmetry. Any-
way, the functional model is also well suited to distributed memory. This latter model is also
considered by the same research group, see

�
3.10.

3.10 STURM

The above PACLIB kernel is essentially the substratum for the STURM kernel designed either for
shared memory machines [56] or for networks of such machines [7]. The task management is thus
inherited from PACLIB whilst the memory management is redesigned. The kernel is implemented
in C and a C++ shell is provided around the C interface.

The programming model is still based onfork /join and the tasks are scheduled via a global
queue (with user-specified time-slicing for preemptive scheduling). Concerning the memory, the
system simulates an infinite heap from which blocks can be allocated. The heap is organized is a
set of clusters. On request for a free block, a hierarchical search is done from the local cluster to
the whole machine (all the processors may be interrupted for garbage collection).

Table 3.7: Classification – STURM.

Languages Fork/Join Memory Load-balancing Grain

C / C++ Threads Shared / Distributed Task queue Medium / Fine

The kernel is running on shared memory machines but we are not aware of experimentaldata
on distributed memory machines or on networks.

3.11. FROMPAC TO GIVARO 71

3.11 From PAC to GIVARO

The GIVARO library for computer algebra and dynamic load-balancing in distributed environments,
comes from the older library PAC.

The PAC library [83, 84] was written in C and was using a message passing programming
model. Experiments and speed-ups on various algorithms can be found in [102, 82, 81, 97]
using up to 32 processors and vector units. Experiments have also been done on 128 transputers
as reported in [94]. Then PAC has been redesigned in C++: PAC++ [44, 24] was formed of a
sequential computer algebra kernel based of GNU GMP and on a distributed thread system. A
programming model based onfork / join capabilities (themselves provided by the runtime layer
ATHAPASCAN-0a [23, 8]) and on adivide and conquerstyle, has thus followed the older message
passing one. We refer to [44, 46, 24] for details and experiments. Neither of thesetwo libraries was
providing dynamic load balancing of tasks. However, experiments with them have been necessary
in order to fix the best suited programming model in subsequent developments.

This has led to GIVARO [43, 45] which extends the model and includes automatic load-balancing.
Still usingfork / join in adivide and conquerstyle, a program is written at an abstract level of gran-
ularity, the tasks are mapped onto the processors at run-time. Two types of synchronousremote
calls to functions are available: tosplit computations into independent subtasks the programmer
can use a call to� functions; tomergeresults or tocooperate during computationGIVARO of-
fers the concept ofmulti-function[5] through a synchronization function. The underlying runtime
support is ATHAPASCAN-0� � [80] which extends ATHAPASCAN-0a by the implementation of
multi-functions.

The expression of parallel programs is distinct from the way they are executedby the current
scheduler: the scheduler is invoked at each call to a function. Usingcost informationsgiven by
the users, the scheduler can also takes some algorithmic choices, such as choosing the splitting
factor at an� -arity call. At runtime, each task can be stopped then continued on a different site of
execution (this was designed for the manipulation of algebraic numbers [44, 45]). Themechanism
is based on user defined continuation functions.

Table 3.8: Classification – GIVARO.

Languages Fork/Join Memory Load-balancing Grain

C++ Threads Shared / Distributed Yes / Task queue Medium / Fine

GIVARO has been tested mainly on an IBM SP2 [44, 24, 43]. Some different strategiesof load-
balancing are available via default schedulers. However, the modular design ofthe library allows
the user to define its own new schedulers without any modification of the parallel programs.

3.12 GIVARO with A THAPASCAN

The sequential library of GIVARO [43] (which includes basic data types and their bufferization,
and basic arithmetics in C++) can be used in sequential or with other runtimesupports.

72 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

Table 3.9: Classification – GIVARO with ATHAPASCAN-1.

Languages Fork/Join Memory Load-balancing Grain

C++ Threads / Virt. sh. mem. Sh. / Distr. Yes / Task queue Medium / Fine

Another parallel interface for GIVARO is under development using ATHAPASCAN-1 as runtime
layer. The programming model is still based onfork / join, global synchronizations are done via
a virtually shared global memory [16] (read, write and accumulation). A programis written at a
virtual level of granularity, a dependence graph is built from an analysis of the inputparameters of
the tasks and is mapped at execution (the process could be done statically in certain cases).

The software is built from two layers: one for parallelism expression and one for task schedul-
ing and mapping. Sophisticated task schedulers are available and take into account bothcost
informationsabout tasks andlocality of input data. The scheduling library can be augmented with
user defined strategies.

The main difference between this approach and the one in the previous section, is inthe model
of global synchronization between threads. On the one handmulti-proceduresand on the other
handaccesses to a virtual shared memoryprovide this capability.

Very first experiments with this approach can be found in [33].

3.13 Other parallel extensions of sequential softwares

3.13.1 ALDES and SAC-2

The library SAC-2 [25] written in ALDES [68] has been extended with means for parallel com-
puting [92, 93]. The main goal is to provide to the programmer, a way to specify concurrency in
a very simple way – with no great change in the sequential codes. This is realized by the use of
futures[59, 49] to extend the sequential semantic. The associated concurrent tasks arelaunched
via asynchronous procedure calls. Tasks are managed by ascheduler. They are sent – on request
– to algorithm servers.

Good speed-ups are reported on very regular examples such as Chinese remainderingfor com-
puting polynomials resultants [93].

An implementation of SAC-2 has been done on Cray machines, corresponding experiments
may be found in [58]. Other parallel developments with SAC-2 relies on the translation of ALDES

into Fortran for the parallel aspects [87]. Here, the computation isdata driven(cells for cylindri-
cal algebraic computation). Several identical programs are distributed among the processors of a
shared memory machine. Each processor then take a task to perform in a centralized queue as soon
as the previous job is finished. Good speed-ups are reported on few processors.

On network of workstations ALTS [99] is a library which provide basic communication routines
for an ALDES programmer. A unique program is distributed over the network. Data are shared by
the processors via a virtual global memory which permits communications between tasks. Tasks
and global events (interruption) somehow allow to relax the constraints imposedby the unique

3.13. OTHER PARALLEL EXTENSIONS OF SEQUENTIAL SOFTWARES 73

flow of control, this allows speculative parallelism. Some experiments are reported but the quite
coarse-grained tasks (implemented using Unix processes even if the abstract level is lower) limits
the power of the software if dynamic load-balancing is a relevant issue.

Using threads and relying on the scheduling strategies of the all-cache parallel machine KSR1,
some remarks and experiments are given in [61] about the parallel implementation of MAS [60].

3.13.2 MAPLE

In addition to the use of DSC seen at
�
3.4, other systems have been proposed to interface MAPLE

in parallel.
A manager/workerapproach is considered in [95] and applied for instance to Gröbner bases

computation [96]. Using the parallel language STRAND [41] (guarded Horn clause type),� �MAPLE � �
kernel is developed and tested on both shared and distributed memory machines.A simple set of
interesting interface routines between STRAND and MAPLE is proposed, it mainly provides the
splitting of inherently parallel tasks and thecombinationof results. Themanager/workerscheme
is possible and recommended in case of load-balancing requirements (this latter problem is not
considered). This approach clearly allows to easy take advantage of the whole MAPLE LIBRARY

to run complex codes. Good speed-ups are reported on
�

� processors on some basic problems.
Other investigations using MAPLE are presented in [6]. The approach is different from the one

above since a modified version of the MAPLE kernel is used. Classical message-passing concepts
are implemented but high speed-ups are reported on many processors (81 nodes with two Cpus).

3.13.3 MUPAD

A parallel version of MUPAD [42] should be released in the future. Some well known concepts for
shared memory machines (e.g. job queues, parallel loops . . .) are planned to be provided [75, 51].

3.13.4 REDUCE

Some attempts have been made to extend the capabilities of REDUCE for vector and parallel ma-
chines. We have seen REDUCE on Cray machines at

�
3.7.

Also using REDUCE another direction has been taken in [37]. To use coarse grain parallelism,
this paper proposes a way to automatically generate parallelism at compilation. Parallelism is
detected at the level of a function invocation, a data flow analysis is proposed to provide the neces-
sary semantic information. This study remains theoretical (concerning the parallel execution), no
parallel experiment is given.

3.13.5 ALDOR

The library
� � � is currently under development [9] at the ETH Zurich. The goal of the project is

to incorporate parallel constructions in the general purpose language Aldor [110, 109] in order to
write portableparallel programs using various types of systems and machines.

The library is formed of a few set of packages on which high level parallel programming models
are based. These packages concern basic communications, asynchronous calls to functions and a

74 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

job scheduling interface. Parallel programming models are:fork / join, parallel map using iterators
on splitted data structures and to reconstruct results from sub-computations. Scheduling strategies
are under development and tuned on different architectures.

3.13.6 CALYPSO and ALG BENCH

The parallel computer algebra library CALYPSO presented in[17] is a set of C++ parallel classes
and programs for infinite precision arithmetic. Using MPI these algorithms have been tested on
various parallel architectures (programs are parameterized by the number ofavailable processors).
This library can be linked with other ones, this is done for instance with the ALGBENCH sys-
tem [69], viewing CALYPSO as its arithmetic parallel engine.

3.14 Integrations of MPI or PVM

The efforts related to MPI [40] and PVM [47] have produced specifications intended for the portable
development of message-passing applications. Implementations exist on various architectures, the
use of MPI or PVM broadens the applicability of the software.

Based on these remarks, the three tool-boxes below provide the integration of either MPI or
PVM with several existing softwares. This should be the first step towards more general-purpose
applications because clearly, this is not enough. The lack of dynamic management of the processes
and of dynamic load-balancing should be handled by a complementary layer.

3.14.1 STAR / M PI

We refer to [27] for the integration of MPI with existing softwares. The author presents the im-
plementation of a classical basic master / slave interface between MPI and GNU Common LISP or
GAP [88].

3.14.2 Tools for parallel mathematical computations

A set of tools for data communications between concurrent tasks is presented in [107]. One soft-
ware permits to run MAXIMA as a PVM task through a Common LISP interface to PVM . Another
library interfaces SACLIB [11] and related computer algebra systems.

3.14.3 FOXBOX

The software FOXBOX for manipulating black box representations in symbolic calculus, provides
in particular a parallel interface [31]. A basic client / server protocolmanages parallel black box
objects (C++). Currently, applications are realized using MPI but the software could take advantage
of other parallel systems. This parallel library is part of a wider software that also allows the use
of general purpose computer algebra systems.

3.15. PROTOCOLS FOR MATHEMATICAL COMMUNICATIONS 75

3.15 Protocols for mathematical communications

When homogeneous or heterogeneous computational units are connected and can physically send
and receive messages, one need a common protocol to efficiently exchange data.

On the one hand, in the parallel computation community, especially in computer algebra, from
the sections above we see that for many years, each research group has definedits own basic means
of communicating mathematical informations and protocols.

On the other hand, in the computer algebra community, many efforts have been done to provide
connectivity between different softwares in a distributed setting. This includes the development of
means for communicating mathematical informations between applications, wemay refer to [1]
and to references therein.

Since parallel and distributed computations are main applications of these latter studies on
protocols, and since communicating is a main concern in parallelism we may hopethat these two
directions will learn from each other. In particular, as we have seen, parallel programming relies
on various models to express parallelism (message passing, fork / join, BSP, . . .): one question is
to have common means of communicating and interfaces that are independent of the chosen model
i.e. that can be used with any model.

3.16 Conclusion

We have seen that a lot of work has been done to exploit parallelism in computer algebra. If we
go back to the three main possible approaches A, B and C discussed in the introduction,we may
conclude that the three should be considered as complementary means. And the same holds, for
the more detailed directions B1, B2 and B3. Indeed for instance, we think that the studies done
somehow separately with standard systems and with new ones has came to maturity, and could be
integrated in a unique framework. To use a standard computer algebra system does not exempt
from taking into account accepted facts in parallelism. To build a new parallel computer algebra
system does not exempt from knowing about the best computer algebra algorithms.

Computer algebra system nowadays are more open toward outside than during the past, paral-
lelism will certainly benefit a lot from this evolution. Will this evolution, together with progresses
in providing efficient and standard communication means, accelerate the emergence of standard
ideas? We believe thatdata-flow graphs, functional programmingtogether with threads anddy-
namic load-balancingwith adaptative granularity/locality andcost informations, can be such ideas.

76 CHAPTER 3. PARALLEL COMPUTER ALGEBRA SYSTEMS.

Bibliography

[1] J. Abbott, A. van Leeuwen., and A. Strotmann,Objectives ofOPENMATH, Tech. Report TR 12,
RIACA, Amsterdam, jul 1996.

[2] S. Ahuja, N. Carriero, and D. Gelernter,Linda and friends, IEEE Computer (1986), 26–34.

[3] B. Amrhein, O. Gloor, and W. Küchlin,A case study of multi-threaded Gröbner basis completion,
International Symposium on Symbolic and Algebraic Computation, Zurich, Suisse, ACM Press, July
1996, pp. 95–102.

[4] B. Amrhein and W. Küchlin,Parallel computer algebra on the desk-top, 1995, Electronic proceed-
ings, First IMACS Conference on Applications of Computer Algebra, Albuquerque, NM USA.

[5] J.P. Banâtre, M. Banâtre, and F. Ployette,The concept of multi-fonction: a general structuring tool
for distributed operating systems, 6th Int. Conf. on Distributed Computing Systems, Cambridge, UK,
1986.

[6] L. Bernardin, MAPLE on a massively parallel, distributed memory machine, Second International
Symposium on Parallel Symbolic Computation (PASCO’97), Maui, Hawaii, USA, Jul 1997.

[7] P.G. Bertoli, H. Hong, A. Neubacher, W. Schreiner, and V.Stahl,The C++ interface to theSTURM

distributed multi-processor kernel, Tech. Report TR 94-32, RISC Institute, Linz, Austria, 1994.

[8] J. Briat, I. Ginzburg, and M. Pasin, ATHAPSACAN-0b user’s manual (Version 2.4.7), Tech. Report
APACHE, IMAG Grenoble France, 1997,http://www-apache.imag.fr/.

[9] M. Bronstein and T. Gautier, Personal communication, 1997.

[10] T. Bubeck, M. Hiller, W. Küchlin, and W. Rosenstiel,Distributed symbolic computation with DTS,
Proc. of IRREGULAR’95, Lyon, France, LNCS 980, Springer-Verlag, Sep. 1995.

[11] B. Buchberger, G.E. Collins, andal., SACLIB 1.1 user’s guide, Tech. Report TR 93-19, RISC Insti-
tute, Linz, Austria, 1993.

[12] P. Buhr and R. Stroobosscher,The� SYSTEM: providing light-weight concurrency on shared-memory
multiprocessor computers running unix, Software – Practice and Experience20 (1990), no. 9, 929–
964.

[13] CAP’88, CAP, Premier Colloque International sur le Calcul Formel et le Parallélisme Grenoble
France, J. Della-Dora, J. Fitch Ed., North-Holland, 1988.

[14] CAP’90, CAP, Second International Workshop on Computer Algebra and Parallelism, Ithaca USA,
R.E. Zippel Ed., LNCS 584 Springer-Verlag, 1990.

77

78 BIBLIOGRAPHY

[15] T.L. Casavant and J.G. Khul,A taxonomy of scheduling in general-purpose distributed computing
systems, IEEE Transactions on Software Engineering (1988), no. 14,141–154.

[16] G. Cavalheiro, M. Doreille, F. Galilée, and J.L. Roch,ATHAPSACAN-1 user’s manual, Tech. Report
APACHE, IMAG Grenoble France, 1997,http://www-apache.imag.fr/.

[17] G. Cesari, CALYPSO: a computer algebra library for parallel symbolic computation, Second Inter-
national Symposium on Parallel Symbolic Computation (PASCO’97), Maui, Hawaii, USA, Jul 1997.

[18] K.C. Chan, A. Dı́az, and E. Kaltofen,A distributed approach to problem solving in Maple, Maple
Summer Workshop and Symposium, Birkhäuser Verlag, Boston, 1994, pp. 13–21.

[19] B. Char, J. Johnson, D. Saunders, and A.P. Wack,Some experiments with parallel Bignum arithmetic,
First International Symposium on Parallel Symbolic Computation (PASCO’94), Lecture Notes Series
in Computing – Vol. 5, World Scientific, 1994, pp. 94–103.

[20] B.W. Char,Progress report on a system for general purpose parallel symbolic algebraic computa-
tions, International Symposium on Symbolic and Algebraic Computation, Tokyo, Japan, ACM Press,
pp 96–103, 1990.

[21] , A users’s guide to sugarbush – parallel Maple through Linda, Tech. Report MCS-94-01,
Drexel University, Department of Mathematics and ComputerScience, 1994.

[22] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M. Watt, MAPLE V
language reference manual, Springer-Verlag, 1991.

[23] M. Christaller,Athapsacan-0a sur PVM.3, Tech. Report APACHE 11, IMAG Grenoble France, 1994.

[24] Christaller, M. and Castaneda Retiz, M.R. and Gautier,T., Control parallelism on top of pvm: the
ATHAPASCAN environment, Second European PVM User’s Group, Ecole Nationale Supérieure, Lyon,
France, Hermès, sept. 1995.

[25] G.E. Collins and R. Loos,Specification and index of sac-2 algorithms, Tech. Report WSI-90-4, Uni-
versität Tübingen, Germany, 1990.

[26] M.E. Conway,Design of separable transition diagram compiler, Comm. of ACM6 (1963), no. 7,
396–408.

[27] G. Cooperman, STAR / MPI: binding a parallel library to interactive symbolic algebra systems,
International Symposium on Symbolic and Algebraic Computation, Montreal, Canada, ACM Press,
July 1995, pp. 126–132.

[28] S. Dalmas, M. Gaëtano, and A. Sausse,Distributedcomputer algebra: the Central Control approach,
First International Symposium on Parallel Symbolic Computation (PASCO’94), Lecture Notes Series
in Computing – Vol. 5, World Scientific, 1994, pp. 104–113.

[29] Dalmas, S. and Gaëtano, M.,The Central Control approach: a flexible tool to experiment with dis-
tributed symbolic computation, 1995, Electronic proceedings, First IMACS Conference on Applica-
tions of Computer Algebra, Albuquerque, NM USA.

[30] A. Dı́az, M. Hitz, E. Kaltofen, A. Lobo, and T. Valente,Process scheduling inDSC and the large
sparse linear systems challenge, Journal of Symbolic Computation19 (1995), no. 1–3, 269–282.

BIBLIOGRAPHY 79

[31] A. Dı́az and E. Kaltofen, FOXBOX: a system for manipulating symbolic objects in black box repre-
sentation, Manuscript, Dpt. Math., North Carolina State University,NC USA, 1997.

[32] A. Dı́az, E. Kaltofen, K. Schmitz, and T. Valente,DSC: A system for Distributed Symbolic Compu-
tation, International Symposium on Symbolic and Algebraic Computation, Bonn, Germany, ACM
Press, 1991, pp. 323–332.

[33] J.G. Dumas,Calcul parallèle avec des nombres algébriques réels, june 1997, Rapport de DEA, INPG,
Grenoble, France.

[34] G. Authié et al.,Algorithmes parallèles, analyse et conception, Hermès, 1994.

[35] , Parallélisme et applications irrégulières, Hermès, 1995.

[36] G. Fagg and J. Dongarra,An integrationof thePVM andMPI systems, Calculateurs Parallèles2 (1996).

[37] J. Fitch,Can Reduce be run in parallel?, International Symposium on Symbolic and Algebraic Com-
putation, Portland, Oregon, ACM-Press, Jul 1989, pp. 155–162.

[38] J.P. Fitch and J.B Marti,On the complexity of finding short vectors in integer lattices, EUROCAL 83,
London, UK, Springer, LNCS 162, 1983, pp. 236–244.

[39] HPF Forum,High performance fortran language specification, version 1.1, Tech. report, Rice Uni-
versity, Houston Texas, USA, 1994.

[40] MPI Forum,A Message-Passing Interface standard, Internation Journal of Super Computer Applica-
tion 8 (1994), no. 3-4.

[41] I. Foster and S. Taylor,Strand - New concepts in parallel programming, Prentice-Hall, 1989.

[42] B. Fuchssteiner andal., MUPAD User’s Manual, 1996, Wiley Ltd.

[43] T. Gautier,Calcul formel et parallélisme : conception du systèmeGIVARO et applications au calcul
dans les extensions algébriques, Ph.D. thesis, INPG, Grenoble, France, 1996.

[44] T. Gautier and J.L. Roch,PAC++ System and Parallel Algebraic Numbers Computation, First Inter-
national Symposium on Parallel Symbolic Computation (PASCO’94), Lecture Notes Series in Com-
puting – Vol. 5, World Scientific, 1994, pp. 145–153.

[45] T. Gautier and J.L. Roch,Fast parallel Algebraic Numbers Computations, Second International Sym-
posium on Parallel Symbolic Computation (PASCO’97), Maui,Hawaii, USA, Jul 1997.

[46] T. Gautier, J.L. Roch, and G. Villard,Regular versus irregular problems and algorithms, Proc. of
IRREGULAR’95, Lyon, France, LNCS 980, Springer-Verlag, Sep. 1995.

[47] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Mancheck, and V. Sunderam,Parallel Virtual Ma-
chine, MIT Press, 1994.

[48] D. Gelernter,Generative communication in Linda, Tech. Report RR-294, Yaleu/DCS, Nov 1983.

[49] R.H. Halstead,Multilisp: a language for concurrent symbolic computation, ACM Trans. Progr. Lang.
Sys.7 (1985), no. 4, 501–538.

[50] , Parallel symbolic computing, IEEE Computer19 (1986), no. 8, 35–43.

80 BIBLIOGRAPHY

[51] C. Heckler, T. Metzner, and P. Zimmermann,Progress report on parallelism inMUPAD, 1997,
MUPAD Report, Dpt. Math. Comp. Sc., Univ. Paderborn, Germany.

[52] J.M.D. Hill andal., BSPLIB : the BSPProgramming Library, Tech. report, Oxford University Com-
puting Laboratory, UK, may 1997.

[53] C. Hoare,Communicating sequential processes, Communication of the ACM8 (1978), 666–677.

[54] H. Hong and H.W. Loidl,Parallel computation of modular multivariate polynomial resultants on
shared memory machines, CONPAR 94 - VAPP VI, Linz, Austria, LNCS 854, September 1994,
pp. 325–336.

[55] H. Hong, A. Neubacher, and W. Schreiner,The design of theSACLIB / PACLIB kernels, DISCO’93,
Gmunden, Austria (A. Miola, ed.), Springer, LNCS 722, 1993.

[56] H. Hong, A. Neubacher, W. Schreiner, and V. Stahl,The C++ interface to theSTURM multi-processor
kernel, Tech. Report TR 94-31, RISC Institute, Linz, Austria, 1994.

[57] H. Hong, W. Schreiner, A. Neubacher, andal., PACLIB user’s manual, Tech. Report TR 92-32, RISC
Institute, Linz, Austria, 1992.

[58] R. Johnson, J,Some issues in designing algebraic algorithms for the CRAY X-MP, Tech. Report
88-02, Univ. of Delaware. Center for Mathematical Computation, 1988.

[59] P. Knueven, P.G. Hibbard, and B.W. Leverett,A language system for multiprocessor environment,
Fourth International Conference on the Design and Implementation of Algorithmic Languages, June
1976, pp. 264–274.

[60] H. Kredel,MAS Modula-2 algebra system, DISCO’90, Capri, Italy (A. Miola, ed.), Springer, LNCS
429, Apr. 1993, pp. 270–271.

[61] , Computer algebra on a KSR1 parallel computer, Tech. report, Rechenzentruum Universität
Mannheim, Germany, 1994.

[62] W. Küchlin, PARSAC-2: a parallel SAC-2 based on threads, Eights Int. Symposium on Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, Tokyo, Japan., LNCS 508, Springer-
Verlag, 1990.

[63] , The S-Threads environment for parallel symbolic computation, Second International Work-
shop on Computer Algebra and Parallelism, Ithaca, USA, LNCS584, Springer-Verlag, 1990.

[64] , On the multi-threaded computation of integral polynomial greatest common divisors, Inter-
national Symposium on Symbolic and Algebraic Computation,Bonn, Germany, ACM Press, 1991,
pp. 333–342.

[65] W. Küchlin, PARSAC-2: parallel computer algebra on the desk-top, Computer algebra in science and
engineering (J. Grabmeier J. Fleisher and F. Hehl, eds.), World Scientific, 1995, pp. 24–43.

[66] H.R. Lee, B.D. Saunders, and R. Shtokhamer,On Scheduling Algebraic Algorithms for Parallel Ex-
ecution, Tech. report, Delaware Department of Computer and Information Sciences, CIS TR-9015,
1990.

BIBLIOGRAPHY 81

[67] A. Lobo, Matrix-free linear system solving and applications to symbolic computation, Ph.D. thesis,
Dept. Comp. Sc., Rensselaer Polytech. Instit., Troy, New York, Dec. 1995.

[68] R.G.K Loos,The algorithm description language Aldes (report), ACM Sigsam Bull.1 (1976), no. 10,
15–39.

[69] R. Maeder,The design of theSACLIB / PACLIB kernels, DISCO’92, Bath, UK (J. Fitch, ed.), Springer,
LNCS 721, 1993.

[70] J.B Marti,Compilation techniques for a control flow concurrent Lisp system, Proceedings of the 1980
Lisp Conference, 1980, pp. 203–207.

[71] H. Melenk and W. Neun,Reduce User’s Guide for CRAY 1/X-MP Series Running COS, Tech. Report
87-4, Konrad Zuse-Zentrum für Informationstecnik Berlin, 1987.

[72] , Parallel polynomial operators in the large Buchberger algorithm, CAP , premier colloque
international sur le calcul formel et le parallélisme Grenoble, J. Della-Dora, J. Fitch éd., North-
Holland, 1988.

[73] , Very large Gröbner basis calculations, Second International Workshop on Computer Alge-
bra and Parallelism, Ithaca, USA, LNCS 584, Springer-Verlag, 1990.

[74] E. Mohr, D. Kranz, and R. Halstead Jr.,Lazy task creation: a technique for increasing granularityof
parallel programs, IEEE Trans. on Par. Distr. Sys.2 (1991), no. 3, 264–280.

[75] H. Naundorf,Parallelism inMUPAD, 1995, Electronic proceedings, First IMACS Conferenceon
Applications of Computer Algebra, Albuquerque, NM USA.

[76] W. Neun,Using PVM based software for parallel computation in computer algebra, 1994, The Rhine
Workshop on Computer Algebra, Karlsruhe, Germany.

[77] , REDUCE on a massively parallel system, 1995, Electronic proceedings, First IMACS Con-
ference on Applications of Computer Algebra, Albuquerque,NM USA.

[78] C.G. Ponder,Evaluation of performance enhancements in algebraic manipulation systems, Ph.D.
thesis, Berkeley Univ. of Californy, 1988.

[79] A. Ranade,A framework for analyzing locality and portability issues in parallel computing, Parallel
Architectures and their Efficient Use, LNCS 678, 1993, pp. 185–194.

[80] M. Rivière, Concepts structurants pour la mise en oeuvre d’applications irrégulières : application au
support exécutif parallèle ATHAPASCAN, INPG, Grenoble, France (Thèse en préparation).

[81] F. Roch,Calcul formel et parallélisme : forme normale d’Hermite, méthodes de calcul et paralléli-
sation, Ph.D. thesis, INPG, Grenoble, France, 1990.

[82] J.L. Roch,Calcul formel et parallélisme : l’architecture du système PAC et son arithmétique ra-
tionnelle, Ph.D. thesis, INPG, Grenoble, France, 1989.

[83] , ThePAC system : general presentation, Second International Workshop on Computer Alge-
bra and Parallelism, Ithaca, USA, LNCS 584, Springer-Verlag, 1990.

[84] J.L. Roch, F. Siebert, P. Sénéchaud, and G. Villard,Computer Algebra on a MIMD machine, SIGSAM
Bulletin 23 (1989), no. 11, 16–32.

82 BIBLIOGRAPHY

[85] J.L. Roch, A. Vermeerbergen, and G. Villard,Cost prediction for load-balancing: application to
algebraic computations, CONPAR 92, Lyon, France, LNCS 634, September 1992.

[86] , A new load-prediction scheme based on algorithmic cost functions, CONPAR 94, Linz
Austria, LNCS 854, Sep. 1994.

[87] B.D. Saunders, H.R. Lee, and S.K. Abdali,A parallel implementation of the cylindrical algebraic de-
composition algorithm, International Symposium on Symbolic and Algebraic Computation, Portland,
Oregon, ACM-Press, Jul 1989, pp. 298–307.

[88] M. Schönert andal., GAP – Groups, Algorithms and Programming, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule, Aachen, Germany, Fifth Edition.

[89] W. Schreiner,Parallel functional programming for computer algebra, Ph.D. thesis, Johannes Kepler
University, Linz, Austria, Sept. 1994.

[90] , Virtual tasks for thePACLIB kernel, CONPAR 94 - VAPP VI, Linz, Austria, LNCS 854,
September 1994, pp. 533–544.

[91] , A para-functional programming interface for a parallel computer algebra package, Journal
of Symbolic Computation21 (1996), no. 4-6, 593–614.

[92] S. Seitz,Parallel algorithm development, CAP , premier colloque international sur le calcul formel
et le parallélisme Grenoble, J. Della-Dora, J. Fitch éd.,North-Holland, 1988.

[93] , Algebraic computing on a local net, Second International Workshop on Computer Algebra
and Parallelism, Ithaca, USA, LNCS 584, Springer-Verlag, 1990.

[94] F. Siebert and G. Villard,PAC : First experiments on a 128 transputers Meganode, International
Symposium on Symbolic and Algebraic Computation, Bonn Germany, ACM Press, 1991.

[95] K. Siegl, Parallelizing algorithms for symbolic computation using� �Maple� �, Tech. Report 93-08,
RISC-Linz, Johannes Kepler University, Linz, Austria, 1993.

[96] , A parallel factorization tree Gröbner basis algorithm, First International Symposium on
Parallel Symbolic Computation (PASCO’94), Lecture Notes Series in Computing – Vol. 5, World
Scientific, 1994, pp. 356–362.

[97] P. Sénéchaud,Calcul formel et parallélisme : bases de Gröbner booléennes, méthodes de calcul,
applications et parallélisation, Ph.D. thesis, INPG, Grenoble, France, 1990.

[98] M. Snir, Scalable parallel computers and scalable parallel codes: from theory to practice, Parallel
Architectures and their Efficient Use, LNCS 678, 1993, pp. 176–184.

[99] T.C. Torgersen,Distributing symbolic computations on a network of workstations, Computational
Algebra, volume 151 of LN Pure and Applied Math., Marcel Dekker Inc., 1994, pp. 233–246.

[100] T. Valente,A distributed approach to proving large number primes, Ph.D. thesis, Dept. Comp. Sc.,
Rensselaer Polytech. Instit., Troy, New York, 1992.

[101] L. Valiant,A bridging model for parallel computation, Communication ACM33 (1990), 103–111.

[102] G. Villard, Calcul formel et parallélisme : résolution de systèmes linéaires, Ph.D. thesis, INPG,
Grenoble, France, 1988.

BIBLIOGRAPHY 83

[103] P.S. Wang,Parallel univariate polynomial factorization on shared-memory multiprocessors, Interna-
tional Symposium on Symbolic and Algebraic Computation, Tokyo, Japan, ACM Press, 1990.

[104] , Parallel univariate� -adic lifting on shared-memory multiprocessors, International Sympo-
sium on Symbolic and Algebraic Computation, Berkeley California USA, ACM Press, July 1992,
pp. 168–176.

[105] , Parallel polynomial operations: a progress report, First International Symposium on Paral-
lel Symbolic Computation (PASCO’94), Lecture Notes Seriesin Computing – Vol. 5, World Scien-
tific, 1994, pp. 394–404.

[106] , Parallel polynomial operations on SMPs: an overview, Journal of Symbolic Computation
21 (1996), no. 4-6, 397–410.

[107] , Tools for parallel / distributed mathematical computation, Second International Symposium
on Parallel Symbolic Computation (PASCO’97), Maui, Hawaii, USA, Jul 1997.

[108] S. Watt,Bounded parallelism in Computer Algebra, Ph.D. thesis, University of Waterloo, Ontario,
1985.

[109] S.M. Watt andal., The A� user’s guide, NAG Ltd.

[110] , A first report on the A� compiler, International Symposium on Symbolic and Algebraic
Computation, Oxford, UK, ACM Press, July 1994, pp. 25–31.

[111] D Weeks,Adaptation of SAC-2 algorithms for an SIMD machine, CAP , premier colloque interna-
tional sur le calcul formel et le parallélisme Grenoble, J.Della-Dora, J. Fitch éd., North-Holland,
1988, pp. 167–178.

84 BIBLIOGRAPHY

Chapter 4

Parallel linear algebra.

85

86 CHAPTER 4. PARALLEL LINEAR ALGEBRA.

To be provided later.

Contents

1 Parallel efficient algorithms 3
1.1 PRAM, DFG and cost analysis . 4

1.1.1 The PRAM model . 4
1.1.2 Execution of a PRAM program and data-flow graphs 7
1.1.3 Describing PRAM algorithms: ATH language 8
1.1.4 Time, work and communication costs . 9
1.1.5 Efficient algorithms . 10
1.1.6 Example . 12
1.1.7 Relations between PRAMs . 12

1.2 Increasing granularity .13
1.2.1 Parallel divide and conquer . 13
1.2.2 Minimizing communication work . 15
1.2.3 Conclusion . 16

1.3 Redundancy and cascading divide&conquer . 18
1.3.1 DFG of the best sequential algorithm . 18
1.3.2 Breaking dependencies . 19
1.3.3 Cascading divide&conquer to minimize time 20
1.3.4 Applications in linear algebra . 21
1.3.5 Conclusion . 22

1.4 Randomization to decrease time or preserve work. 22
1.4.1 Randomization to suppress dependencies 23
1.4.2 From Monte-Carlo to Las Vegas . 24
1.4.3 Randomization to provide efficiency . 25
1.4.4 Conclusion . 26

1.5 Parallel time complexity and NC Classification 26
1.6 Conclusion . 27

2 Programming models and scheduling 33
2.1 Asynchronous distributed architectures .35

2.1.1 Realistic models of distributed architectures 35
2.1.2 Basic programming tools . 37
2.1.3 Shared virtual memory . 38

2.2 How to schedule a DFG . 39
2.2.1 Scheduling cost of a DFG . 39

87

88 CONTENTS

2.2.2 Off-line and on-line scheduling . 40
2.2.3 Which scheduling algorithms in computer algebra ? 42

2.3 On-line scheduling algorithms . 43
2.3.1 Foundations of on-line scheduling . 43
2.3.2 Lower bounds for competitive ratio . 44
2.3.3 Communications and scheduling overheads 45
2.3.4 Athapascan: a simulation of the ATH PRAM language 48
2.3.5 The ATHAPASCAN programming model 49
2.3.6 Execution model of ATHAPASCAN . 49
2.3.7 An example of Athapascan program . 50

2.4 Conclusion . 51

3 Parallel computer algebra systems. 57
3.1 Introduction . 58

3.1.1 Simultaneous computations in computer algebra 58
3.1.2 Parallel computer algebra . 59

3.2 Parallel computer algebra: what changed since the 80’s?61
3.2.1 Specifically in computer algebra? . 61
3.2.2 Parallel programming models . 62
3.2.3 Dynamic load-balancing . 64

3.3 Which criteria for a classification? 65
3.4 DSC . 65
3.5 PARSAC-2 . 67
3.6 Parallel Polynomial Operations, MP / MPP .68
3.7 Parallel REDUCE . 68
3.8 MAPLE/L INDA . 69
3.9 PACLIB with PD . 69
3.10 STURM . 70
3.11 From PAC to GIVARO . 71
3.12 GIVARO with ATHAPASCAN . 71
3.13 Other parallel extensions of sequential softwares 72

3.13.1 ALDES and SAC-2 . 72
3.13.2 MAPLE . 73
3.13.3 MUPAD . 73
3.13.4 REDUCE . 73
3.13.5 ALDOR . 73
3.13.6 CALYPSO and ALGBENCH . 74

3.14 Integrations of MPI or PVM . 74
3.14.1 STAR / MPI . 74
3.14.2 Tools for parallel mathematical computations 74
3.14.3 FOXBOX . 74

3.15 Protocols for mathematical communications .75
3.16 Conclusion . 75

CONTENTS 89

4 Parallel linear algebra. 85

