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Building and implementing parallel algorithms in the area of computer algebradwmsne
an important thread of research for more than a decade with the increaailap#iy of various
parallel architectures, from dedicated machines to network of workstati®ve algorithms have
been built and implemented to solve high performance computing challenges.

The aim of this tutorial is to give an introduction to parallel algorithms in patar algebra,
from the building of an efficient algorithm to its effective implementatmna given architec-
ture. Parallel computer algebra systems, that exploit the parallelism alganthm on a given
architecture, play a central role to ensure efficient executions. Due t@thety of parallel pro-
gramming models, several such systems propose various approaches to exphetispafeom
data distribution to functional parallelism.

After an introduction to algorithmic techniques and classical programming s\cithel tuto-
rial will focus on parallel computer algebra systems, parallel linearbatgalgorithms and their
effective implementations. The tutorial is organized in four parts :

1. Parallel efficient algorithms. The major techniques used to build efficient algorithms on theo-
retical machine models are presented. They are illustrated by varioesbagputer algebra
algorithms. Due to the non-uniformity of memory access, communication complsxaty
key point to take into account in the analysis of the algorithm.

2. Programming models and scheduling.To combine expressive power and portability, several
programming models have been proposed, from message-passing to bulk-synchronous pro-
gramming and functional languages. The inherent overhead due to their emulation make
each of them suited to a specific range of applications.

3. Parallel computer algebra systemsDifferent parallel systems are proposed that are based on
the coupling of a sequential system and a parallel programming model. They are often
guided by the classes of applications on which they have been experimented.

4. Parallel linear algebra. The parallelization techniques introduced before are illustrated on var-
ious research problems in parallel linear algebra : system solving, gcd, rankoamehl
forms.



Chapter 1

Parallel efficient algorithms
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Parallel algorithmic is a successful theory. Several methods, technindgmeadigms, which are
presented in several books and surveys [60, 5, 30, 38, 35, 20, 41, 28, 39, 45] have been developed
to build powerful theoretical algorithms. Furthermore, they stand as a f@simplementation
of performant programs on effective parallel architectures. Those geeeralitjues overflow
computer algebra framework even if arithmetic and algebraic computatiewns specific interest.

In this chapter, we introduce the main techniques involved in the building of plaakgjorithms.
They are illustrated on elementary computer algebra problems. The underlyingsfoRAM but
the data-flow graph representation is also introduced. It is used to desceihéions of a parallel
algorithm and to define its cost. Three factors are here preponderant: paxatiatien time,
number of operations and granularity which is related to the required volume of goiteations.
An efficient algorithm realizes a compromise solution between those troteeda

The organization of the chapter is as follows. Section 1 describes the loé¢dVl PRodel,
the data-flow graph representation and cost analysis. Following sectiostsate, using simple
examples, the main techniques involved in the building of:

e section 2: a coarse granularity algorithm from a fine grain optimal one;
e section 3: a fast optimal algorithm from a very fast but non optimal one;

e section 4: an very fast optimal randomized algorithm from a determinigtioén optimal
one.

Finally, in the last section, we give an overview of parallel time coxiplefocusing on boolean-
arithmetic circuits which are commonly used in computer algebra.

1.1 PRAM, DFG and cost analysis

The Parallel Random Access Machine (PRAM) [18, 4] is the most common esrcnbdel used
to build and analyze parallel algorithms. Its major feature is to be indepefrdemthe number
of processors used. In this section we focus on the local PRAM model introduced in(88i{
analysis takes into account both arithmetic and communication complexities.

In the following, A denotes an algorithm andl, its restriction for input of sizé)(n).

1.1.1 The PRAM model

A Local Parallel Random Access Machine (PRAM) is setted of:

¢ an (infinite) number of processors, ..., Py, ..., each indexed by an integgprocessor
identifieror pi d in short). Each processor is a RAM (Random Access Machine [2]) and
gets its own local memory which contains its own pid.

¢ a global (or shared) memory. Each processor can copy data from the global mematsy into
own local memory: this operation is callgdl obal read orread in short. Conversely,
each processor can copy a data from its own local memory into the global one: ttasape
isawr i t e operation.
Initially, input variables are available in global memory. At the end of comian, final
outputs are also stored there.
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¢ A program that consists in a finite sequence of RAM elementary instructionsdextdy
the global elementary (i.e. single word location) read and write instructions

e a global clock that ensures a synchronous mode of computation. After initializatisin (fir
top), processors are ready to execute the first instruction of the program.clitaga (or
step, each processor executes the next RAM instruction in the program. Thus itrperfor
either an elementary arithmetic operation within its local memory @caess to the shared
memory (read or write).

The program terminates when processor with pid O executdsathe instruction.

Note that the program may contain branching instructions eventually depending on tlauaid v
Due to branching instructions, at a given top, processors may execute diffesgnttions (Mul-
tiple Instruction Multiple Data — MIMD — type).

Sequencer

@ _-_----ZZ-Z-Z _-_----ZZ-Z-Z
MO @ M1 @ I\/Ip @

Access Completion Signal

Figure 1.1: The local PRAM execution model

Semantics of access in shared memory.Due to the synchronous mode of computation, seman-
tics of global memory access is simple and only depends on the behavior when, at agame t
several processors concurrently accede to a same single location in the stgamory.

At a same top, two processors can't perform both a read and a write in thd®zatien. But
concurrent read (or concurrent write) access may be allowed, depending on thé PRA

e an EREW-PRAM (Exclusive Read Exclusive Write) does not allow concurrecegss to a
single location.
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¢ a CREW-PRAM (Concurrent Read Exclusive Write) allows only concurrert agaess.

e a CRCW-PRAM (Concurrent Read Concurrent Write) allows concurrent a¢akss the
same mode, either read or write).

When a concurrent write operation is performed into a single location in thedhamory, dif-
ferent semantics are considered depending on the reduction operation perfonpneduce the
final value:

¢ COMMON: all processors have to write the same value. If not, an errooiysed.
¢ ARBITRARY: an arbitrary processor writes its value.
¢ PRIORITY: the processor with the minimum pid writes its value.

e CUMULATIVE: the sum of all the concurrent values is written. The addition ojena
(defined between single location values) is assumed to be associatiiherfmore, it is
assumed to be commutative to have, like concurrent read and common or pnttitar
operations, a semantic independent from the pids of the writing processors. This eahcurr
write mode is also calledombining[41].

As detailed further, those different variants of the PRAM are relatigkldsed to each others:
each one can simulate the other one with small overheads [14, 41, 28].

Dynamic task creation The above definition presents two drawbacks:
e it assumed that, after initialization, an unbounded number of processors stautier;

e dynamic creation of parallelism has to be described in the program using busyeutiis
means that the scheduling of the program is completely described in the program.

In the initial definition from [18], only the processor with pid O starts exepubf the program.
To generate parallelism, an elementéiyr K <e> instruction is defined. When a procesgér
executes this instruction, an inactive procesBoiis reset. The accumulator @f (which may

contain an address in the shared memory where some parameters are stbrsdopied into
the one ofP’. The pid of P’ is then put into the accumulator &f. This allowsP and P’ to later

communicate via the shared memory.

At the next stepP executes the following instruction (the one that followsftloe k) and P’ starts

the execution of the program at the instruction labeled

Usingf or k, dynamic task creation is made possible, scheduling (allocation of inactieegsors)
being ensured by the PRAM machine. However, this modification implies th@RAM program
that uses a polynomial numbef () of processors takes a tint§log ), forbidding the building
of constant time algorithms; if an algorithm is involved during the execution fogram (e.g.
inside the body of a loop), this overhead may easily be avoided. Analysis of cokts ohapter
are made under the previous model, thus without taking into account task allocatibeaer
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Randomized PRAM To support execution of randomized algorithms, the PRAM is extended in
the following way. A new andominstruction is introduced that allows each processor to generate
(in one top) a random bit (or a random number that fits in a single memory location).

Random generations (i.eandominstructions) performed by a processor during the execution
are assumed to be independent realizations of an uniform law. Moreover, gameErformed
in parallel at a given top by different processors are also assumed to Ipemint.

1.1.2 Execution of a PRAM program and data-flow graphs

Being given the input data, the execution of a PRAM program may be representedirasta
acyclic graph. Vertices correspond to instructions that are executed (deg,\@ne instruction)
and edges to precedence relations between instructions. Basicallgrasp. w) is the vertex
representing an instruction executed step: (resp.: + 1), then there is an edge fronto w.

However, the finest representation of a parallel algorithm is given by taefdat graph (DFG)
of any of its executions. DFG is direct acyclic and bipartite with node.sets{ j;, . . ., j,} corre-
sponding to instructiong (meaningob) and7' = {{,, ..., ,,} corresponding to single assignment
data ¢( meaning transition). An edge goes fram(resp. j;) to j; (resp. t;) if j; is a read (resp.
write) instruction of the global data relatedi{o

In the DFG, any memory access, either global or local, is represented éygenbetween a
location (represented by a transition node) and an instruction (a job node) goatesethe ac-
cess. Except for transitions related to input, immediate ancestors otreasitiont; are write
instructions: only one on an exclusive-write PRAM, eventually more on a conttuméte one.
Conversely, its immediate successors (except for transitions rétapedput) are read instructions:
only one on an exclusive PRAM, eventually more on a concurrent-read one. This tna&nwsen
all immediate successors (job nodes) of a transition have been executestatien related to it
in global memory may be garbaged.

Let us considered the DFG related to a tree computation scheme. As &naiius we consider
two algorithms that solve thiterated product problem: it consists in computing the product
of n elements. In order to exhibit parallelism, multiplication is assumebeti@ssociative and
commutative. A balanced binary tree scheme gives an algorithm that works€EREW PRAM,;
related DFG is shown in figure 1.2. On a CUMULATIVE-ERCW PRAM all produotay be
performed concurrently and cumulated on a shared location (fig. 1.2.b).

This graph defines a precedence relation, denetetietween instruction nodes ih. Let
Jji,J2 be two nodes inJ; j; < j, if there is a path in DFG fronj; to j;. In the following, we
will consider the subgrapth F':,(.J, <) of DFG, where only arithmetic instructions and their
precedence relations are represented.

Remark 1. The data-flow description of the algorithm is roughly equivalent siraight-line
program [32].

Remark 2. Note that symmetry of input (resp. output) edges to a transition node assumes com-
mutativity of access. This is verified for any concurrent write (respdy@access defined on the

Ynstructions corresponding toandw may be executed by different processors.
2also calledterated sunwhen an addition law is considered
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tmp1 tmp2

(@) (b)

Figure 1.2: DFG of two iterated products: (a) EREW (b) cumulative-ERCW

PRAM.

1.1.3 Describing PRAM algorithms: ATH language

PRAM stands as an abstract model virtualizing any parallel architectur@rder to describe
PRAM algorithms, we need an elementary programming language which leadsytdesaription
of algorithms.

Sine evaluation of a parallel algorithm is directly related to the amalysDFG, a sequential
description should be sufficient since data-dependencies appear implicitlyresathccess to a
location gets the value put by the last write in a sequential execution. Hovieeecharacteristics,
which not appear in a sequential description, are to be taken in account:

¢ two levels of memory access are distinguished: local and global. Global meanoegs
support CUMULATIVE-CRCW semantics.

¢ the elementary unit of instruction is the block. A block is a sequence of elemeRrdvy
instructions. A block is executed in sequential; it takes benefit of locakacce

In the following, we consider an extension of the basic PRAM basic language introoiudss]
based on those two considerations. This abstract language is Adli¢can acronym forAsyn-
chronous Tasks Handling

Blocks of instructions are defined as procedures body. Execution of such a blotisk a
Tasks may be ordered either in sequence using synchronous procedure call or in psirailel
asynchronous procedure calls (prefixedflor k). In this last case, precedence relation between
tasks is defined in a natural way, according to shared-data dependencies thairepgeguential
execution of the program. Data dependencies concerning local data are then not edrisitfes
relative DFG.
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Figure 1.3 gives two different recursive programs for the iterated producsiovie(a) works
on an EREW PRAM and is related to DFG presented in figure 1.2.a. Versiongs on a
CUMULATIVE-ERCW; corresponding DFG is presented in figure 1.2.b.

Product(a : in E
b: inE
c : out E)
begi n
c.Wite( a.Read()*b. Read() );
end IterProd( n :in integer,
a[l..n] : in array of shared E,
IterProd( n : in integer, res : out shared E)
a[l..n] : in array of shared E, begi n
res : out shared E) i f(n==1)
begi n res. Cumul <*>( a[1].Read() );
i f(n==1) el se
res.Wite( a[1l].Read() ); fork IterProd( n/2, a[l1l..n/2], res );
el se fork IterProd( n-n/2, a[n/2+1..n], res );
tnpli, tnp2 : shared E; end if
end
fork IterProd(n/2, a[l1..n/2], tnpl);
fork IterProd(n-n/2, a[n/2+1..n], tmp2);
fork Product(tnpl, tnp2, res);
end if
end
@ (b)

Figure 1.3: ATH code of two iterated products: (a) EREW, (b) cumulative-EROM&A in shared
memory are explicitly declared by the prefikar ed. Notationx. f () means that functiof
is called on the data in shared memaryIn program (b), the function cak. Cumul <*>( v

) specifies a cumulative concurrent write on the data in shared mexmahe commutative and
associative binary function implementing the operatioh.is

1.1.4 Time, work and communication costs

Consider a PRAM program. In the following,denotes the size of the input. The arithmetic cost
is characterized by:

e theparallel time7'(n) which corresponds to the number of executed steps;

e thearithmetic worki¥,(n), i.e. the whole number of operations performed.

Those quantities are independent of the number of processors and thus may be defined directly
from the DFG description of the execution.

Definition 1 The parallel timel'(r) is the maximal depth of DFG] for any inputz of sizen:
T(n) = max Depth(DFG,(z)) (1.2)

z,||z||=n
The arithmetic workV, (n) is the number of instruction nodes of DEGfor any inputz of size
n:

W,(n) = max #V(DFG,(z)) (1.2)

@,||z(|=n
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The arithmetic cost is denoted:
Ou.(T(n), Wa(n)) (1.3)

Similarly, the communication cost is characterized by two factors:

e thecommunication del&C,(n) is the maximal number of global memory access performed
by a processor;

e thecommunication workV.(n), i.e. the whole number of global memory access performed.

The PRAM program implements a scheduling of the DFG on an infinite number of processors:
any access to the local memory on each processor is not considered as a catiounious, the
communication cost may vary depending on the number of processors used in the program.

To define communication cost with respect to a parallel algorithm (independemuwhber of
processors, and so more general than the program that implements it), wefevitiorits DFG.

Definition 2 The communication work’(n) is the maximal number of edges for any input of size
n:

We.(n) = max #E(DFG(z)) (1.4)

@,||l=l|=n

The communication delay,(r) is the maximal length of a path if /G from an input data to an
output one:
Ca(n) = max Depth(DFG(z)) (1.5)

@,||z(|=n

The communication cost is denoted:
O:(Cy(n), W.(n)) (1.6)
In order to compare arithmetic and communication costs, the granwériiys defined.
Definition 3 Thegranularityg(r) is the ratio between the arithmetic and communication works:

Wa(n)
We(n)

g(n) = (1.7)

1.1.5 Efficient algorithms

Let A be an algorithm with cost'(n), W,(n), Cy(n), W.(n). Let Wi(n) the work of the best
known (sequential) algorithm that solves the same problem.

The building of a parallel algorithm to solve a given problem may be aimed atrelift direc-
tions:

e either finding the smallest amount of time required to solve a problem. In thigxdont
the classNC' of problems that may be solved in parallel tifi¢n) = log®M n using a
polynomial number of processolg, (n) = n°() plays a central role.

3C(n) is calledcommunication complexiiy [28].
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¢ or building anefficientprogram that leads to solve larger problems in a reasonable amount
of time taking benefit of the ability to use several processors, let ug.shgre, arithmetic
and communication overheads (il&,(n) andW.(n)) are to be carefully taken into account
in order to guarantee efficient executions.

A common trade-off [38] consists in building parallel algorithms that:

¢ havepolynomial speed-yp.e.

T(n) = O(W,(n)) with ¢ < 1 (1.8)

e arework-preservingi.e.
Wa(n) = O(W,(n)) (1.9)

Theinefficiencyr measures the arithmetic overhead:

B Wa(n)
v(n) = W, (n) (1.10)
e requirefew communications.e
We(n) = O(W,(n)F) with e <1 (1.112)

Definition 4 A is said:

e fastif it achieves poly-logarithmic parallel time with a polynomial number of operatioas, i.
T(n) = 1og®M n andW,(n) = n°0.

e optimalif it is fast and has constant inefficiency.
o efficientif it has a polynomial speed-up and a constant efficiency.
o of coarse-granularitif it has polynomial granularity, i.eg(n) = n°).

In order to not absolutely reject fast algorithms involving a small overhead im@etic opera-
tions, fast algorithms with poly-logarithmic inefficiency will be consideredféisientalso.

In the following, some main techniques that lead to the building of an effieietiof coarse-
granularity algorithm are overviewed. It turns out that minimizing time withmreserving work
(i.e. building N C algorithm) is of specific interest:

¢ algorithmic techniques involved for both are very close;
e it gives a lower bound on the best parallel time that may be achieved,;

¢ an inefficient but fast algorithm may successfully be coupled to a slowesfticient one to
build a faster program.
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1.1.6 Example

We illustrate previous definitions on the iterated sum algorithm presented i flgBia. Scalar
product of two vectors is directly reduced from iterated sum; it may be apmiperform matrix
multiplication in a semi-ring.

Iterated sum

For the EREW algorithm presented in figures 1.3.a and 1.2.a (balanced tree coonmgdaéme),
we have assuming = 2"

T(n)=logn Ca(n) =logn + 1
Wy(n)=n—1 We.(n)=2n-1

This algorithm is optimal since its cost is — asymptotically — a lower bound.
As a consequence, the scalar product of two vectors is computed on an EREW with cos

O.(logn,n) and O.(logn,n). (1.13)

On a semi-ring;+ is commutative. Thus, on a cumulative-CRCW PRAM, this problem may
be computed with parallel cost (fig. 1.2.a):

O.(1,n) and O.(1,n). (1.14)

However, description of the computation scheme (cf programin fig. 1.3.b) mayeéglog n,n).

(1.12)

Matrix product

Consider the problem of computing a square matrix produet AB in a semi-ring (i.e. using
only 4+ and x operations).

Let » be the dimension of the matrices: sincg, = >";_, A, » Bx;, the problem reduces ¢
independent scalar products. Using 1.13, we obtain a parallel algorithm with cost:

O.(logn,n®) and O.(logn,n®). (1.15)

SincelW,(n) = O(n?) [37], this algorithm is efficient.

However,g(n) = O(1) and it is not coarse-granularity. Besides, it can be seen thatjsfa
field (or ring), the above algorithm is not efficient (polynomial inefficiency) neitheoretically
sinceW, = O(n?%7) [15, 45] nor practically sinc&(»?#!) algorithms are of practical use [3, 40,
17]. We will see in following sections how to overcome those problems.

1.1.7 Relations between PRAMs

We consider the cost of the execution of a parallel algorithm (defined on a CUMMEATRCW

PRAM for instance) on a given PRAM with a fixed number of processors and witwih seman-

tics for access in shared memory. Two cases are distinguished: when theroiiptmeessors is
decreased and when memory access are restricted. We consider heretomigtar costs. The

main consequence is the existence of optimal — within a constant factor — sonslat a CRCW
algorithm that uses an unbounded number of processors on an EREW machine with a fixed number
of processors.



Theorem 1 Fine grain simulation with fewer processors - Brent’s prirtiple [9, 28]. Let A
be an algorithm that can be implemented to run in (arithmetic) parallel timand work W,
on a given PRAM with an unbounded number of processors. If each local access corresponds
to a global one, themd can be scheduled on the same PRAM, but wifirocessors, to run in
(arithmetic) parallel timel,(n):

W—(’ﬂ < Tyn) < {MJ +T(n) (1.16)

p p

It can be noted that this fine grain simulation does not take into account additivdumogd the
computation of the schedule [12, 22].

Remark. In chapter 2, a constructive coarse grain simulation for DFGs where atithnoeles
may represent a sequence of elementary instructions.

Theorem 2 Simulation with restricted access in global memory[28, 38]. Let.4 be an algo-
rithm that can be implemented to run in (arithmetic) parallel tifyeon a CUMULATIVE-CRCW
PRAM withp processor. Thend can be implemented on an EREW PRAM witbrocessors to
run in timeO(T), log p).

1.2 Increasing granularity

Efficient parallel algorithms require near-optimal work; obviously, the cheafalysis of the small-
est depth DFG induced by a sequential algorithm among the best is then of prattoadi.

As a major example, sequential algorithms based on a partitioning of the probleamiatioy —
independent subproblems have intrinsic parallelism if partitioning and mergingg¢over the
global solution) steps are either parallel or of neglected cost. This situgtipeaes frequently
in numerous divide&conquer algorithms (let us gazarallel divide&conquey. As a computer
algebra instance, modular methods based on Chinese remainder computations [2, 10 &anount
this scheme.

Once a fine grain fast parallel algorithm built, increasing granularitggsired to obtain and
efficient algorithm with coarse-granularity. In this section, the technigumsisting in stopping
recursivity is illustrated on the matrix product problem; we prove an optgrexhularity for this
problem.

1.2.1 Parallel divide and conquer

Let us consider the example of matrix multiplication using a standard bi-dio@sddlock algo-
rithm:

l A Agg ] l Bi1 B ] _ l A B+ A12Bar Ay Big + A1 By (1.17)

Ay Ay By By A Bi1 4 AgaBayy A2 Big + A Bay |

All block matrices products, of dimensiar'2, can be multiplied in parallel. Applying recursively
this splitting scheme leads to a parallel algorithm with cost:

O.(logn,n*) O.(logn,n®) (1.18)
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Note that, since coefficient addition is associative, each entry in the ougitik may be computed
as an iterated sum of values. This allows the whole computation to take a tinge: (instead
of log® n if additions where performed naively at each step). This remark appeacilylion the
DFG description for a CUMULATIVE-CRCW PRAM 1.4: all final sums are madeéi(1) time.
But the splitting process, which involves no arithmetic operation but reeuicrks (cf fig. 1.3.b),
requiresO(log n) time using recursive forks Another technique to obtaid, (log n,n*) consists
in pipelining additions [1].

Cunul ProductTerm( a : in E,

begi n
c. Cunul <+>( a. Read()*b. Read() );
end

MatrixProduct( n : in integer
a: in array[1..n,1..n] of E
b: in array[1l..n,1..n] of E
c : out array[1l..n,1..n] of E)
begi n
i, j, k: local integer;

for i =1..n |oop
for j =1..n |oop
for k = 1..n | oop
fork Cumul Product Tern{ a[i, k], b[k,j], c[i,j] )
end | oop
end | oop
end | oop
end

| a2 | | a3 ] | a2t |

Figure 1.4: DFG of the multiplication of tw® x 3 matrix (cumulative-CRCW)

“Note that the brute force program (fig. 1.4) which perforrestively fork instructions require3, (n3, n3) !



Remark. The same strategy applied to Strassen’s algorithm leads to a pargteitiain with
cost:
O.(logn,n'&7) O (logn,n'&7) (1.129)

Optimal in work (on a semi-ring), this algorithm has granulagity) = O(1): it is roughly
equivalent to a recursive version of 1.15). In the next section, we detail hinwrase granularity
in order to build an efficient algorithm with coarse-granularity.

1.2.2 Minimizing communication work

Obtaining a coarse-granularity algorithm requires to minimize communicafidns can be done

by stopping the recursive parallel splitting process at a given depth, let weh&aysub-matrices
are of size lesser than(i.e. depthlog 7). Operations — resp. sums and products — on matrices
of dimensionk are then performed sequentially, using an optimal algorithm — resp. inim#
andO(r?) —. The cost is then:

3
3 3 2 nn
0. (K* +logn,n*) 0, (k +log ¢ ?> (1.20)
which gives an algorithm with granularig(n) = k. We thus obtain a parallel efficient algorithm
with arbitrary (polynomial) granularity.

Theorem 3 For anyg, log!/®n < ¢ < n, twon x n matrices can be multiplied by an algorithm
of granularity ¢ with parallel cost:

3.3 2 n_3
Oa(g,n) Oc<g + log n, g)'

The previous algorithm 1.20 proves the upper bound.

The following theorem gives lower bounds for communication costs. It shows thateti@us
algorithm achieves an optimal communication delay and an optimal granularitygalgorithms
that achieves an optimal communication delay.

Theorem 4 Let A be an efficient parallel algorithm that multiplies two matrices of dimension
in time 7" using(+, x) only and performing(r>) operations. Then,

3
Ci=Q (T flogn)  W,=0 (#) .
d

Since A is efficient, 7 = O(n°) with ¢ < 3; by reduction from iterative sum, we thus have
Cq = Qlogn).

Kerr [37, 1] shows the lower bound(r®) on the arithmetic work. Sincel performsO(n?)
operations, its execution can be scheduled in ®i€) usingp = % processors. Let, 1 < < p,

be the number of shared memory access performed by procesda@rthen haveV, = Y7, s,
andCy; > max_; s;. To obtain a lower bound oW, and(';, we use the following lemma [1, 25]:
if a processor reads at moselements of input matrices and computes at mqsrtial sums of
their product, then this processor can compute no more iHamultiplicative terms for these
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partial sums.
Applying this lemma tg; which reads or writes at mostelements and sind@(r*) multiplicative
terms are to be computed, we have:

ZP:S?/Q = Q(n®). (1.22)

Boundings; by C; and replacing by ? leads to:
Ca=Q(T%7). (1.22)

Noticing thaty™"_, s>/ < C1/*S°2_, s;, we obtain:
3

I%:Q(gﬁ) (1.23)

d
which concludes the proaf.

Recursive multiplication algorithms. A similar study can be applied to other recursive matrix
multiplication algorithms (e.g. Strassen). It leads also to efficierdligh algorithms with both
polynomial speed-up and polynomial granularity that leads to performant implenoast§ti7].

1.2.3 Conclusion

In this section, we have studied the DFG of a sequential algorithm, based on a&drapier
scheme, that contains inherent parallelism. By halting the recursive grizcesder to minimize
communications, we have exhibited a family of efficient parallel algorithiitis avbitrary coarse-
grain granularity.

Due to its practical interest, this technique has been successfully applkadous problems.
One of significant interest in computer algebra is the discrete Fourier tramsfdie direct analysis
of the FFT algorithm leads to a parallel algorithm with cost:

O.(logn,nlogn) O.(logn,nlogn).

A clustering of elementary instructions (block clustering on the ﬁg@tsteps and cyclic clustering
on the Iasll% steps, cf fig. 1.5) leads to an algorithm with parallel cost [41, 39]:

O.(vVnlogn,nlogn) O.(vn,n).

This algorithm has polynomial speed-up, optimal work and achieves also optimal gitytla

The resulting algorithm is based on coupling a very fast parallel algorithnmapith time but
requiring many communications, to a sequential one which minimizes commuomic&uch an
algorithm is called “poly-algorithm”; the technique that underlies this couplinglled “cascading
divide&conquer”.

Cascading divide&conquer may be applied in a more general context, by coupling astery fa
parallel algorithm, yet requiring many operations, to a slower one which pesfan optimal
number of operations. This technique makes the building of very fast algorithmdiatraven if
the required number of operations is larger.
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Figure 1.5: DFG of the EREW),(y/nlogn,nlogn) FFT algorithm of 16 points. There are
2/n arithmetic tasks (represented by square boxes embedding elementary operatidosal
dependencies), each corresponding to a sequential FFT computatign paints. For any task
on the left, shared data dependencies imply a precedence relation with ttasks on the right.
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1.3 Breaking data-flow dependencies by redundancy and cas-
cading divide&conquer

It may appear that DFGs related to a sequential algorithm contain data-dapmsddat bound
parallelism. Introducing redundant computations may then allow to break depersdencreer
to minimize parallel time. Cascading divide&Conquer may then be used to ddntaoptimal
arithmetic work. In this section we illustrate this technique on the computafithe solution of a
triangular linear system presented in [46]. We focus on communication costs.

Let A be ann x n nonsingular triangular matrix with coefficients in a figkd We assume by
convenience: = 2™. Letb a vector ink™. We consider the computation ef= A~1b.

1.3.1 DFG of the best sequential algorithm

The simple forward substitution algorithm has sequential Bagt:) = O(r?). Direct analysis of
its DFG (see fig. 1.6) gives its parallel cost:

O.(n,n*)  O.(n,n?), (1.24)

which leads to an algorithm with polynomial speed-up but small granulgrity= O(1).

If entries of A are in global memory after initialization, we hal#é.(n) = Q(n?). In a view
to minimizing the communications involved by the algorithm itself, in theciwlhg we do not
consider the access tbin the communication workV.(n).

In order to increase granularity, we consider a divide&conquer version of thisithlgd7].
Let A, b andz be divided into blocks:

Aqy 0 by T
Agr Ay ] l by v [ T2 ] ( )
Here A, is of sizek x h, z; andz, are of sizeh. We have:
Allwl = bl and AQQZL’Q = bg - Azll’l. (126)

wherez; andz, are computed recursively using the same algoritdm;z; is computed using a
scalar product (see 1.13). Note that the use of a pipeline scheme leads to the prealbeiscpat
1.24.

We may then stop the recursive splitting when matrices are ofisizé:, and use sequential
algorithms (triangular system inversion and matrix-vector product) on ceatof size lesser than
k. The resulting parallel cost is:

n

O.(nk,n*) O, (nk, ?2) (1.27)

which leads to an algorithm with granularigyn) = O(k).

Theorem 5 For anye < 1, a triangular nonsingular linear system can be solved by an efficient
parallel algorithm of coarse granularity* in timeO(r'*¢).

Choosingk = n“ = o(n) in 1.27 proves the upper bound.
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Update( x : out E,
a: in E

y:inE)

begi n
X. Cunul <+>( -a. Read()*y. Read() );
end

FinalDivision( x : in and out E,
a: in E)

begi n
x.Wite( x.Read() / a.Read() ); a2l R
end

TriangularSolve ( n : in integer, e a22
a: in array[1..n, 1..n] of E
b : in array[1l..n] of E
x : out array[1..n] of E)
begi n
i,j : local integer;

for i = 1..n loop
x[i].Cumul <+>( b[i].Read() ); a32
fork FinalDivision(x[i], a[i,i]);
for j = (i+1l)..n | oop

fork Update(x[j], a[j,i], x[i]);

end | oop

end | oop

end

a33

Figure 1.6: DFG for the solving of & x 3 nonsingular triangular matrix

1.3.2 Breaking dependencies

The linear time lower bound on previous algorithm time comes from the dependency mldorm
1.26 between computations ef andz,. This dependency may be broken by directly computing
the inverses of the triangular nonsingular matridesand A,,.

Consider the matrixd split in four blocks of dimensiom /2 (1.25 withh = n/2). Then we
have:

A 0
Al = IR _ 1.28
l _AZAnAT A3} ] (1.28)
From theorem 3, the product of two matrices of dimensiors computed with parallel cost
O,(log n,n*). In the following, we will refer to this cost.
To compute the inverse of from 1.28, we first compute recursively and in parallgl' and
Ay). Then we compute the last block af! by performing sequentially two parallel matrix

products. The parallel cost for invertingis then:

"3
Oa(log*n,n®) O, (loan, w) (1.29)

OnceA~! is computedz = A~'b can be computed with the same cost. However, even if polylog-



= T W el VA des § WV Mm%t O Nl ST NS 8T STV

arithmic in time, this algorithm has polynomial inefficiency. In the next pafgaigrave use it on
A111n 1.26 in order to decrease parallel time.

Remark. The above algorithm is efficient for computing the inverse of a nonsingular triangular
matrix. Note that by using fast matrix multiplication, the parallel coseduced ta, (log® n, n*)

with w < 2.38 [46]. Besides, if computations are performed sequentially when the dimensions of
the matrices are lesser than> n°, (e < 1), the obtained algorithm is efficient and has polynomial
speed-up and polynomial granularity.

1.3.3 Cascading divide&conquer to minimize time

The previous algorithm is not efficient but may be combined to the recursive sedjadgigthm
(formula 1.26). The trick is to use it on small dimension matrices (let ys yahen the overhead
O(h*) due to the fast inversion of such a matrix becomes neglectible comparedffizients
updates (roughlyr). This leads to the following algorithm of Pan&Preparata [46].

Theorem 6 The solution of a nonsingular triangular system can be computed in
O4(n'/*1logn,n?)

using a standara:® matrix multiplication algorithm.
If a fastn® multiplication is used then the parallel cost is:

Oy (@D 0g? n n?).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

******************************

ffffffffffffffffffffffffffffff
n/h.log(h) blocks
of size h.log(h) * h.log(h)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

******************************

******************************

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

log(h) blocks
of sizeh*h

Figure 1.7: Splitting used far = 8, hlog h = 24, n = 96

Following 1.27, let4 be split inn? /1? blocks of size: x k. Though, note that a direct computation
(see theorem 1.27) leads to a parallel tiw'/? log” n). To avoid thelog » overhead factor in
the parallel time, we proceed by gathering computatiofbgh/ blocks.

Letk = hlog h; the matrixA may be seen as split {m/%)? blocks, each block consisting log® A
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sub-blocks of dimensioh (cf fig. 1.7).

We use the sequential iterative algorithm on th¢k) x (n/k) coarse grain matrix. At stefp we
have to invert the triangular system corresponding to the diagonal blogk For this compu-
tation, we first invert concurrently thieg 2 diagonal sub-blocks of this block. Then, we update
others sub-blocks of;. At the end of the step, blocks, for j > ¢, are updated.

The algorithm is the following:

Initialization.
Let A be split inton/k blocks M, ; of dimensionk (k = hlogh). Forl < j <i <n/k, let
M; ; be splitintolog i x log h block m." of dimension.
Let = be initialized tob and split according tat.

fori=1..n/k do

1. forj =1..log h do

fork (mf,{)_l = invertm?’).

Using fast inversion and Brent's principle, the cosbiglog? h, k3 log h).
2. forj =1..1ogh do

updater! in parallel

wl = (mdd) ™ (o] = i) miial)

Scalar product are performed in parallel: thugs computed with a cog?, (log® 4, k% log k).
3. forj =i+ 1..n/k fork updater; in parallel

r; =z, — M;;x;

Performing scalar product in parallel, the cosbiglog k., nhlog h).

The final cost is 0, (n log® h/k,n/k max(h®log h,nhlog h)). Sincek = hlog h, it reduces to:
O,(nlog h/h, max(nh* n?)),

and the optimal value fak is the larger one that leads to a wdik () = O(n?). Thus, we choose
h = n'/? and we obtain the upper bound.

The same technique is applied to obtain the upper bound when a fast matrix mulopliaigo-
rithmis used D

1.3.4 Applications in linear algebra

Many linear algebra algorithms are based on a Gaussian elimination sdireaesystem solving,
normal forms (Hessenberg, Smith, Frobenius, symbolic Jordan). Such a schemespavaike|
algorithms with polynomial speed-up: at each step, a transformation is compatezhh then be
applied in parallel to each coefficient of the matrix. For instance, solvingrasingular linear
system using standard Gaussian elimination leads to a parallel algorithroost:

O.(n,n*)  O.n,n?) (1.30)
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Moreover, very fast deterministic algorithms (polylogarithmic pardllake) are known for most
problems [45, 24, 58, 57] but they are often inefficieWt,(n) = n°(MW,(n)). For instance,
solving a non-singular linear system can be computed in parallel with cost:

O, (log*n,n+*) (1.31)

with o = 1/2 in characteristic zero [16, 50] ard= 1 in the general case [11]. Applying the same
cascading divide and conquer strategy leads to sub-linear parallel algorittimsptimaP work
[46]:

O, (n'/*log® n, n?). (1.32)

Remark. The same technique applied on Strassen formulation [56] (which may take benefit of
fast O(n?*"®) matrix multiplication algorithms), does not succeed in the building of a sulaline
algorithm with parallel time:?, 3 < 1.

1.3.5 Conclusion

In this paragraph, we have used bi-dimensional block matrix partitioning in ayder t

e increase the granularity to build polynomial speed-up algorithms with polynomializna
ity; the technique used is cascading divide and conquer with a sequential algorithtkein or
to decrease communication costs.

e decrease parallel time while preserving the work; the technique used isltegsdavide and
conquer with a very fast but inefficient algorithm in order to make the computtster.

In [46], the same technique, callerk-preserving speed-ups applied to several linear algebra
algorithms: LU factorization, inversion, quasi-inversion, solution of lrrsteuctured systems.

1.4 Randomization to decrease time or preserve work.

When an algorithm has a bounded degree of parallelism or a polynomial efficiency, raatiomi
may help in order to either decrease time or preserve work, eventually doghséction illustrates
both aspects on the computation of the rank of a matrix.
In computer algebra, randomization is most often introduced via the verificatti@mpolyno-
mial identity by evaluation on a random value. Testing whether a polynomial iScdéntzero
can deterministically be solved by evaluating the polynomial, represestadsaraight-line pro-
gram, at a sufficient number of points. However, depending on the degree and on the number of
indeterminates, such a deterministic test can require a huge number of evelugbllowing the-
orem, due to Schwartz [54], uses randomization in order to reduce this number whilergptiedi
probability of failure.

Srelatively to the standar@(n?) sequential algorithm
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Theorem 7 [54, 28] Let P(x4,...,z,) be a polynomial in the variableg;), 1 < : < n, over a
field K. Let/ be a finite subset ok with cardinalc. Let(ay, ..., a,) avector selected at random
in K. If P is not identically zero then
ded P
Prob(P(ar,...,a,)) < g )

[

Once a problem is reduced to the verification of a polynomial identity, this theahems
to build a Monte-Carlo algorithm to solve it (for an introduction on Monte-Garid Las Vegas
algorithms, see [36]). It is sufficient to build a parallel algorithm thatleates the polynomial at
a given input point. By choosing this point at random in a large enough finite Swbsatbtain a
Monte-Carlo algorithm whose probability of error is at mog2. This technique may be applied
in a very large framework [36, 28] and is commonly used in computer algebra [4&]ilch fast
algorithms with optimal work. We illustrate it on the problem of computing the rarkrogtrix.

In the following, A denotes a matrix of dimensionx »n with coefficients in a field«'. For the
sake of simplicity,A” is assumed infinite.

1.4.1 Randomization to suppress dependencies

The rank of a matrix can be computed using a standard pivoting Gaussian almir@imilarly
to 1.24, this results in an algorithm with parallel cost:

O.(n,n*)  O.n,n?) (1.33)

Contrary to triangular system solving, the computation scheme (DFG) isvejatinknown: co-
efficients to modify are determined at each step only once the pivot elenseheba chosen.

In [8], randomization is used in order to reduce the whole problem to a fixed DR@harm
parallelization techniques can be applied. The algorithm is based on the fulloharacterization
of the rank: rankA4) = r iff there exist two non-singular matricédsandC' such that the principal
minor of dimension- in LAC' is non zero while principal minors of dimension larger thaawre
zero. Moreover/. andC' can be taken at random with a high probability of success: the use of
theorem 7 to evaluate this probability requires to express the problem as a pollyilemiiy.

Let §;(L, C') denote the principal minor of dimensiof LAC. Due to multi-linearity of the
determinanty; is a polynomial of degreen with indeterminated.; ; andC;; (1 < 1,5 < n).
Previous rank characterization leads to the following polynomial identities:

;=0 r<i<n (1.34)
This suggests the following Monte-Carlo algorithm to compute

1. Choose two random non-singular matridesnd C' with coefficients in a finite subset of
cardinalc of K;

2. ComputeM = LAC,

SNote that, ifX is not large enough, this may require to work in an extensfoli §24].
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3. Forl < < n, computed; = def M;) and letd, = 1;

4. Returns = Max—o... .{k/di # 0}.
(Note that step 3 and 4 may be replaced by a logarithmic search to cog)pute

In any cases < r. The probability of error, which occurs when< r, corresponds to executions
where the evaluatiod,. of polynomials, is zero althoughi,., of degreen, is not identically zero.
From theorem 7, this probability is bounded &y. Choosingc = 4n results in a Monte-Carlo
algorithm with probability of error lesser than

Arithmetic cost is dominated by the computation of theeterminants. If Chistov’s method
[11] is used (see chapter 4), this cost is:

O.(log*n,n“th) (1.35)

In order to improve efficiency, determination ©may be computed using a logarithmic scheme
instead of the previous brute force method. Using the efficient randomized algoritkaitofen
and Pan [33] to compute the determinant (see chapter 4), the parallel cost become

O.(log’n,n* logn), (1.36)

Note that such an algorithm uses mainly randomization in order to provide agbaatiputation
scheme for the rank.

1.4.2 From Monte-Carlo to Las Vegas

The building of a Las Vegas algorithm from a Monte-Carlo one consists mainlyrifyivg that

the output is a correct solution to the initial problem. Such a verificationsg fslam the previous

algorithm; it suffices to verify that all columns (resp. rows) of the math = LAC are linear

combinations of independent columns (resp. rows)df, s being the output of the algorithm.
Consider the following splitting fod, the first blockd;; being of sizes x s:

(1.37)

M:lMH Mul.

M21 M22

My, is a non-singular matrix. LeX = M, M' andY = M;;' M;,; note thatX andY” are of
size(n — s) x s. SinceL andC' are non-singularA is of ranks iff the last (n — s) rows and
columns ofM are respectively linear combinations of thérst ones. This relies on the following

identities:
{ [M21 M22] :X[Mn Mm]

l M, ] _ l My, ] v (1.38)

M22 M12

Assuming a Las Vegas algorithm to compute,' with parallel costO, (log” n, n“ log n) ([33],
see chapter 4), those identities can be verified with a parallel cost:

0.(log® n,n* logn). (1.39)

This results in an optimal randomized Las Vegas algorithm to compute the rank.
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In this algorithm, randomization is strongly used for preconditionning the input (conquutat
on LAC instead ofA) in order to suppress data dependencies that bounds parallelism. A natural
guestion is then the existence of a fast deterministic algorithm, i.e fevitllependencies. In [44],
Mulmuley provided such a deterministic algorithm for computing the rank: it aeki@arallel
time O(log® ) but polynomial inefficiency. Then, randomization is required to provide efficiency

1.4.3 Randomization to provide efficiency

Based on a generalization of a method developed in [27] for arbitrary fieldendey algorithm
[44] reduces the problem of computing the rank to the computation of a characteoisthromial
in an extension of the ground field.

In the following, A is assumed symmetric; this is done without loss of generality since

v l)

Theorem 8 [44] Let A be a square symmetric matrix over a fiehd and letm be the highest
integer such that™ divides the characteristic polynomigh, (z) = > a;(2)z" of the matrix
Az overK(z):

rank A) = %rank(

Az

I
o>

ThenrankA) =n —m.

Deterministic parallel algorithms for computing the characteristic polyabimiparallel time
O(log® n) are known [16, 11] (cf chapter 4) but they have polynomiét) inefficiency. Even if
we assume an optimal algorithm for computing the characteristic polynomiabshefthe above
algorithm would be:

0. (log” n, n“’nlogo(l)n) (1.40)

Sincea;(z) are polynomials of degre@(n ), a way to obtain efficiency is to get rid off polynomial
arithmetic onk™ using evaluation at a random value.

Moreover, efficien0, (log*n,n* log n) randomized algorithm are known for computing the min-
imal polynomial. Multiplying Az by a random non-singular matrix ové¥ results, with high
probability, in a matrix with distinct eigenvalues; then, minimal and abearistic polynomial are
equal.

Those two steps of randomization results in the following efficient MontéeGalgorithm for
computing the rank:

1. Choose a random non-singular matfix
2. Choose arandom valuan K (or in an extension ify is too small);

3. Compute the minimal polynomiép 4. (z) of the matrixP A.;
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4. Returmn — m wherem is the highest integer such theit dividesépa, ().

The parallel cost is then:
O, (log*n,n“logn) (1.42)

which results also in an efficient Monte-Carlo algorithm.

Remark. The above algorithm is very close to the one presented in 1.4.1; Mulmuley algorithm
can effectively be considered as an inefficient deterministic versdfidrv.1. This is not surprising
since both randomized algorithms solve efficiently the same problem. Howex@oint out two
different motivations for the use of randomization.

1.4.4 Conclusion

In the above examples, randomization is used to provide work-optimal computabongither
slow or fast but not efficient deterministic algorithms. Due to the factahbt randomized algo-
rithms are known for computing efficiently the solution of linear systems in polyithgaic time
([33] cf chapter 4), randomization is an important tool in parallel computebadge

1.5 Parallel time complexity and NC Classification

An efficient parallel algorithm achieves polynomial speed-up within an optjoralear optimal)
number of operations. Obtaining bounds on the parallel time required to solve a giveanprobl
within a reasonable number of operations is then of fundamental interest. Mqoraedetailed in
previous sections, very fast parallel but inefficient algorithms may be ofipaamterest if they
can be coupled to an efficient but slow algorithm.

In the framework of parallel complexityy C' class [13] which includes polynomial sequential
time problems that have a polylogarithmic parallel time plays an important36le The parallel
model used in the formal definition &f C' is log-uniform family of boolean circuits [53]VC* is
the class of problems that can be solved by such a family with defitiz" ») and»°") boolean
gate$. For instance, integer arithmeti¢ (—, x and Euclidean division) lies ivC. Introduction
of gates that deliver in output a random bit allows to define corresponding randomasse s
RNC for Monte-Carlo circuits and NC for Las Vegas ones. Problem'scomplete [28, 49, 35]
are inNC only iff NC' = P; among them, thenonotone circuit value probleCVP) consists
in the evaluation of a boolean circuit, roughly equivalent to a DFG with boolean rasdésfined
in this chapter. The integer greatest common divisor remains an open questionuloiyesr
O(&) algorithms are known [34, 35].

The algebraic extension [61] of this primitive model allows to build cicuhich gates com-
pute compute arithmetic operations in an algebraic domain. A gate testing QuHity) is intro-
duced in order to mix boolean and arithmetic operations. For instai¢e (/' stands foffield)
is the class of problems that can be solved by log-uniform family of circuits whates perform

’Gates compute bounded fan-in boolean operations(dandnot) and have unbounded fan-out [26]. Extensions
to unbounded fan-in gates leads to class [29].
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arithmetic operations in any field, i.e-, —, x, / and? = 0. Complexity of basic computer alge-
bra problems has been extensively studied [8, 13, 59, 60, 35, 45]. Polynomial aritfimeticx
and Euclidean division) lies itV C'}. [45]. An important class i$) ETr which contains problems
N(C'-reducible to the determinant of a matrix; matrix powering is completeXéflz. DETy

is included inNC#%. Most of linear algebra problems lie iNC'%: rank, null-space, minimal and
characteristic polynomial, gcd of many polynomials [8, 44], Hermite normal forpobfnomial
matrices [31], Smith and symbolic Jordan forms [52, 58, 57, 21]. Note that those psoathmt
an optimalO.(log” n, W;(n)) parallel algorithm but using randomization [33, 23, 24, 45]. Though,
in certain cases, some general techniques are known to remove randonthessiwcreasing the
work [42], no work optimal deterministic algorithms with poly-logarithmic tiraee known for
those problems.

As it appears for most computer algebra problems studied in this chapter, paigolghms
often appear as a restructuration of sequential ones, taking into account algebparties of the
arithmetic operations involved. Although evaluation of a boolean circuit-tomplete, several
algorithms have been developed to evaluate arithmetic DFGs (alsd saideght-line programs)
taking benefit of the underlying structure. In a semi-ring, DFG that are treebecavaluated in
O(log n) time without increasing the number of operations performed [9]. Any DFG penfgrmi
n operations in a semi-ring and whose outputs are of arithmetic dedrean be evaluated in
O,.(log nlog(nd),n*) [32]. This result has been extended to DFGs performing operations in a
lattice [51]. A more general simulation of a RAM machine on a PRAM one [43] shbafsany
DFG can be evaluate in parallel on an unbounded number of processors with polynondalippee

1.6 Conclusion

This chapter overviews the PRAM framework (execution model and main #igud techniques)
in which parallel algorithms are built and analyzed. The macro data-flophgilaFG) related to
the execution plays a central role: it describes data-dependencies betwdedbliostructions.
Abstract measures used to analyze algorithmsilapghandwork; arithmeticandcommuni-
cationcosts are distinguished. The one corresponds to operations performed (macroiamstruct
nodes) while the other to access in the shared memory (data dependencies natthesgtidmork
and depth are used for many years to analyze performances of parallel algd8tf4%, 35, 28, 6].
Due to experimental constraints, relevance of communications costs @kecdotmunication traf-
fic — work - and total communications delay) has been pointed out to obtain practifainpant
programs [5, 19]. Since minimizing communications overhead and minimizindjgldiae are
antagonist, good trade-offs have been studied for several common algorithms [47, Gr&@]-
larity, defined as the arithmetic-to-communication works ratio, appeagjaed parameter.

8In such a DFG, any output may be equivalently seen as a poligh@rnose indeterminates are the inputs. The
arithmetic degree is then the maximal degree of polynonsi@isesponding to the outputs.
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In order to analyze performance of algorithms, a formal model is needed to takedtseinto
account. The success of the PRAM model is mainly due to the fact that it does moptatte
represent any parallel architecture but can be mapped onto various onesvédptie® simulation
on a realistic machine can be made efficient (up to a constant relateddcatngarity), provided
many processors of the PRAM are mapped onto a single processor of a host machisacdéss
is brought to evidence by the fact that most of the tricks used to optimize prgatidakmances
when programming on a given architecture are relevant to algorithmic tecisrtivpteare theoret-
ically justified on the PRAM model.

Given an algorithm (let us say a macro data-flow graph — DFG — as presemteapter 1) and
a particular multiprocessor architecture, the problem then is reduced to:

¢ find a good (the best) schedule of the DFG;
¢ implement the resulting algorithm in a programming language.

Only now, the performance of the program, i.e. the completion time of an executiayn be
determined. Assuming fixed the initial algorithm, the machine and the input, thsrmance
depends directly on the scheduling strategy. Tuning the program ammounts to improving the
schedule it implements.

This chapter presents the main techniques used to schedule data-dependencid3FEph (

on a given architecture. As presented in chapter 1, a DFG is the abstpaesertation of the
execution of a particular program on a specific input daté fine grain description (elementary
instruction, elementary data dependency) is unrealistic for executions recuiing of computa-
tion time.
We will thus assume that arithmetic nodes of the DFG correspond to sequenceuadtioss: each
arithmetic node is then weighted by the number of elementary instructions it petférithmetic
depth7'(z) and workW,(z) are evaluated taking into account nodes weightsz) is a lower
bound of the minimal time required by any schedule ignoring communications times.

W (z) is the exact number of operations required by a sequential execution of the algorithm.
Since the best schedule may replicate some arithmetic nodes in order to zeinompletion time,
note thati¥’(z) is also a lower bound on the number of operations performed by any schedule.
Similarly, transition nodes may correspond to a complex data structure (ihmala word); each
transition node is weighted by the size of the data it corresponds to. CommunicatgrCdet)
and workiV.(z) are also evaluated accordingly. Ignoring arithmetic titig ) is an upper bound
on the minimal communication time required by the best schedule for an infinite nuwhpey-
cessors.W,(z) is an upper bound on the number of remote access (communications) performed
by any schedule.

As straightened in the previous chapter, the initial parallel algorithm isasg efficient, i.e.
W,(n) = O(Ws(n) whereW;(n) is the time of the best known (uniform) sequential algorithm,
being the size of the input. Moreover, in order to make performance evaluatiom wiinput, we
assume that there exists a constAnsuch that:

Va,|z| >no: Wilz) < KWy(x) (2.1)

Note that, for a given input, DFG, may be known only after completion: instructions or
transitions nodes and edges are dynamically built. In the language ATH introduckdptec
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1, those nodes are created either by executionfadrak instruction or access to a shared data.
Similarly, the cost of any instruction node (resp. size of data relatedytdransition) is known

only after completion of the instruction (resp. communication). In such a gecamntgxt, DFG

has to be scheduled using an on-line algorithm. Related to a functional programmoded, m
most of computer algebra algorithms present such a dynamic behavior; we thus focus on on-line
scheduling algorithms.

Organization of the chapter is as follows. In the first section, specifiactexstics of asyn-
chronous distributed architectures are recalled. Costs of basic operagansa@eled by theogP
model introduced in [15]. Basic mechanisms allow parallel and distribotegramming: com-
munications, threads, remote memory access and synchronizations tools. Indhé section,
the scheduling of a PRAM algorithm on such a machine is discussed. Approaches maynbe dis
guished in two classes. The first one [54, 28] is based on the simulation of a PR&kine on a
given architecture: the execution of the parallel algorithm is managed veirthdation. Global
synchronization and emulation of the shared memory, which are at the basis 6tAiM fodel,
are key points. The second one [26, 51, 38, 50, 5, 19] is based on the direct scheduling of the
DFG. The execution of the algorithm is handled by a scheduling algorithm. Both appscaehe
motivated by the availability of provably good approximation algorithms to sthieeunderlying
theoretical problems (permutation routing [48, 42, 55, 40] or DAG off-line and on-linedsding
[29, 49, 13, 36, 47, 14, 8, 6, 30]).

The last section focuses on on-line scheduling algorithms which are of maiashiercomputer
algebra. We recall upper and lower bounds on the competitive-ratio without takimgaecount
scheduling and communication overheads. As a corollary, we exhibit a listhgdatng algorithm
which achieves optimal simulation of any efficient PRAM algorithm, takimg iaccount those
overheads. Finally, we overview some programming languages or libraried bagtose ap-
proaches, focusing on the one suited to computer algebra algorithms. We descritectvee
implementation of the theoretical language ATH introduced in chaptemr@APASCAN, which
achieves provably performances.

2.1 Asynchronous distributed architectures

2.1.1 Realistic models of distributed architectures

There is an apparent convergence in the field of distributed architectinieb are similar to a
network of workstations. A parallel machine consists in a set of independent pyos;esach with
considerable local memory, linked by an interconnection network. Fundamentaéddés with
the PRAM model are the following (compare 2.1t0 1.1 in 1):

e asynchrony. each processor works independently with its own local memory; there are no
global synchronization.

e contention: the network is a resource with bounded access.

Like the local PRAM introduced in chapter 1, two levels of access may thersbegliished: local
and remote access (parallel machines are often called NUMA for non-unifemmory access

INote that this non-uniformity appears also at the procdsset between cache and RAM access.
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Interconnection Network

Figure 2.1: General structure of a distributed architectiiéerences with the PRAM presented
in chapter 1 are the absence of a global sequencer and contention for access to the network.
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Costs of remote access are mainly characterized by two factors:
e bandwidth: the rate at which each processor can access memory;

¢ latency: the time between making a remote access request and receiving the @gplycy
accounts for overheads involved in resource allocation (solving contentionworkgtdu-
ration of communication (related to physical distance).

The network bandwidth that is available on recent parallel computers GB/s on SGI Power
Challenge, Cray T3E, SUN HPC) and even on local networks (typically 1 Ghig Wirynet
connection or DEC Memory Channel) is becoming large enough compared to the bandwidth to
local memory; thus it appears less and less as a bottleneck. Howevery lstenmore serious
problem since it is bounded by physical limits.

Several variations of the PRAM model have been proposed in order to take iotanaticose
practical constraints [15]: memory contention [40, 54, 42, 45], asynchrony [27], nydmigparchy
[3, 34], latency and bandwidth [47, 1]. Considering that point-to-point communicatiobasia
primitive, the modeLogPproposed in [16] characterizes a distributed architecture by the following
parameters (fig. 2.2):

L : latency an upper bound on the delay incurred in communicating an unit size data (i.e.la smal
number of words) from its source to its destination; an extension to longer messag@so
been developed [2].

o : overheadthe time a processor is engaged in the transmission or reception of a message;

g . gap minimum time interval between consecutive message transmissioneptioers.
The reciprocal of; corresponds to the available communication bandwidth per processor; it
is denotedr in [47].

P : the number oprocessors

This model has been successfully used on different architectures to phedetdcution time
of some parallel algorithms [16, 20]. As a consequence, classical balaneest@mes used on
the PRAM to perform iterated sum or broadcast appear as non optimal [41].

As a conclusion, the portability of a parallel program cannot be achieved if thectbiastics
of the target architecture are not taken into account. Notingly, the communigatiameters, that
are partly modeled blyogP, have significant influence on the performances.

2.1.2 Basic programming tools

Reliable message-passing communication is the lowest-level feamueed for programming a
distributed architecture. It allows both to exchange data between progé$sobasic functionality
of the PRAM shared-memory) and to express synchronization (the functionality drisutae
sequencer of the PRAM).

Since 10 years, several message basic interfaces have been built onhepaf tevel ones
provided on any specific architectures in order to allow portable programmingst Mmous
ones are PVM [24] and MPI [53]. MPI has been standardized [18] and is nowadaiabbea
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Figure 2.2: Communication cost parameters in the LogP model.

on any distributed architecture or network of workstations. Basic featfr&4| are point-to-
point and (blocking) collective communications, communication contexisi(nunicatorgs user-
defined data-types. Other extensions concern remote memory access, pgrati@ind output
(MPI-F), active messages and dynamic process control.

In order to hide the communication latency by arithmetic computations, two toajsha

used: asynchronous communications and threads. Threads are lightweight processes-which
quire a small overhead for context switching. They are handled directly inotlvees program:
a standard interface, POSIX, has been defined [10]. Threads have firstlydbfeed for con-
current programming and efficient use of SMPs (Shared Memory Processor) ngle rsode.
Since threads access concurrently the same memory space, synchronizatiaretpotsided for
atomicity, such as locks and semaphores (sometimes monitors).

Threads are well suited to hide latency on a distributed architecturen a/ileread waits for
the result of a communication, it may be preempted and a ready one scheduled. Thte, sev
portable programming interfaces have been built to couple a message-pdssing(lisually not
thread-safe) and a thread library (available on a single node), providingpmves to the user for
lightweight remote procedure calls or active messages [21, 46, 9].

2.1.3 Shared virtual memory

On many distributed architectures, remote memory access are podsiejeprovide a virtual
shared memory analogous to the one of the PRAM. On such machines, specific haithvese
to load transparently a local or remote data in the cache of a processor. Inhmhitde the latency
of remote access, prefetching and multi-threading is used.

The simulations of the PRAM shared memory on a distributed architecture siséuractions
(randomly chosen from a universal class) to map shared memory cells onbo¢leof the ar-
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chitecture (i.e. memory modules) [48, 42]. The delay of a simulation is therepared for a
single access. It is related to the evaluation of the hash function, the memention (when
several access to a same module occur), and the routing time if the netwarkaemplete. In
[48], a simulation with delay(log p) of an EREW PRAM on a butterfly network is given. In
[40], randomized simulations of EREW and CRCW PRAMSs on a distributed aatbite with a
complete interconnection network (contention is not taken into account) are @esdatit delay
O(log log plog™ p). Note that, concerning the CRCW PRAM, this simulation is at a faeigrp
from optimal.

In order to obtain optimal simulations, such delays are to be hidden by arithoostiputa-
tions. The key idea is parallel slackness [42, 55, 40]: it consists in simulatfgAM with »
processors on a distributed architecture with fewer procegsers:. The simulation is optimal
(time-processor optimaif the delay for an access is proportionatitp. For instance, the previous
mentioned simulation [40] leads to time-processor optimal simulation ofREEVE PRAM with
n = plog log plog™ p processors on a distributed architecture with less thanocessors. Note that
parallel slackness is also involved when using asynchronous communicationseauktto hide
latency.

On the contrary of communications, remote access to shared memory do nollyopstséde
a way of synchronizing the computations. In the PRAM, such a synchronization mechanism
provided by the global sequencer. On distributed architectures, intriysasgthchronous, syn-
chronization tools classically used are communications, locks and semaphores.

2.2 How to schedule a DFG

Being given an algorithm, the problem considered here is to schedule the DR&dre&dathe
execution on input data on a distributed architecture. The goal is to obtain amabgtthedule
related to the DFG.

2.2.1 Scheduling cost of a DFG

Computing such an optimal schedule is a difficult problem. Even if communicatids aos
ignored and the DFG fixed (i.e. no dynamic task creation) with tasks of knownaurebmputing
an optimal schedule & P-complete and deciding whether the length of the optimal schedule is a
given integer is co-NV P-complete [23]. However, on machines wihdentical processors, there
are several polynomial algorithms with bounded competitive ratio, the most fabesng list-
scheduling [29]. Moreover, even on non-uniform machines, approximation algoritienksiawn
[52, 30].

Computing a schedule implies an overhead in the execution time; this scheduértyead
is governed by the time required to compute the schedule itself (i.e. the ctis# etheduling
algorithm) and to realize this schedule (i.e. the mapping of tasks, preempiigration). The
scheduling overhead is included in the execution tifpe:) of the algorithm with input: on the
target machine.

Definition 5 Being given a scheduling algorithey the execution time of an algorithm with input
x on a machine withp identical processors using the schedule delivered isydenotedfgs)(x).
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The minimum execution time over all scheduling algorithrissdenoted/ ()

When there is no confusion aboyt?'*)(z) is denoted byl ,(z).

The cost of computing a schedule is directly related to the size of the DEGheenumber
of tasks and dependencies it contains. Note that those costs are different framthimetéc and
communication works considered in the previous chapter which take into account the number
of operations performed in each task and the number of communications relatedntalaa
dependency (transition).

Definition 6 Let DFG(z) be the macro data-flow graph corresponding to the execution of a par-
allel algorithm on an unbounded number of processors. We define the following measures:

e N,(z) is the number of task nodes in DEG);
e N,(z) is the number of transition nodes in DHG);

e N,(z) is the maximal degree of a task node/i¥'(z); the degree is the number of input
and output edges on a task node (to or from a transition node).

The scheduling cost, of DFG(z) is:
S(z) = (Na(z), Na(z) + Ni(z))

Note that other measures may be considered in the analysis of a scheduling algeoitimstance,

other parameters considered in [7] are the maximum number of edges betweenrafynpdes

and the width ofD F'GG, (), i.e. the maximum number of tasks that may be executed concurrently.
The finer DFGXx, the larger its scheduling cost and thus the more expensive will tipeitdan

of its schedule. Similarly to granularity, the regularitys defined as the ratio of the arithmetic

work to the size of the DFG.

Definition 7 The regularityp(z) is defined by:

W
) = Ny + Nw)

A PRAM algorithm (or equivalently its related DFGS) if saidomlynomial regularityff:

p(x) = |z|'"* with € > 0.

Notation. In the following, we will consider the execution of a given algorithm on a giyen
processors machine with an arbitrary inpudf sizern. Thus, all notations are implicitly related
to = andn. For instance/N, will denote N, (z), the number of task nodes in the macro data-flow
graph related to the execution on an unbounded number of processorsiwitiput.

2.2.2 Off-line and on-line scheduling

The DFG corresponding to the execution may be partially determined at compeléy data flow
analysis of the code of the algorithm, or may be discovered during the execution (dependhne
value of computed data) and completely known only after the end of the executiomdiegpen
this knowledge of the DFG, the scheduling can be then computed off-line or on-line.
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Static allocation of tasks to processors.

When the DFG corresponding to the execution can be analyzed at compile-tismpo#sible to
find a good schedule by hand, eventually with help of static scheduling tools. The obtudt
scheduling is to assign each task of the DFG to one processor (or more if tieplisarequired).

On a given processor, tasks are sequentially ordeneakder to respect precedences; data depen-
dencies between them are emulated by access to shared data in the lncaym&hen tasks are
placed on different processors, data-dependencies (i.e. access to datacatpce relations)
may be emulated in two different ways:

e By communication. The data corresponding to a write-read dependency has then to be ex-
plicitly sent from the writing task to the reading one. This operation corresporaphys-
ical global copy of the data; locally unreferenced data have to be deleted ¢ladzge-
collection).
An important point is that the completion of receiving instructions implicitlpiements the
precedence relation (synchronization).

e By shared-memory access. Communications that implement remote acctssamplicit.
However, the precedence relation between non local tasks has to be dessrigedlobal
synchronization tools.

As a result, before execution, each processor gets its own program. Usualigrogram is the
same for all the processors but is parameterized by the pid of the executirgggoom order to
implement different behaviors. PYRROS uses this approach and a specific sehedgtrithm
which performs a clustering of tasks [26, 25].

Dynamic allocation of tasks to processors.

A problem that arises frequently in computer algebra is that elementaryagsifien of unknown
cost. For instance, costs of arithmetic operations (on rationals, polynomialatoces) are usu-
ally unknown at compile time since their are related to charactesisfithe values computed at
execution time (size of the data, degree of a polynomial, sparsity of a md@epending on such
values, parallelism (i.e. creation of a task) may be generated duringebat®n. In such a case,
an on-line scheduling algorithm is used.

Most of on-line scheduling algorithms are based on the following greedy scherad lcsH
scheduling4, 11]:

¢ When a processor creates a new tasér(k instruction of the PRAM language ATH), it
stores it in a list of tasks.
Note that, there may exiseady tasks, i.e. whose precedence relations are satisfied, and
non-ready tasks, i.e. whose one of the precedent tasks is not completed.

e When a processor becomieke (i.e it has no ready task to execute), it gets a ready task in
the list.

2Multi-threading may be used to describe a partial executicier.
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Algorithms vary depending on the way the list is managed and processors put andkget tas

The program that implements the algorithm expresgasctional parallelismtasks generally
correspond to procedure or function calls. Non-ready tasks or data arefcaliexd An important
point concerns the management of data, parameters of the task: they can be gyatgoapied
in a stack corresponding to the function call or passed by a reference to a tla¢esshared mem-
ory. Precedence relations between tasks may correspond either to data dejpsnoletatask
precedences.

Scheduling operations

The previous section does not specify which instructions a scheduling can perfoept, eassical
computations and the possibility of executing a basic task — an elementary nib@eDFG — on
a processor. Migration instructions allow to suspend a task during its esac¢ntorder to map it,
eventually later, on another processor [52, 4]:

e migration restricted to restart:when a task is moved to another processor, its execution
restarts from its beginning;

e migration: when a task is migrated to another processor, its execution restartst$rizst
instruction performed.

A scheduling algorithm witmo-preemptiormakes no use of those operations: it has no control
on a task once it has assigned it to a processor, just getting information whiaskhs finished.
Migration restricted to restart, denoted in [S2jaspreemption with restartss useful on machines
whose processors are not identical.

2.2.3  Which scheduling algorithms in computer algebra ?

An important point is that on-line and off-line scheduling algorithms have theoré&igadations
[29, 22, 35, 11, 30]. There exist provably good approximation algorithms for both with bounded
competitive ratio. For both, specific algorithms are developed to increaerpances for certain
classes of graphs (for instance trees or SP11 graphs — fork-join —).

Of course, performances of off-line algorithms are better when the DFG is kaodrthe
machine fixed. However, since on-line algorithms make no hypothesis on the exdoufion for
the determination of tasks precedences), they can be used for any classa@dtapiand thus are
of general interest.

Thus, both techniques are used in computer algebra. For instance, block-scattating
mapping, which can be considered as an hand-made off-line algorithm, leads tuptiesal per-
formances for linear algebra problems like dense matrix multiplication ersmn (cf chapter 1)
over a small finite field (e.g. GF(2)) on a distributed architecturé wdéntical processors.

However, due to their generality and their close relation with functionadligism [31, 51],
on-line scheduling are of specific interest for a parallel computer algebrarsyist¢he following
we thus focus of those algorithms.
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2.3 On-line scheduling algorithms

2.3.1 Foundations of on-line scheduling

Theoretical foundation of on-line scheduling algorithms is due to Graham [29]. Trewvfob
theorem appears has an arbitrary grain version of Brent's principle prdsentdapter 1. We
recall its proof which is the basis of most of further results.

Theorem 9 [29] If scheduling overhead (i.e. the cost of computing the schedule and managing
the list of tasks) and communication costs are not considered, any list-schedulingalgbats

competitive ratio(2 — 1), i.e.
1
T, < (2 - _) T
p

A list-scheduling algorithm is such that, at any time, at least one procisssgecuting a task.
Then, if at a given time a processor is idle then there exists at least onsgoowéiich executes a
task. Lett; be one of the tasks completed at dateand letd;, be the date when execution f
has been started. Two cases arise:

1. either no processor was idle befae.

2. either there was at least one processor idle at a certain date befotest § be the latest
date beforel;, when a processor was idle. At¢; was not ready (else it would have been
started on an idle processor). Thus, there exists ataskich that ;, was being executed at
6 andt;, < t;,. Letd;, be the date when execution®f has been started.

Recursively applying this scheme until case 1 occurs, we build a sequencé&f;tas ... <
t;, < t; such that, at any time where a processor is idle, there exist < k£ such that; is being
executed on one processor.

Similarly to chapter 1, lef’ be the minimal arithmetic time on an unbounded number of pro-
cessors antV/, be the total number of operations. The total idle time is define# by= pT,, —W,,.
Forl < i < k, let/; be the duration of task.. We have:#1 < (p — 1) X%, I; which leads to:

pT, < W, + (] —121

Besides, since tasks 1 <: < k are on a critical pathzjz1 [; <T. This leads to:

W, 1
< (1 - ) 7 2.2)

P p
We also have” < 7. Moreover, sincéV, operations are to be executed in any schedile <
pT;. Replacing in 2.2, we obtair¥;, < (2 — —) Ty O

As a corollary, we obtain the followmg constructlve version of the simotetif a PRAM with
an unbounded number of processors on one wittNote that tasks is the DFG are of arbitrary
durations; the only restriction which is respected in the DFG represemtatithat once a task is
ready, it can be executed sequentially with no interruption due to synchramzbgen considered
in the proposed
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Theorem 10 Let.A be an ATH PRAM program that run in (arithmetic) parallel tirheand work
W, on a given PRAM with an unbounded number of processors. Jhesn be executed by an
on-line list scheduling to run in (arithmetic) parallel tin¥e:

Max{ {Ww ,T} <T,< {Wa + (1 — 3) T-‘ (2.3)
p p P

The proof is direct from 2.2. O
Theorem 9 is stated in a restricted version [4]. In fact the bounds 2.2 haddsifethe prece-
dence relatiork considered by the list scheduling algorithm is weaker than the<densidered
for defining the optimal schedule. The proof is direct since we will also have' ... <" ¢;, <’
t;,. Clearly, the same remark holds if duration of tasks is increased.
This implies that neither adding precedence constraints such as synchronizatiers baobtain
a well structured DFG nor inserting artificially null operations in order teetell tasks of the same
length help any on-line algorithm.

Remark. This theorem generalizes Brent'’s principle (theorem 1 in chapter 1) toampiGs,
i.e. any ATH program where tasks are generated dynamically with agbghared-data depen-
dencies and are of unknown durations.

2.3.2 Lower bounds for competitive ratio

A natural question is then to determine if it is possible to have a better caivpeatio than
(2 — Il)) either on the same model or by considering larger classes of scheduling algorithms
This problem has been studied in [52], in which the following proposition is proved.

Theorem 11 [52] On the p-PRAM, the competitive ratio is lower bounded @y— }3) for any
scheduling algorithm of the following classes:

1. Deterministic with no preemption,
2. Deterministic with migration;

and is lower bounded b@ - ﬁ) for any randomized scheduling with no preemption.

We only sketch the proof for the first case. The complete proof for this theorem 1sigi{&2].

The adversary builds the following DFG instartéelue to Graham [29] containsl +p(p—1)
independent tasks. One taskis of lengthp, while other taskg, 1 < k < p(p — 1) are of length
1.

The optimal schedule is of lengih It executes the task; on a given processor, and the
p(p — 1) unit tasksg;, on thep — 1 remaining processors.

The length of any schedule ¢f is equal top + ¢, wheret is the time when the task; starts
its execution. Since the tasks durations are unknown for the scheduling algorithrdyéreaay
strategy will thus consist in makingas large as possible.

The tasks that are processed first are thepthe- 1) unit time tasks3;, that are executed in— 1
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time units with no idle time. Then, at time= p — 1, the tasky; starts its execution. The length of
the obtained schedule is them — 1, which provides the desired lower bound. O.

As a consequence, neither preemption nor randomization can improve consequewotly perf
mances compared to list-scheduling.

In order to increase the competitive ratio, it is then required to use additinformations on
the DFG such as its shape or duration of its tasks.

For instance, we consider the case where all tasks are independent and santéitigta their
durations; note that only the ordering is known but not durations. In this case, the diRfirist-
scheduling algorithm that assigns the task of maximal duration when a processoelsedizas

competitive-ratio [29][12]:
. 4 1 1 p—1
Min { (g - 5) | (1 o T)} (2.4

Note that the adversary considered in the proof of theorem 11) Note that if no informst
given on the durations tasks, then the fact that they are independent is of no helpetasddbe
competitive ratio(:z — Z%) (cf the adversary considered in the proof of theorem 11).

Remark. List scheduling algorithms are involved as a basic level in on-line approximalgo-
rithms used for other kind of machines such as [52, 30]:

¢ uniform machines: processors speeds are constant and differ each one from a eonstant
known factor;

¢ non-uniform machines: there are no relation between processors speeds; trendirati
task varies depending on the processor which executes it.

In this case, at least migration restricted to restart is requir@dder to guarantee a competitive
ratio [52].

2.3.3 Communications and scheduling overheads

Previous theorems do not take into account neither the cost of tasks allocatioscfigduling
overhead) neither communications required for access in shared memory.

Several authors have considered the theoretical influence of those overheatisarekluling
algorithms in order to provide provably optimal on-line scheduling algorithms. 1) (1de and
Vishkin give an algorithm to scheduteindependent tasks optimally on a PRAM wjth— proces-
sors; this algorithm is used to implement the first optimal algorithm foréieking [37, 39] In[6],
Blelloch, Gibbons and Matias study the scheduling of nested fine grain computatipfesnemted
in the language BsL [5]. Blumofe and Leiserson give an optimal list-scheduling algorithm for
strict multi-threaded computatiohf8, 7], based on randomized work-stealing; this algorithm is
in the kernel of the Cilk language [38]. Any of those scheduling algorithms restda shape of
DFG and do not take into account contention problems.

3There is always a dependency between a thread and one aféstanand access to shared data are not considered.
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In this section, we give a near optimal scheduling algorithm for any DFG shapeittutes
strictions on the arithmetic and communication costs. We prove that, if igritsslarge enough,
efficient and coarse-granularity PRAM algoritithase executed optimally by a brute force cen-
tralized list-scheduling algorithm on a distributed architecture.

We assume that the target machine is a distributed architecture wdémtical processors. In
order to take into account communication costs and contention, we refer to the LogP(ofode
section 2.1.1). The duration between the sending and the reception of a smagenéss. one
word) is bounded by = 2¢g + 20 + L.

Furthermore, we assume that a shared memory is simulated on the awchiteith the help
of hashing functions (see section 2.1.3); the delay occurring for any accesssimatteel memory
is bounded by:. Note thatd is related to the number of processors if no slackness is used.

Like in chapter 1, le’; andW. denote respectively the communication delay and work in-
volved by the algorithm.

Theorem 12 Let.A be an ATH PRAM program that has parallel arithmetic cgsti, ), commu-
nication cost(Cy, W) and scheduling costV,, N;). ThenA can be executed to run in parallel
time7), (including scheduling and communication overheads):

W, + bW,
, +7+(

1
Tp < 1 1-— —1) (T + Cd) + 40‘NdNa (25)
p j—

p—
The proof is based on an adaptation of the scheme used in theorem 9.

We consider here an implementation of a list scheduling enl processors, indexed, . .. p,_;.

The last processopy, handles the list of tasks and assigns tasks to other processors.

For the sake of simplicity, we restrict the proof to the case where anydkargble is written
only once and then read only once; after read access completed, the spacktodlad shared data
is garbaged. This corresponds to the case of an EREW program with single-assigariadiés.

When a processaqr; completes the execution of a task, it sends a messageaid waits for
receiving fromp, a new ready task to perform.

When a processgr; creates a new task ¢r k instruction) it sends asynchronouslyipa message
of size bounded by, that define all data dependencies of the new task (i.e. the shared data that it
will read before its execution or write after its completion).

Processop, manages a list of ready tasgsand a list of idle processors For this, it uses two
arrays: the one4, stores the task nodes created and not completed, the Bthtbe descriptors of
the shared variables allocated. Any descriptorB jpoints to the task that requires the correspond-
ing shared data in reading. Pointers fréhto A are updated at task creation and task completion.
When a task ird is pointed to by no more elementsih it is put in@. The cost of this arithmetic
computation orpg is proportional toV,; but independent from ando: we neglect it compared to
(p—1)oN,Ny.

Whenp, receives a message of task completion, it first upddtasd B, putting eventually, new
ready tasks inQ). It puts the processor ih. Then, while there are ready tasks@hand idle
processors i, it gets a task fronf) and a processor from, removes them from the lists and
asynchronously sends a message assigning the task to the processor; length ofdlye mexs

4i.e. with polynomial speed-up, constant inefficiency &idn) = W¢(n) with € < 1 (cf chapter 1).
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most N,;. For the whole execution, the computation timegmeeded for the management of
those lists is proportional t&/, and independent from N, ando: we also neglect it compared to
(p—1)oN,Ny.

Note that due to contention, a processor which is idle may wait at fpest )o N,; afterp, has
assigned a new task to it and before it receives it. Conversely, whestagsor completes a task,
processor, receives the corresponding message at ifyost1)o N, tops after.

Moreover, let/; be the length of the task, 1 <: < N, and letc; be the number of unit word
shared data read bybefore and written during its execution. A processor is said idle if it if5or
the processor executirigis considered as active (i.eot idle) when it is not in the list, i.e. from
the momenp, has send a task to it and uniy receives the task completion message from it: this
duration is bounded by + h¢; + 2Ny(p — 1)o.

Let #17 be the total idle time seen from on processorg,, ..., p,—1. LetT, be the length of the
schedule; we have:

Na
(p— 1T, <#I+> L+ he; +2Ny(p— 1)o (2.6)
i=1
We now follow the scheme of theorem 9. Liet be the last task completion message received by
po at datel’, and letd;, be the date whep, has assignetl,. Two cases arise:

1. either no processor was idle fay befored;, .

2. or there was at least one processor idlepfoait a certain date beforg, . Let § be the latest
date beforel;, when a processor was idle. At¢; was not ready (else it would have been
started on an idle processor). Thus, there exists attaskich that;, have been assigned
by po befored and whose completion message has been receivegldifyerd and such that
t;, < t;,. Letd;, be the date whep, has assigned, .

Recursively applying this scheme until case 1 occurs, we built a sequenc&®fjak ... <

t;, < t;, such that, at any time where a processor is idle, there eists < k such thafp, has
assigned;, to a processor and not yet received the corresponding completion message. We thus
have:#1 < (p — 2) X5, (L;, + ¢;, + 2N4(p — 1)o). Besides, since tasks, 1 <i < kareona

critical path:y-%_, 7;, < T'andy_¥_, ¢;, < hC,; which leads to:

#1 < (p—2)(T + hCy) (2.7)

whereT denotes the minimal arithmetic time on an unbounded number of processors.
Let W, = YN« I; be the arithmetic work andl, = Y~ ¢; be the communication work.
Replacing 2.7 in 2.6 leads to:

(p—1T, < (p—=2)(T+hCy)+ W, +hW.+4N,Ny(p—1)o

which concludes the proof. O

As a corollary we consider a coarse-granularity efficient PRAM algorithth polynomial
regularity and bounded degree. For the corresponding DFG, this implies that for an wigize
large enough:

¢ polynomial speed-upiW. andpT (note thap is fixed): are neglected comparediq;
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e polynomial granularity2C; < W. and thus:C'; (note that: is bounded and’; < W,) are
also neglected,;

¢ polynomial granularity4 N, Nyo (note thatr and N; are bounded) is also neglected.

This leads to the following result.

Theorem 13 Let A be an efficient ATH PRAM program that has polynomial granularity and poly-
nomial regularity and which have bounded degree.
Then, for any > 0, execution time ol on a distributed architecture with processors is asymp-
totically bounded by:
W,
Ty(z) < (1+ e)p —p1'
This time includes communication and scheduling overheads.

Note that we do not make use of slackess but instead use granularity to deaeasentcation
overheads. An interesting question would be to use slackness in order to amEiprocessor
optimal simulation, whatever the delay ©bf access in shared memory is.

An improvement would be to decrease the fagtor- 1)~' to p~!: this could be possible if
a distributed list-scheduling strategy was used. A classical exam@ads®mized work-stealing
when a processor becomes idle, it selects uniformly at random a processai totsigk. When a
processor creates a task, it keeps it locally. Such a strategy is tlvatiyestudied in [7]. Asymp-
totic bounds are given in the framework of strict multi-threaded computatiorteer@ariants
exports tasks when exceeding a certain numbers of task creations.
Such list scheduling strategies are very popular in parallel functional langsagh as Multilisp
[32] or Prolog [17].

In the last section, we turn to an effective implementation of the ATidlege which allows
the building of the DFG and thus the effective use of the above provably optimai@sdneduling
algorithm.

2.3.4 Athapascan: a simulation of the ATH PRAM language

ATHAPASCAN [43] is a parallel procedural language, inspired by Jade [50], that allows the con-
struction of the DFG of an application during the execution. It thus makes possiblesé¢hef
provably optimal on-line scheduling algorithms. We give in this section arv@erof the main
features of the language.

Similar to the ATH language introduce in chapter THAPASCAN supports CUMULATIVE-
CRCW PRAM algorithms. The building of the DFG is implicit; thier k operation (called
new.t ask in Athapascan) may take in argument an optional scheduling strategy, default be-
ing a distributed list-scheduling algorithm. Taking benefit of knowledge on the gitaiglgllows
to choose a adapted scheduling algorithm such as block-scattering for densecorapixations
or DSC for DAG with known durations [25].
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2.3.5 The AHAPASCAN programming model

The ATHAPASCAN language is a strict and para-functionnal one. It is implemented as a C++
library; it uses inheritance and templates to provide a friendly and eas\etivesface.

In ATHAPASCAN, parallelism is expressed by asynchronous procedure calls, which correspond
to the building oftasks A task describes the execution of a specific procedure (which is defined by
formal parameters and a block of instructions) with effective parasie@vo parameter-passing
modes are possible, the by value mode copies the effective parameter intcahradoaory of the
task and the by reference mode shares the data among different tasks.

References to shared data are typed according to their access modes. Faiaraatefined
to access shared datead(al_shar ed_r),write (al_shar ed_w), read/write
(al_shared_r _w) andaccumulation(lal shar ed _cw). The three first modes are standard
and are used in other parallel languages [38, 50]. Accumulation is realizedteomitial value
of the object by incrementation; this incrementation is defined by a binary furfct{default is
the C++ operato#=) which is assumed to kessociativeandcommutative
Thus, AAHAPASCAN allows implementation of CUMULATIVE-CRCW PRAM algorithms.

The semantics of ZHAPASCAN ° are such that each reading of a shared datum gets the value
of the last update (writing) in the sequential order of task creations (deptloifisting). In the
current implementation of BHHAPASCAN, these semantics are implemented in the following way:

a task becomesxecutablevhen all the effective parameters that it requires in read (or reddjwr
mode have been updated by predecessor tasks (relative to the sequential oslecraatons).

2.3.6 Execution model of AHAPASCAN

The control of the execution is based on the building of a macro-DFG which is egpeesby
a direct acyclic hyper-graph, which is distributed among the processorscegdorrespond to
tasks and edges to data dependencies related to shared objects: hyper-edgebtardascribe
concurrent writings and concurrent readings of shared objects. This graph can leel Mafibl
information attributesqrithmetic costfor tasks andlata sizeor shared object dependencies). This
graph is used to implement both the semantics and the scheduling of taskseiiffeheduling
algorithms (denoted ascheduley are available and user-specific ones may be added. The role
of the scheduler is restricted to informing the system where and when taskschlbg executed,
taking into account information available from the graph. This functionality mpkssible the
implementation of different classical provably good scheduling algorithnss §¢heduling, ETF
[11], DSC [26], work-stealing [38] for example).

The following rules define the development of an execution:

e The first executable task is tlad. _nai n() function.
¢ During the execution of a task:

— when a task is created (call to th@ _new_t ask directive), the new task is inserted
into the graph;

SATHAPASCAN [43] allows other accesses to shared objects: postponti (siaccesses allow the expression of
a larger degree of parallelism and arrays of shared objects.
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— when a task terminates, shared data that it accessed in write owrigadhode are
updated. The task is then removed from the graph and the scheduler is informed of new
ready tasks (i.e. all shared objects accessed in read or read/wdteare available).

e The scheduler analyzes the graph to make task mapping and starting decisiongsté&ie s
performs the scheduling decision. When all shared data required by a taséd/ireagawrite
mode have been received at the affected node, the task is started.

2.3.7 An example of Athapascan program

The figure 2.3 presents armAAPASCAN source code for the triangular resolution 4K = B;

the algorithm is presented in ATH in chapter 1 (fig. 1.6).

struct Update : public al_task_elem{
Update( int size ) {
set _cost(size*size*size);
}
/1 Performs X += -1/ A*Y
voi d operator() ( al_shared_cwnmatrix<float> > X
al_shared_r<matrix<float> > A
al _shared_r<matrix<float> > Y) {
X.cumul ( - A-read().inverse() * Y.read() );

}
}

struct FinalDivision : public al_task_elem{

Final Division( int size ) {
set _cost(size*size*size);

}

Il Performs X = 1/ A*X

voi d operator() ( al_shared_rwnmatrix<float> > X

al _shared_r<matrix<float> > A) {

X.wite( Aread().inverse() * Xread() );

}
}

struct Triangul arSolve : public al_task {
Triangul ar Sol ve( int nb_elem) {
set _cost(nb_el enfnb_el enl 2);

/1 Performs triangular resolution A*X=B
/1 Ais coded such that Aln*i+j] ::= Ali][]j]
voi d operator() (int n,
al_array_of _shared_rp<matrix<float> > A
al_array_of _shared_cw<matrix<fl oat> > X
al _array_of _shared_rp<matrix<float> > B) {
for(int i=0; i<n; i++) {
X[i].cumul ( B[i].read() );
al new task( FinalDivision(), Xi], Aln*i+i] );
for(int j=i+1; j<n; j++)
al new task(Update(), Xj], Aln*i+], B[jl);

Figure 2.3: Triangular resolution of X = B
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2.4 Conclusion

In this chapter, the on-line scheduling of a parallel PRAM program on a distrilauitdskecture
with a bounded number of processors has been analyzed. List-scheduling, frequengyrapar-
allel language implementations, have theoretical foundations. An optimal siomutd a PRAM
program with polynomial speed-up, polynomial regularity and coarse-granularityes;giest of
communications are considered under the model LogP and a shared-memory is emingted us
hash functions.

Due to its experimental good performances [57, 56], most of languages implementingdynam
parallelism use heuristics based on list-scheduling. They essentidity dif the shape of the
DFG, depending on the programming model they implement. Thus, performance of ldtische
ing may vary depending on this model. For instance, if synchronization are authoriziee
language (waiting for some future value for instance), the scheduling has to usgiompif not,
no guarantee can be given on the competitive ratio.

We focus in this conclusion on languages that use a provably efficient on-line schealuling
gorithm. HPF 2 introduced groups of independent tasks of unknown durations via function calls.
A BSP [54] program execution consists in a sequence of super-steps, eadlo§ettependent
tasks. All shared memory access performed at a step are effecthe @ext one. Dynamic load
balancing is possible [54] but requires task migration in the considered ireptation [28].

Functional languages use list-scheduling since a long time. For a survey on |{gmaite
functional languages, see [33], we just mention here some characteristicdasgusisal[44] is
a data-flow based language which defines a fine grain DFG; however, programnarggtasks
in order to obtain a coarse-granularity algorithm is not directly possiblesLN5] provides a
nested parallel model: graphs corresponds to recursi@ey set of independent tasks with no
data-dependencies but synchronization at the join point. Access are emulatedtomalestiared
memory. Cilk [7, 38] is inspired from Multilisp and implements on the C languageodel of
strict functional computation. Tasks are mapped on functions; all data areseddashe stack.
Function can be migrated at a synchronization point, explicitly defined in the prodteyrations
is reduced to a copy of the stackTAPASCAN [19, 43] is inspired from Jade [50]; it implements
in a C++ library a programming model similar to the language ATH presenteleimptevious
chapter. Data-dependencies are defined by access to a shared data. Tasgswdsrto procedure
calls; parameters can be passed by value or by reference to a sharet@hitast mode defines
the precedence. When a task is ready, it can be executed till complettonavsynchronization.

In computer algebra, list scheduling occurs frequently. The next chapter is déectede-
scription of the different approaches considered in parallel computer algebra.,
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3.1 Introduction

In the following we overview and try to compare some existing softwarepdoallel computer
algebra computations. Our aim is to point out the main research directions théibeoagpplied in
general purpose situatiohs.

We focus more oparallel systemsparallel environmentgparallel libraries or parallel exten-
sions of the existingp execute algebraic algorithms than on closely related topics syzdraitel
deduction parallel logic or functional parallel programminglin the same way, we will not refer
to the numerous implementations of specific algorithms that can be found in tlaurer Well
known topics in computer algebra have been addressgdinear algebra, polynomial computa-
tions, Grobner bases computations ...But, even if important from an algorigsomt of view,
these particular implementations usually do not propose any new concept from time ggsteof
view.

Since the 80’s and the first conferences on the subject [13, 14] many experiments &ave be
done in parallel computer algebra. Two concurrent evolutions, the progress of tHelpamad-
puters and networks, and the coming out of some common paradigms — we specially thiek to
use ofthreads— have given rise to numerous reports on such experiments. We will list arfly brie
describe the main ongéfrom §3.4 t0§3.14. It may not be vain to note that even if each environ-
ment is usually tested and validated by its authors on few specific apphsatnost of them can
be used in much general contexts.

3.1.1 Simultaneous computations in computer algebra

In parallelizing computer algebra, one is faced to three main differsksta
- Computer algebra aspects: one has to continue the efforts in sequential perfarmanc

- Expressing parallelism: programming details, especially in parala be very time-
consuming. One has to free the user from too technical details by providing a siapte w
express parallelism.

- Issues relating to parallel implementation: one has to study problems slecttgsalancing,
scheduling, granularity and locality.

The first task concerns computer algebra and the two other ones concern paraltedisnain
problem is thus to determine how the two aspects have to interact. Depending miatihe
importance of these aspects for the end-user, three different approaches mayngaisied to
conceive a parallel computer algebra system or to provide parallel resootbesuser:

A. Parallel aspects are transparent to the end-user who use a sequentialasystamally. This
can be accomplished by replacing calls to sequential routines to callsaitepanes using
a parallel library. Sequential operators may be overloaded.
Advantagesthe user is free from any parallel aspect. Codes do not need any modification.

LAn overview by W. Kiichlin appeared in [65] and provides magigvant complementary remarks and references.
2The author will appreciate any remark about forgettingsrprove subsequent versions of this document.
3The ordering is not relevant.



Drawbacks the user relies on the available parallel library and cannot augment it.
This strategy can be viable and very interesting when key routines of the corajndbra
kernel are parallelized. This is one of the target goals with the vectanizafi the basic
arithmetic in [71, 72] ¢f §3.7), or with its parallelization [17]of §3.13.6).

We may note that the same result could be obtained using automatic paratieliaét
sequential codes, and generate parallelism at compilation. Such studiess ¢nemreti-
cal [37] (cf§3.13.4), especially in computer algebra, we are not aware of practical agpect
this approach.

B. Using a sequential computer algebra system or library, the language is augmeptedde
means to express parallelism. The sequential kernel is linked to or relyilagylthat han-
dle the parallel tasks and the related data communications. This is curtlentiyost com-
mon strategy. This uses either standaraa+hoccomputer algebra library (From MpLE,
REDUCE...to C++ libraries from the scratch). Eithmessage passirg afork / join model
is used to express parallelism.

Advantagesefficiency should be obtained for any parallel algorithms if the parallehswé
is efficient. Any level of task granularity is thinkable.
Drawbacks the user is not free from parallel aspects.

As said above most of the references we have got enter this class. Thée wifferent in

the parallel programming model used and in the way the parallel tasks are nayppedte
physical processors. We refer§®.1.2 and to subsequent sections for more technical aspects
and descriptions.

C. In adistributed environment, several simultaneous sessions of a computsaagstem may
be launched and considered as servers of a unique application.
Advantages parallel algebraic computations are made possible in an heterogeneous envi-
ronment (heterogeneous computational units).
Drawbacks parallelism is generally used at a coarse-grain level of granularity.

This approach was somehow the one followed in [18]53.4), even if DSC mainly be-
long to the previous class of systems. The same remark is valid for the sefiw§B1]
(cf §3.14.3). For distributed computer algebra the reader may refer to [28, 29] tand re
ences therein. With the evolution of the machines and of the communication netiharks,
boundary between distributed and parallel computations may be very indefinitderur
more, the two fields have strongly related concerns. One of these is to devetoys rof
communicating mathematical data. We refe§3dl5 for a brief discussion on this subject.

3.1.2 Parallel computer algebra

The parallel library in the first approach above relies either on the seqprdach or on the third

one. The distributed approach is not fully usable when communication is reahsiaé or when

efficiency is the main concern. Up to now, for these two main reasons, Weevis on the second

one, we mean on softwares to implement medium/fine grain parallel compggéralalgorithms.
Again, three main directions may be followed [4, 43]:
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B1l. A standard computer algebra systemused as sequential kernel. Several such kernels are
connected to exchange data.
Advantageseasy to use for someone who yet knows the system. Quite easy to build. Exploit
proven codes.
Drawbacks often implies anessage passiqogramming model or coarse grained applica-
tions. Indeed, the time required to transfer data between processes detetha problem
grain sizes that can be used. The costs of data format conversions in this &pmeaabe
prohibitive.

Among the references in the text we may refer for instance to [20, 95, 19, 18] fairegoes
with MAPLE or to [76, 77] with REDUCE

B2. A sequential computer algebra librawhose source is available is augmented for the expres-
sion of parallelism and/or for data communications.
Advantagescan exploit any grain of granularity and any type of memory. Can use proven
code as a basis.
Drawbacks the parallel model or language must be an extension of the sequential one.

Typically this is the chosen strategy in [111, 65, 92] whese & is extended, in [55, 7, 107]
where S\CLIB is used or in [9] with ADOR?.

The main difference with the previous approach is usually the communicationnubsba-
sequently, as remarked above, the target granularity.

B3. A new parallel computer algebra systesbuilt using existing or new parallel facilities (lan-
guage,library ...).
Advantagesthis is potentially more portable and efficient.
Drawbacks requires more implementation efforts.

Such a point of view is followed in [44, 46, 43] where a parallel software and a camnput
algebra library are simultaneously designed.

The difference with the two previous approaches is thus in the fact that the camcefitine
parallel programming model can done with more care.

At present, these three approaches may sometibesiewed as favoring computer algebra
(B1) or favoring parallel aspects (B3), (B2) being a compromise; as favadges on algorithms
(B1) (e.g.fast experimental studies with huge data and problem dimensions) or favoring stadies
parallel conceptse(g. which criteria are relevant for dynamic load-balancing at a fine-grain leve
of granularity).
The paper is organized as follows. §8.2 we briefly have a look at the main evolutions in the
field. Since the first practical experimentations on networks of workstations oraltgbenachines
around 1984, the main evolutions has obviously concerned the machines and as a consequence, the
programming model. This study is based on the aspects that are specifiaalnteh computer
algebra in§3.2.1; on a fast description of three main types of programming modej3.m:2;

4In fact, in most of these cases, since the sequential lamgisagpt too restricting, the difference between this
approach and the next one may be difficult to make.
SEven if the references cited usually address both complgebea and parallel aspects.
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on some remarks about tasks scheduling and dynamic load-balandiBg?iB8. Some possible
criteria for a comparison will be pointed out§B.3 before the overview itself of existing softwares
from §3.4 t0§3.14. Before concluding we make some remarks about links with the developments
of protocols for the communication of mathematical data.

3.2 Parallel computer algebra: what changed since the 80’s?

Ten years ago a change of parallel architecture and operating environmentquagigemany
work — from the conception of the parallel algorithm to its implementation — ticedlene. What
about the situation today? Since the — very early — experimental studies of [1@&],can we
conclude about quite many existing works and experiments with parallel computeraitge

Beyond the underlying evolution of the machines, two main facts are remarkalhg diis
period:

De facto message-passing standardibraries for connecting parallel tasks on either homogeneous
or heterogeneous networks of computers have appeared. Thesevafd B and Mpi1 [40]
(cf§3.14). The associated programming model is based on message passing.

Operating systems and threadsare now widely available on most of the parallel machines. This
provides an alternative programming model also very commonly used.

Thus in12 years, machines became easier to program and codes became portable. Note that
from this standardization of the programming modetse differences between the hardwares
(shared / distributed memories, workstation networks) has became bltonethfe end-user point
of view.

Most of the old problems (84 — 94) was to design environments on particular machines and
to show — especially for computer algebra — that it was possible to obtain dspeed-ups for
particular algorithms on specific architectures. Open questions now mainlgreotiee way to
easilyget asatisfying efficiencyn general situations, on possibly many processscal@bility)
and for various architecturepdrtability).

In the following me make some basic remarks to see how such questions are cgnachonl|
dressed in computer algebra.

There are two main differences between sequential and parallel compuatéis latter there
are potentially large overheads in communication (or access to a sharadryend in task
managementRelated questions are thus to provide means to express communications and task
management, and then to provide means to route the data and map/schedule the tasks.

3.2.1 Specifically in computer algebra?

Clearly, computer algebra data and data structures are specificallyi@fisvéypes. This implies
sophisticated means to exchange them between computational units. But we put cfttssion

8See the conclusion concerning current trends

"Other standards have emerged during the same period, a@iépétigh Performance Fortrarfor data parallel
computations [39]. This model seems to be too restrictivgémeral algebraic computations and have not be used for
this purpose to our knowledge. See alsoBluék Synchronous Parallehodel in§3.2.2.
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of this subject till§3.15 and will mainly focus on task expression and management.

Another distinctive feature of computer algebra algorithms is that they caighty dynamic
(precise behavior known at execution). From a parallel point of view this can be towtsing
the concepts dbcality and ofirregularity. Very intuitively, an algorithm is local if the computa-
tional complexity dominates the communication complexity [79]. An algorithm egufar if it is
costly to map/schedule the tasks it generates [46].

The dynamic behavior of the algorithms impfegynamic tools to obtain satisfying perfor-
mances at execution in a portable manner. Mapping and scheduling are thus nuagsrnnsthe
field.

We will see that some dynamic load-balancers are now designed and used in catyalia.
Again, due to the evolution of the parallel machine capabilities (operatingnsgitsuch tools
should now be widely recognized, as they are in other topics that share the saawarisics [46,
34, 35].

3.2.2 Parallel programming models

One main question in parallelism is to provide a programming model that coulsiheteanslated
into the machine language and efficiently executed on a wide class of machinés [101]
Three main parallel models are usd

Data parallelism is data driven and generated by data splittings. A typical language for this
model is HPF [39]. A parallel program differ from a sequential one mainly in the parallel
iterators €.g. parallel loops). Synchronizations, communications and tasks are generated at
compilation. With a unique flow of control, the model is particularly suited to i@gdata
structures.

Parallel iterators can be found in computer algebra. We refer for instapee trap in [19],
to the parallel evaluation in [95] or to parallel loops in [51]. Anyway, inseases, these
parallel constructs are build upon execution layers of the two other types below.

Message passingvas the only model available on the first distributed memory machines. This
partly explains the nowadays infatuation for the librarigmH47] and Mpi [40, 36], or at a
lower level for the BSP model [101] and its implementations [52].

This model, introduced in [53], is based on the notiom@mmunicating processeé pro-
cess is the execution of a program in differstattesrelated toactions With parallel compu-
tations actions correspondc¢o eat e anddest r oy for processes, teend andr ecei ve
for messages.

Processes argeavy processe@.g. Unix ones) in Rm and Mpitl, communications are
either from a process to another (point to point) or from a group of processes to another
group (global synchronizations and communications). A virtual global memory and a pro-
gramming style — based on super-steps — that depends on few machine paranog®rs (fl

8At present.

9This is so different from the sequential context where lagps such C, ISP or FORTRAN exist.
100r at least vaguely considered concernidaga Parallelismin computer algebra.

LA lot of studies aim at including threads in these standards.
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bandwidth and synchronization cost) seems to provide a more portable (with respezt
efficiency) model BSP [101, 52].

Message passing has been often used in the past and is still used egsgsihglR’m and
MPI, see [76] or [107] among other references.

Functional programming with fork / join provides a general MIMD model. A function (or a
procedure) is forkedle. a new task is created by an instructibor k (synchronous or
asynchronous). Results are obtained when the task resume by joining using aniamstruct
] oi n together with the calling function. Practically this can be implementeusireads
(shared memory) or distributed thre&tislistributed memory). Threads create other threads,
this can be done recursively with no theoretical limit to the number of threHus.model
can also be implemented as inNDA [48, 2] where the evaluation of a virtually shared
name space, permits to spawn procedures. There is no connection between this numbe
and the number of physical processors. When launched, the tasks can exchange data using
co-routines [26] ¢f §3.4); or usingmulti-functions[5] (cf §3.11); or accessing to a shared
memory either physicallycf §3.5 and§3.8)) or virtually €f §3.10 and;3.12).

This model is often associated talevide and conqueprogramming style. It must be built
on a software layer or using an operating system, that will map and scheduletwtiens
of the tasks as we will see in next section.

Early work in the functional programming field and in computer algebralase-flow anal-
ysis[70, 38] for Lisp or for REDUCE [37] (cf§3.13.4). Parallelism is achieved by evaluating
the arguments of a function in parallel. The parallelism is thus investigaténe level of

a function investigation, this is very similar to the approach baseiy join. One main
difference is in the way the data-flow graph is computed: either statiealat compilation,

or dynamicallye.g.during executiof?,

Anyway, the differences in the way to express parallelism and in the wartknas to be
done at compilation in the latter approach, show that many practical studmesnréo be

done to make a good choice. One important work in functional programming has also led to
the concept ofuture[59, 49, 50]. Instruction§ or k and threads are often similarfistures

Data parallelism language constructions can be very useful for regular coropataticom-
puter algebrad.g.for replicated computations, formeap operation on an array or a parallel loop).
However this model seems to be too restrictiveifi@gular algorithms.

Message-passing models are quite often preferred nowadaysssaraardssoftwares are
available on a very wide class of machines (machines dedicated to pamalleomogeneous and
heterogeneous networks). Unfortunately the model, often available only witheegaamed gran-
ularity, can be difficult to use when dynamic load-balancing, at a medium/fine drgraaularity,
is an important issue.

We will definitely prefer theork / join model at least in this latter case.

2By abuse of language, we will frequently omit “distributed™distributed threads”.
13A mixed approach is thinkable. See for instance the dyndrdata-flow analysis i3.12.
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3.2.3 Dynamic load-balancing

In [19] (for instance) we read:Optimal scheduling of a set of tasks with a predetermined number

of homogeneous, unloaded processors is one thing; getting plausible performance during a com-
putation chock full of possibility of heterogeneous concurrent tasks on system withuséngis
anothef. Such a comment seems to be obvious to an aware reader and could be found in many
other papers in the field of parallelism. We repeat it for two main reasons.

On the one hand, it appears that the remark is too often forgotten. For example, one may
be easily tempted to work with few processors on a fixed problem, then toceitte particular
conclusion to a more general context. Fortunately, it seems that this i©l@ssan than before in
the literature. On the other hand many questions related to this remaakiseapen.

If parallel tasks defined at an abstract level by the programmer was mappdthfid” when
using the first distributed memory machines, this is no more true in most.casee the functional
programming model is well established in computer algebra, this modelavitjoin instructions
is always used for dynamic load-balancing in parallel. When a task is dreatis generally
placed in a queue and wait to be mapped and scheduled on a target computational timér, Fur
by analyzing the task queue and in particular the dependence of the input/output one may deduce
a data-flow graph. Specific techniques may then be used to map and scheduldsstfretashe
global information available from the graph. We refer to [16]53.12).

We are not awaré 1° of other types of approaches (with practical experiments) in computer
algebra.

Once the tasks are created many strategies can be used to map and stieeduded various
informations — including ones provided by the users — can be useful to optimize thisgroce
The main problem is to permit implementations thateecution-portablgefficiency on various
machines) andcalable[98] (remain efficient when the number of processors is increased). We
may identify five main issues to attain this goal:

Mapping / Scheduling. By abuse we will calload-balancey a tool which maps the tasks onto
computational units, give them a date to execiteschedules them and possibly make them
migrate, sleep or stop. A load-balancer is generally formed of two partantihenation
one to spy the current load of the machine anddbwetrol part to actually do the mapping
and the scheduling (taking into account the informations about the load). (Activefpass
centralized/distributed, ...). We do not detail anymore this subject, twterewill refer
to [15] for an overview. We will just precise, during each description oftexgssoftwares,
how the two parts have been conceived and how do they work.

Granularity. Strongly related to the cost of communications, this is a main issue. We bewe s
that the programmer specifies parallelism at an abstract level of granwul& prevent a
to large number of simultaneous tasks and data transmitted through the netwodo(idat
overload the system) or too small tasks, it is necessary to limit thiderueithera priori
or a posteriori Using adivide and conquestyle, it is possible t@ priori limit the number,
by choosing to run the task on the same processor than their calling tasks as snongis

4static approaches are very common in parallelism but seeis oo restrictive for computer algebra purposes.
)t is important to note that, as seen in previous sectiondtta-flow analysis proposed in [38, 37] is a main
possible alternative to the model basedank / join. Good performances could certainly be obtained this way.
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parallel tasks have been created [74, 19, 85posteriorj as proposed in [65], it is possible
to coalesce virtual tasks into bigger real ones according to the informations hbdoad.

Locality. Can be crucial when the state used by a task is large and cannot be repli¢at®dorS
dynamic strategies should be used to place tasks on units that own most of thatrdkta
or to limit data replications.cf §3.12).

Cost informations. In addition to the informations about the machine load, cost informations
about the tasks may be provided by the user. Such informations may be relevant for the
efficiency of the load-balancer [86, 46if$3.4,3.6,3.12).

Poly-algorithms. For several algorithms solving a given problem, to know the best one for a
given machine, will depend on machine parameterg. the number of processors) and on
problem parameter®(g. the dimension). The use gbly-algorithms we mean algorithm
that permit to differ the choice of the appropriate method (using machine parairtgténe
compilation or even the execution, is a natural way to solve the problem [98;1863.6).

We see that many relevant have to be taken into account to build an eftmend get good
performances. At present, there are quite few experiences in this fietsnputer algebra. A lot
of work remains to be done to test, tune and validate the strategies in measitggtibns.

3.3 Which criteria for a classification?

We summarize the main aspects presented in previous sections and atlitlerbidetailed in
subsequent ones. Frdjf.2.1 we know that dynamic load-balancing is at present the first issue of
domain.

In table 3.3 we consider the mafsoftwares available : DSC§3.4), RARSAC-2 (§3.5),
PAR. PoLy. Op. (§3.6), SUGARBUSH (§3.8), STURM (§3.10), GQvARO (§3.11), GQvARO with
ATHAPASCAN-1 (§3.12),||MAPLE|| (§3.13.2) and MUPAD (§3.13.3).

The first rows describe thel@BaL DATA MODEL: the way the memory of a processor can
be accessed by another processor.
Then the Rsk MODEL rows precise itheavy processe®.g. Unix ones),Remote Function call
non multi-threaded, or multi-threads is used. Blgachronizatiorexplains how these process are
explicitly synchronized.
The ARCHITECTURE rows indicate if the software is designed for distributed or shared memory
machine¥’, and shows if the system can run on heterogeneous architectures.
The LOAD-BALANCING rows show if a dedicated tool has been conceived to handle the tasks and
give some precisions on the used strategies.

3.4 DSC

DSC is a general purpose tools, applied in particular to algebraic computing, éinaiges tasks
distributed over a network of workstations (Unix) [32, 30] for large computationsC b&s first

1And more recent.
tis much easier to port a software from a distributed mentory shared one, than to do the converse.
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Table 3.1: Classification of softwares for parallel computer algebra.

DSC | PS-2| PPO| SBSH | STU | GIV-1 | GIV-2 | |M|| | uP

GLOBAL DATA MODEL
- message passing ° ° ° °
- async. comm. °
- virtually shared o o (o)
TASK MODEL
- heavy processes ° °
-RFC ° °
- multi-threading . . ° °
- preemptive
- async. creation ° ° ° °
-SYNCHRONIZATION

join variable (0) . °

coroutine .

multi-procedure °
ARCHITECTURE
- dist. memory ° ° ° ° ° ° ° ° (o)
- shared. memory ° ° ° ° ° °
- heterogeneous . . ° °
LOAD-BALANCING
- distributed ° °
- passive strategy .
- load indicator . . °
- user info. ) ) ) (o) o

been used by programming in C ordp, an interface to MPLE [22] has then been proposed
in [18].

The model of computation islient /serverand hides both the interprocess communications
and processor allocation to the user. The communications are based on standarapabhilities
(Tcp/1rpand Wbp). The library essentially permits to submit a task to the environmenteawdit
for its completion. The subtasks themselves may recursively spawn funtitessgs. An additional
mechanism — sago-routines- whereby a subtask remains loaded in memory space on a return,
until it is subsequently awaken, appears to be very useful in DSC for real appis&30].

Table 3.2: Classification — DSC.

Languages Fork/Join Memory Load-balancing Grain

C/Lisp/ Tcp-UDP | Unix processes Distributed| Yes/ Task queue Coarse / Medium

The system has been primarily designed for large computer algebra applicationsmyée
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neous networks of workstations. A sophisticated scheduler is proposed [30]. On the oraéand,
scheduler receives the cpu and memory loads of the available machines. Cmethieantd the user
specifies a rough amount of needed usage. Then, on a request, the system makegitrecfelec
which processor is to handle the work, or decides to queue the request for latbutimtri Such
a finely tuned feature seems to have been necessary to run the test on irlptgs as the ones
reported.

The design has been extensively tested on symbolic applications such as isanrssyistem
solution [30, 67], primality testing and factorization [100]. The scheduler has tested with a
common network of up t80 machines.

3.5 PARSAC-2

PARSAC-2 [62] is a programming environment belonging to the class of systems based on threads
of control. The support fofork / join parallelism initially for shared memory machines in [63,
64] (S-THREADS) has been extended to distributed ones in [10f{D It relies on 3c-2 [25]
translated to C from ADES [68] for its sequential computer algebra library. For a comprehensive
introduction we refer to [65].

The programming model is based famk / join functionalities, the suggested way to program
is to use aivide and conquestyle.

The system relies on SHREADS for parallel programming on each node of the target ma-
chine. For portability, the design supportvigtual parallel programming modelan algorithm
is parallelized with respect to its logical parallel structure. Togesponding logical threads of
control are mapped at run-time. Another layeris built upon PVM to handle fork / join across
a network.

For efficiency, a dynamic load-balancer is available. The current approaentialized but
could be distributed. The chosen strategy rivagj obs on each processing unit and keeps the
others in a global queue. This maximum number depends on a constant (currently an heuristic
and on the number of pending jobs with respect to the number of processors. This is dasigned i
order to avoid both the risk of unbalanced load and of overloading of the units.

Table 3.3: Classification —-ARSAC-2.

Languages Fork/Join Memory Load-balancing Grain

SacLiB /C/PVM | Threads | Shared/ Distributed Yes/Task queuel Medium /Fine

For good speed-ups on a network of workstations, the reader may refer to [10] (polynomial
resultants). Further parallel concepts (search parallelism and tgreagds) are used in [3] for
Grobner bases computations. Load-balancing is completed by some user-spegifiathkeeters
(e.g. number of concurrent reductions of polynomials). This clearly shows the need for further
studies about relevant parameters of automatic load balancers in compulbeaalge
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3.6 Parallel Polynomial Operations, MP / MPP

Research at Kent focuses since several years on parallel symbolic caommitat polynomials.
The reader will refer to [103, 104, 105] for reports on experiments and timing ddtéog106]
for a recent survey of the corresponding parallel algorithms. The experiencesemasooelucted
mainly on symmetric multi-processors and now turn towards general enviroaifdén] as we
will see in§3.14.

The work is done using C language or a portectSB package [11] together with a module
for data communication between tasks. Several libraries have been iengksn especially for
factorization of polynomials. This does not really form a parallel computer adggystem but
provides key ideas for a future realization of such a system. Parallel thigngrare implemented
by forking subprograms and waiting for the results.

Table 3.4: Classification — Parallel Polynomial Operations.

Languages Fork/Join Memory Load-balancing Grain

C, SAcLIB | System processes Shared By hand Medium / Fine

An interesting point concerns dynamic load-balancing. Depending on the number of available
processors and on the size of the problem to solve, “by hand” dynamic load-balancingrsdens
by the programs. We mean that a poly-algorithm is provided and that the subprogram svhich i
actually executed is chosen during the execution. This is a rough mechanismpberhients an
interesting concept.

3.7 Parallel REDUCE

Vectorization has been proven to be efficient for big numbers and polynomial atithm [71, 72,
73] (this include a vectorized garbage collection). These articles repaising experimentations
on CRAY machines with coarse-grain parallelism especially for Grobases computations. Fine
grain parallelism was judged to be useless on many processors. The nsn besng that the
heuristics used in sequential seem to be somehow inconsistent with manyreond¢asks [72,
78],

Following the evolution of both the parallel machines and of the parallel toolsatiglaersion
of REDUCE with PVM is under development [76, 77]. The basic protocol uses send/receive for
Lispforms, the basic model of parallelism is master/slave. Applicationscaese-grain computer
algebra ones, algorithms in linear algebra are currently under investigation.

18since then, many papers have been published on parall&in@ribasis computation. The reader will refer to
them for a discussion about the ability to take advantageawfynparallel tasks or not.
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3.8 MAPLE/LINDA

A general-purpose parallel algebraic system is proposed in [20] as an assooiaMAPLE and
LINDA [48, 2]. A main feature of INDA is that system and architecture-dependent details for
parallelism are hidden from the final programmemnhA provides a global name space where all
the processes can read and write. The user programs as if using a share¢ mactane. The
C/LINDA used here extends the C with parallel procedures workingoles(ordered sequences
of objects or names). globalcollection of data is maintained by the system: it is viewed as shared
among all processes. Tlegalprocedure on tuples spawns separate process for each element of the
tuple. Each process evaluates its element which can be a proceduraxal. tuple space leads
naturally to the notion of tasks into a homogeneous pool (or queue, stack, . AQLENMLINDA
appears to be a batch system with several copies/gfi® running simultaneously and communi-
cating by LNDA operations. Amastefslaveapproach is tested in [20] (parallel iterations, sparse
modular gcd) and speed-ups are given with three independent &processes (shared memory
Sequent Balance).

This parallel MaPLE has also been implemented for networks of workstations [21] under the
name $IGARBUSH. In [19] (for instance) empirical data are reported with u@Toprocessors
for parallel integer multiplications. Empirical data are obtained using lmdncing heuristics
(see also [66]). Even if user-specified, ways are provided by the systemedhe granularity by
cutoff. These experiments show the consequences of a lack of dynamic scheduling wigen usi
many processors. The authors also ask some important questions about the inclusiomaé dyna
scheduling heuristics in parallel computer algebra systems. For instance pbtenpis clearly to
tune thresholds to decide when a given task should be splitted (for subsequent cotasksgrar
not?

Table 3.5: Classification — MPLE/LINDA.

Languages Fork/Join Memory Load-balancing Grain

C/ MaPLE | System processesShared / Distributed By hand / Task queue Medium

3.9 PacLiB with PD

The RcLIB kernel [55] is the parallel variant of the runtime system fac8B. The computer
algebra facilities are thus the ones of this latter library [11]. For thelphespects, RCLIB relies
on uSYSTEM task package (C functions for concurrency) [12]. A more sophisticated version of
PacLiB is using the high-level programming interfaeB proposed in [89, 91]. The reader will
refer to [57] and to [91] for detailed presentations of the corresponding prograynmadels.

Using PD, at the lowest level, the programming model is based otfidtie/join operations of
tasks, orstreams(semantically lists except for the type interface). At this level, tregpmmer
has to care for the insertion of synchronizations functions and the modification of th#ofunc
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interfaces. This is avoided at the highest level by annotations. For indtémxge@will be trans-
formed tost art (f, x) : a task executing with entry = will be spawned. From one of these
levels, a compiler generates@LiB C code with all explicit task creations and synchronizations.

Table 3.6: Classification —AeLIB with PD.

Languages | Fork/Join | Memory Load-balancing Grain

C andrD Threads Shared Task queue | Medium/Fine

This provides a friendly interface for the end user. The problem of task mapping rieailyt
addressed. It is handled by the running time system which is based on virtual pred&€§ (cf
also§3.5) and light-weight processes. One global queue contains all the tasks that\adacti
not yet running. The scheduler, provided by fi®ySTEM, selects tasks for execution from the
head of the queue. A global list is available for memory management.

The development of applications is illustrated either at the C level in &4t the highest
level usingpPD in [91]. High speed-ups are reported on basic examples.

The RcLIB kernel is implemented on a shared memory machine, a Sequent Symmetry. Any-
way, the functional model is also well suited to distributed memory. Taied model is also
considered by the same research group§3e0.

3.10 STURM

The above RcLIB kernel is essentially the substratum for theugm kernel designed either for
shared memory machines [56] or for networks of such machines [7]. The task mardagethus
inherited from RcLIB whilst the memory management is redesigned. The kernel is implemented
in C and a C++ shell is provided around the C interface.

The programming model is still based @rk /join and the tasks are scheduled via a global
gueue (with user-specified time-slicing for preemptive scheduling). Comgethe memory, the
system simulates an infinite heap from which blocks can be allocated. Thesheaanized is a
set of clusters. On request for a free block, a hierarchical search is donétfe local cluster to
the whole machine (all the processors may be interrupted for garbage collection).

Table 3.7: Classification —T9RM.

Languages | Fork/Join Memory Load-balancing Grain

C/C++ Threads | Shared/Distributed  Task queue | Medium / Fine

The kernel is running on shared memory machines but we are not aware of experuta¢stal
on distributed memory machines or on networks.



wtenuies § §FAVWSIVH 7 VWS § W WS WS ORE VNS L

3.11 From PAC to GIVARO

The GVARO library for computer algebra and dynamic load-balancing in distributed envirosment
comes from the older library PAC.

The PAC library [83, 84] was written in C and was using a message passing progrgm
model. Experiments and speed-ups on various algorithms can be found in [102, 82, 81, 97]
using up to 32 processors and vector units. Experiments have also been done on 128tsansput
as reported in [94]. Then PAC has been redesigned in C++: PAC++ [44, 24] wasdaf a
sequential computer algebra kernel based of GNWPGnd on a distributed thread system. A
programming model based dark / join capabilities (themselves provided by the runtime layer
ATHAPASCAN-Oa [23, 8]) and on divide and conquestyle, has thus followed the older message
passing one. We refer to [44, 46, 24] for details and experiments. Neither otweblkraries was
providing dynamic load balancing of tasks. However, experiments with them havenleeessary
in order to fix the best suited programming model in subsequent developments.

This has led to G/ARO [43, 45] which extends the model and includes automatic load-balancing.
Still usingfork / joinin adivide and conquestyle, a program is written at an abstract level of gran-
ularity, the tasks are mapped onto the processors at run-time. Two types of synchremotss
calls to functions are available: g&plit computations into independent subtasks the programmer
can use a call ta functions; tomergeresults or tocooperate during computatio@IVARO of-
fers the concept ahulti-function[5] through a synchronization function. The underlying runtime
support is AHAPASCAN-Oy;p [80] which extends AHAPASCAN-Oa by the implementation of
multi-functions.

The expression of parallel programs is distinct from the way they are exeloytée current
scheduler the scheduler is invoked at each call to a function. Usiagt informationgiven by
the users, the scheduler can also takes some algorithmic choices, such asgchmsplitting
factor at am-arity call. At runtime, each task can be stopped then continued on a difféte of
execution (this was designed for the manipulation of algebraic numbers [44, 45]nd&dtanism
is based on user defined continuation functions.

Table 3.8: Classification —I@ARO.

Languages | Fork/Join Memory Load-balancing Grain

C++ Threads | Shared/ Distributed Yes/ Task queuel Medium / Fine

GIVARO has been tested mainly on an IBM SP2 [44, 24, 43]. Some different stratédioesl-
balancing are available via default schedulers. However, the modular degiunIddrary allows
the user to define its own new schedulers without any modification of the paraltgions.

3.12 GIVARO with ATHAPASCAN

The sequential library of ®@ARO [43] (which includes basic data types and their bufferization,
and basic arithmetics in C++) can be used in sequential or with other rustipperts.
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Table 3.9: Classification —I8ARO with ATHAPASCAN-1.

Languages Fork/Join Memory Load-balancing Grain

C++ Threads / Virt. sh. mem. Sh. / Distr.| Yes/ Task queuel Medium / Fine

Another parallel interface for GARO is under development usingrAAPASCAN-1 as runtime
layer. The programming model is still basedfork / join, global synchronizations are done via
a virtually shared global memory [16] (read, write and accumulation). A progsamnitten at a
virtual level of granularity, a dependence graph is built from an analysis of thepapameters of
the tasks and is mapped at execution (the process could be done staticaltgiim cases).

The software is built from two layers: one for parallelism expression andartagk schedul-
ing and mapping. Sophisticated task schedulers are available and take iatmtabothcost
informationsabout tasks antbcality of input data The scheduling library can be augmented with
user defined strategies.

The main difference between this approach and the one in the previous sectidhgisnadel
of global synchronization between threads. On the one hauld-proceduresand on the other
handaccesses to a virtual shared memergvide this capability.

Very first experiments with this approach can be found in [33].

3.13 Other parallel extensions of sequential softwares

3.13.1 ALDES and Sac-2

The library S\c-2 [25] written in ALDES [68] has been extended with means for parallel com-
puting [92, 93]. The main goal is to provide to the programmer, a way to specify aemcyrin

a very simple way — with no great change in the sequential codes. This weckaly the use of
futures[59, 49] to extend the sequential semantic. The associated concurrent takksnaresd
via asynchronous procedure call$asks are managed bysaheduler They are sent — on request
— toalgorithm servers

Good speed-ups are reported on very regular examples such as Chinese remdioidenimg
puting polynomials resultants [93].

An implementation of &c-2 has been done on Cray machines, corresponding experiments
may be found in [58]. Other parallel developments wikcS2 relies on the translation of dES
into Fortran for the parallel aspects [87]. Here, the computatiolaia driven(cells for cylindri-
cal algebraic computation). Several identical programs are distributedgthe processors of a
shared memory machine. Each processor then take a task to perform iredizeshtjueue as soon
as the previous job is finished. Good speed-ups are reported on few processors.

On network of workstations &rs [99] is a library which provide basic communication routines
for an ALDES programmer. A unique program is distributed over the network. Data are shared by
the processors via a virtual global memory which permits communications betasen fTasks
and global events (interruption) somehow allow to relax the constraints imys#éte unique
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flow of control, this allows speculative parallelism. Some experimemtseported but the quite
coarse-grained tasks (implemented using Unix processes even if thectlestehis lower) limits
the power of the software if dynamic load-balancing is a relevant issue.

Using threads and relying on the scheduling strategies of the all-cache paadlene KSR1,
some remarks and experiments are given in [61] about the parallel implerorm@BMAS [60].

3.13.2 MAPLE

In addition to the use of DSC seens&@ 4, other systems have been proposed to interfaceL
in parallel.

A manager/workeapproach is considered in [95] and applied for instance to Grobner bases
computation [96]. Using the parallel languager8ND [41] (quarded Horn clause typg)MAPLE||
kernel is developed and tested on both shared and distributed memory maéhsiwesle set of
interesting interface routines betweemrRAND and MAPLE is proposed, it mainly provides the
splitting of inherently parallel tasks and tlkembinationof results. Thenanager/workescheme
is possible and recommended in case of load-balancing requirements (thigptatieem is not
considered). This approach clearly allows to easy take advantage of the wheleEMIBRARY
to run complex codes. Good speed-ups are reporté@ pnocessors on some basic problems.

Other investigations using MPLE are presented in [6]. The approach is different from the one
above since a modified version of theaRLE kernel is used. Classical message-passing concepts
are implemented but high speed-ups are reported on many processors (81 nodss Gppls).

3.13.3 MuPAD

A parallel version of MUPAD [42] should be released in the future. Some well known concepts for
shared memory machines.g.job queues, parallel loops ...) are planned to be provided [75, 51].

3.13.4 ReEDUCE

Some attempts have been made to extend the capabilitiesmof & for vector and parallel ma-
chines. We have seereRUCE on Cray machines &8.7.

Also using REDUCE another direction has been taken in [37]. To use coarse grain parallelism,
this paper proposes a way to automatically generate parallelism at caompil&arallelism is
detected at the level of a function invocation, a data flow analysis is propmpeoMide the neces-
sary semantic information. This study remains theoretical (concerning thgbaxecution), no
parallel experiment is given.

3.13.5 ADOR

The libraryII* is currently under development [9] at the ETH Zurich. The goal of the project is
to incorporate parallel constructions in the general purpose language Aldor [110, 109]nmoorde
write portableparallel programs using various types of systems and machines.

The library is formed of a few set of packages on which high level parallel pnograg models
are based. These packages concern basic communications, asynchronous call®ttsfandta
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job scheduling interface. Parallel programming modelsfar:/ join, parallel map using iterators
on splitted data structures and to reconstruct results from sub-computatihesiuBng strategies
are under development and tuned on different architectures.

3.13.6 QLYPsSO and ALGBENCH

The parallel computer algebra libraryanCrpso presented in[17] is a set of C++ parallel classes
and programs for infinite precision arithmetic. UsingpMhese algorithms have been tested on
various parallel architectures (programs are parameterized by the nunavailable processors).
This library can be linked with other ones, this is done for instance with theBENCH sys-
tem [69], viewing Q\LYPSO as its arithmetic parallel engine.

3.14 Integrations of MPl or PVM

The effortsrelated to Mi [40] and R/m [47] have produced specifications intended for the portable
development of message-passing applications. Implementations exist on vaclutectures, the
use of MPI or PvM broadens the applicability of the software.

Based on these remarks, the three tool-boxes below provide the integratiohesfM#i or
PvmM with several existing softwares. This should be the first step towards gesreral-purpose
applications because clearly, this is not enough. The lack of dynamic management otéssps
and of dynamic load-balancing should be handled by a complementary layer.

3.14.1 SAR /MPI

We refer to [27] for the integration of B with existing softwares. The author presents the im-
plementation of a classical basic master / slave interface betweeadd Giu Common LsP or
GAP [88].

3.14.2 Tools for parallel mathematical computations

A set of tools for data communications between concurrent tasks is presented]inQb@7soft-
ware permits to run MxIMA as a /M task through a Commoni§p interface to RM. Another
library interfaces &cLiB [11] and related computer algebra systems.

3.14.3 FoxBox

The software BxBox for manipulating black box representations in symbolic calculus, provides
in particular a parallel interface [31]. A basic client / server protenahages parallel black box
objects (C++). Currently, applications are realized usirrg but the software could take advantage
of other parallel systems. This parallel library is part of a wider sokvthat also allows the use

of general purpose computer algebra systems.
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3.15 Protocols for mathematical communications

When homogeneous or heterogeneous computational units are connected and can physically send
and receive messages, one need a common protocol to efficiently exchange data.

On the one hand, in the parallel computation community, especially in computbralf@m
the sections above we see that for many years, each research group hastdehmethasic means
of communicating mathematical informations and protocols.

On the other hand, in the computer algebra community, many efforts have been donede pro
connectivity between different softwares in a distributed setting. Heisides the development of
means for communicating mathematical informations between applicationsiayeefer to [1]
and to references therein.

Since parallel and distributed computations are main applications of thgse daudies on
protocols, and since communicating is a main concern in parallelism we mayttretgaese two
directions will learn from each other. In particular, as we have seeas|l@lgprogramming relies
on various models to express parallelismegsage passingprk / join, BSP, ...): one question is
to have common means of communicating and interfaces that are independent of tinenchdske
i.e. that can be used with any model.

3.16 Conclusion

We have seen that a lot of work has been done to exploit parallelism in computeraaldewe
go back to the three main possible approaches A, B and C discussed in the introduetioay
conclude that the three should be considered as complementary means. And the sanerholds
the more detailed directions B1, B2 and B3. Indeed for instance, we think thatutfiesdone
somehow separately with standard systems and with new ones has camaritynaatd could be
integrated in a unique framework. To use a standard computer algebra system doesmpit e
from taking into account accepted facts in parallelism. To build a newlpbcamputer algebra
system does not exempt from knowing about the best computer algebra algorithms.

Computer algebra system nowadays are more open toward outside than during theglast, pa
lelism will certainly benefit a lot from this evolution. Will this evolutiomgether with progresses
in providing efficient and standard communication means, accelerate thrgesroe of standard
ideas? We believe thakata-flow graphsfunctional programmindogether with threads ardi/-
namic load-balancingvith adaptative granularity/locality armbst informationscan be such ideas.
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