Athapascan-1: Parallel Programming with Asynchronous Tasks

Gerson G. H. Cavalheiro} Francois Galilée and Jean-Louis Roch

LMC-IMAG-APACHE Project!

Grenoble, France
http://www-apache.imag.{r

Abstract

Athapascan-1 is a C4++ library for multi-threaded parallel programming. It implements a macro
data-flow language: both computation and data grains are explicit. Semantics of shared memory
access is based on a lexicographic order. The performance of a code (parallel time, communication
and arithmetic works, space) can be evaluated from a cost model without need of a machine model.
Its important feature is that, forbidding synchronization, it allows efficient on-line analysis of the
data flow describing the execution. This enable to separate the scheduling algorithm, that can take
benefit of the knowledge of this graph, from the code.

On specific elementary machine models, simple scheduling algorithms can be implemented that pro-
vide efficient execution of some specific class of codes. Portability is then achieved by suiting the
scheduling algorithm to both the program and the target machine.

1 Introduction

Recent work in the field of parallel programming has resulted in the definition of extension of sequential
languages that can be theoretically efficiently scheduled on abstract machine models. Such languages
allow to explicit parallelism independently of a specific architecture. The performance of a program is
evaluated directly from it using a language based performance model [1] that specifies costs of the primitive
instructions and rules for composing costs across program expressions. The adequation between those
theoretical costs and the effective performances of execution on an architecture is then related to the
scheduling algorithm used.

Most scheduling strategies are based on a greedy list scheduling [9]. Such a schedule is based on
an allocation of ready tasks to idle processors. Using it, several results have been obtained that proves
that well defined classes of parallel programs can be executed in asymptotic optimal time on theoretical
machine models such as the PRAM or the local-PRAM, including scheduling overheads [2, 5, 3].

Basically, a list scheduling do not require much information about processes in the application, al-
though some knowledge may appear useful 1. For instance, a total sequential ordering of tasks allow
to bound the amount of space required for the computation while achieving linear speed-up for certain
classes of programs: strict computations [5] nested computations [2] or planar graphs [3]. Furthermore,
in practice, due to magnitude of the ratio between local and remote memory access costs, some significant
improvement can be brought to a schedule by some knowledge about the data flow graph correspond-
ing to the execution [10]. Exploiting this knowledge leads often to a schedule well suited to a specific
application on a given architecture.

Several languages have been designed that allow the on-line building of the data-flow graph describing
the execution. Most of them are built on top of a standard sequential language. Although in Jade [16]
and BSP [11] instructions are grouped by block, most languages are based on a parallelism expressed
via asynchronous function calls: Sisal [14], Nesl [1], Cilk [4]. Synchronization that will occur during
a sequence of instructions is expressed at task creation or by specific statements that allow a task to

*CAPES-COFECUB Brazilian grant
tCNRS, INRIA, INPG and UJF

synchronize with the computation it has previously spawned. To support both execution on a distributed
architecture and the use of a list scheduling, a migration mechanism is required by any of this language
to move a task that was idle and becomes ready to an idle processor if any.

In this paper, we present a C++ library that implements a parallel language, named Athapascan-
1 (Ath stands for Asynchronous Tasks Handling). Requiring no migration, it leads to space and time
efficient execution Its semantics is based on a lexicographic order on the program and is independent
from the scheduling strategy used. Choice of the scheduling is annotated in the code.

The paper is organized as follows. Section 2 introduces the language and its semantics. Section
3 explicit the cost model related to the program and proves the existence of optimal scheduling for
some classes of graphs on a distributed architecture with a sparse network. Section 4 is devoted to
implementation. In section 5, some experimental measures on a distributed and on a shared memory
architecture are presented.

2 The Athapascan-1 Language

In this section the Athapascan-1 language is described, its semantics, syntax, and some informations
about its implementation are given.

2.1 Overview

Athapascan-1 is a data-flow language designed for parallel computation. The explicit parallelism is
expressed through asynchronous remote procedure calls, denoted as tasks, that communicate and are
synchronized only via access to a shared memory.

The Athapascan-1 semantic relies on shared data access, and ensures that the value returned by the
read statements is the last written value! according to the lexicographic order (statements in the program
are lexicographically ordered by ’;’). The main advantage of this semantic is its direct readability on the
program source (figure 1 shows an obvious example).

The respect of the access semantic during execution is entirely data driven: the precedences between
the tasks, the needed communications or the data copies are ensured automatically by the runtime system.
The scheduling of the created tasks is enforced by customizable schedulers that are fully separated from
the application.

Athapascan-1 is implemented as a C++ library, and is then fully compatible with C and C++
languages. A simple ANSI C extension i1s handled by a basic preprocessor. For the sake of simplicity,
the syntax presented here is the one recognized by this preprocessor; it makes easier the use of the C++
library by replacing typical C++ constructions by keywords.

task update(shared(w)< int > x) { x.write(5); }
task print(shared(r)< int > x) { printf("%d", x.read()); }

task test() {
shared(rp_wp)< int > a;
fork update(a);
fork print(a);

}

Figure 1: The semantic access is based on lexicographic order: the execution of the test task will print 5 on
output: the execution of print (a) is delayed until update(a) resumes. The fork keyword asynchronously creates
a task, the shared(w)<int> type designs an object located in the shared memory, object that will be written (due
to w ; r stands for read).

Lor a copy of

2.2 Syntax and “Athapascan-1 objects”
2.2.1 Tasks and closures

A task definition is similar to a C procedure definition, having simply the void returned type replaced
by the task keyword:

task user_task(<parameters>)
{ <statements> }

The preprocessor translates this declaration into a C++ class function.
A task implements a sequential computation which granularity is fixed by the user; it is created in
program statements by prefixing a standard C++ procedure call by the fork keyword:

fork user_task(<parameters>);

This statement creates an object, called a closure, gives it for scheduling to the current scheduler and
returns for continuation (asynchronous task creation). A closure is a data structure that contains an
instantiation of the user task, the list of effective parameters and an execution method (called by the
scheduler to run the task on the arguments). A closure is said ready if all the arguments that will be
read by the task are ready or waiting if some argument that will be read is not ready.

The state of a closure is then directly linked to the state of the effective parameters that will be read
by the task. Two types of parameters are distinguished: first, the classical parameters by value which are
always ready since the closure possesses a copy of them; and second, the parameters which are references
to shared data versions. These last parameters have a state associated to them: a shared data version is
said ready if no task is able to write the data (directly or not) else waiting.

2.2.2 Shared data and their versions

The shared memory, that allows the tasks to cooperate, is composed by shared data. An object x in
shared memory is declared as follow:

shared< T > x;

where T is the type of the data that will be shared. This type T, that can be user defined (communications
of such types are made with the help of a data format descriptor related to type T), defines the granularity
of the data handled in the algorithm. A succession of versions is associated to each shared data: each
shared data version represents the value of the shared data at a certain state of program execution.

The declaration of a shared data creates an object, called evolution, containing pointers toward two
transitions, objects managing the allocation, state and access of data versions. The first transition
manages the version of the data that will be read (the current version of the shared data) and the second
the version that will be generated (let us say written) by the execution of the task (the future version of
the shared data).

The shared data version references possess the following methods:

T& access();

const T& read();

void write(const T&);
void cumul(const T&);

2.2.3 Example

The figure 2 shows the different main data structures that compose the Athapascan-1 system. All these
objects are dynamically allocated in the heap, and return to the heap when they are completed: after
task execution in the case of closures; when no access can be made any more on a data in the case of
transitions.

The figure 3 shows two codes for computing the nth Fibonacci number. The first version is the
familiar recursive procedure that computes the nth Fibonacci number. If the threshold is reached, the

T

ready transition
ready closure executable code

waiting transition

. evolution value

]

L . waiting closure
waiting transition
T3 parameters

shared data a

Figure 2: The Athapascan-1 internal data structures

fibo task just writes the result into the shared data res; else it creates two tasks that will compute
concurrently the two previous Fibonacci numbers, and a task sum that will add these two numbers and
write the result in the shared data res. This summing task will be delayed until the two Fibonacci tasks
have been completed, because the access made on the shared data are incompatible (write and read) and
the two Fibonacci tasks have been created before. The second version is a cumulative version of the ”sum
tree” developed by the first version.

task fibo(int n, shared(w)<int> fes) {

if(n<2) struct add {
res.write(n); void operator()(int& x, const int& y) { x += y; }
else { };
shared<int> x, y;
fork fibo(n-1, x); task fibo(int n, shared(cw<add>)<int> res) {
fork fibo(n-2, y); if(n<2)
fork sum(x, y, res); res.cumul(n);
} else {
¥ fork fibo(n-1, x);

fork fibo(n-2, y);
task sum(shared(r)<int> x, shared(r})<int> y, shared(w)<int> z) {
z.write(x.read() + y.read()); }

}
(a) (b)

Figure 3: Two versions of Athapascan-1 code computing the nth Fibonacci number. (a) presents a recursive way
and (b) a cumulative one. The access mode of the shared are identified in the task declaration formal parameter:
r stands for read, w for write and cw<add> for accumulation according to the add accumulation law.

2.3 Lexicographic ordering and parallelism detection

In order to respect the lexicographic order semantic, Athapascan-1 has to identify for each read performed
on a shared data the related data version. However, parallelism detection is easily possible in that context
if all the tasks precise the shared data objects that will be accessed during their execution (for independent
tasks detection), and which type of access will be performed on them (for tasks precedence detection and
shared data versions evolution).

That’s for this reason that in Athapascan-1 tasks can not perform side effects (all manipulated shared
are located in the parameter list) and that these shared parameters are typed according to the future
manipulation.

2.3.1 Access right: evolution of shared data versions

In the task declaration of the formal parameters, the references to shared data version are typed by their
access right, i.e. what kind of manipulation the task (and all its sub-tasks, due to lexicographic order

semantic) is allowed to perform on the shared data. These rights are r_w for read&write modifications,
w for writing, cw<f> for accumulation and r for read only.

shared (r)<T>, shared(r_w)<T> for example. Figure 4 shows which access rights conversions are
possible at the tasks creation.

rw)
,
/

‘i:\\ r% \WO
.

cwsf> _!

Figure 4: Allowed access rights conversions at task creation between the given effective parameter and the formal
one. The solid lines translates the creation of a new version for the concerned shared data, contrary to dashed
ones.

Remark concerning accumulation: The accumulation law is an user defined one (set to + operator
by default) that is supposed to be associative and commutative. Note that this law is part of the reference
type, so mix of different law is not allowed, but obey to lexicographic order semantic. Initial value for
accumulation is the previous value of the shared according to the lexicographic access order.

2.3.2 Access mode: improving the parallelism extraction

To improve parallelism, there’s a refinement to access right, called access mode that denotes if an access
will be either performed or not on the shared data. An access is said “postponed” (access right suffixed
by p) if the task will not perform any access on the shared data but will create tasks that may take
benefit of this right.

With this refinement Athapascan-1 is able to decide more precisely if two tasks have a precedence
relation or not: a task requiring a shared parameter with a direct read access r has a precedence relation
with the last? task taking this same parameter with a writing right, whereas a task taking this same
parameter in a postponed read access rp has no precedence because no access will be made (the precedence
will be delayed to a sub-task created with an r type).

shared (rp)<T>, shared (rp_wp)<T> for example.

Note: The shared type used at shared data creation is nothing more than an alias to shared(rp_wp

).

2.4 Shared data version access graph

In order to be able to determine the state of the transitions and closures, Athapascan-1 dynamically
maintains a graph of the shared data versions access. This graph is composed of the closures and
transitions for the nodes, and the pointers of evolutions for the edges.

The evolution of this graph happens at each task or shared data creation (addition of edges and/or
nodes) or task termination (removing of edges and/or nodes, node’s state evolution), as shown in figure
5.

Schedulers can take benefit of this graph which is maintained, for semantic reasons, by the system.
Without over-cost they have some relevant information on the application to schedule.

2.5 Bounding cost of Athapascan-1 statements

Due to the access semantic (based on the lexicographic order), the accessed values can be easily determined
on the source code. It is also possible to evaluate the time and memory cost of any Athapascan-1 program.

2according to the lexicographic order

Figure 5: Dynamic evolution of the shared data versions access graph for the recursive version of fibo(2)
execution. State (a) represents the initial graph, (b) the graph after the creation of the two shared x and y, ()
after the creation of the two fibo tasks (d) the graph after the creation of the sum task and just before the end of
the fibo (2) task, (e) just after and (f) after the execution and completion of £ibo (0). The dotted lines represent
the ”mother-child” relation, for help in graph comprehension (it’s not maintained in the system).

In order to bound the cost of the on-line building of the evolution graph, the following restrictions are

added:

e Ci: All graph modifications and task creations are local (need no communication). Tt is discussed
in the section 4.1.

e (5. All shared data versions that can be read (read right and direct mode) by a task are always
ready during the task execution.

It imposes that the tasks which can directly read a shared data are not allowed to create tasks that
would write on this shared data: else, the creator task would have to wait until the resuming of the
new created task before any read of the new shared data version (else the access semantic would
not have been respected). So, as a consequence, the type shared(r_wp)<T> has no sense, and
for example a task having a shared(r_w) can not create a task requiring a shared(w) as formal
parameter,...

e (C3: A task creation (fork) generates no data copy.

It imposes that the tasks which can directly write a shared data are not allowed to create tasks
that would read on this shared data: else a copy of the last written value should be stored for the
created task, or the creator stopped until the created resumes all reads on the last shared data
version. So, as a consequence, the type shared(rp_w)<T> has no sense, and for example a task
having a shared(r_w) can not create a task requiring a shared(r) as formal parameter,...

The strong typing of shared data version references allows the verification of the respect of these
conditions C at compile time.

Proposition 1 Any Athapascan-1 statement (i.e. fork, read, write, cumul, access, shared) has a
bounded cost in time and memory space. Each graph modification is made in a constant time and space.

This results from shared types and conditions C; and C,. a

Definition 1 A correct Athapascan-1 program is a program that verifies both the syntar and conditions

Cl to C3‘
Proposition 2 There’s no any precedence relation between a task and the task that creates it.

This results from shared types and condition Cs. a

The task computation statements block is a word of (S+ F)*, where F' denotes a block fork statement
and S a classical block computation statement containing no task creation: let ussay S1 F1.S59Fs ... Sn_1Fn_15,
(S1 and Sy, can be empty). The entire independence between the created task and the creator task (propo-
sition 2) involves that the trace S1F152F5 ... Sn_1Fn_1Sy is equivalent to S1S3...S,_ 1S, F1F2 ... Fph_1.
This order of execution which corresponds to an inner most outer most order of evaluation is called in
Athapascan-1 the reference sequential order of statements evaluation and is denoted by R in the following
sections of this article (figure 6 illustrates this execution order).

task user_task(<parameters>) { task user_task(<parameters>) {
stmts_1; stmts_1;
fork task_1(<args>); stmts_2;
stmts_2; stmts_3;
fork task_2(<args>); fork task_1(<args>);
stmts_3; fork task_2(<args>);
¥) ¥)
(a) (b)

Figure 6: In Athapascan-1 the two tasks writing (a) and (b) produce the same results. The task writing
(b), where all tasks creations are performed at the end of execution, corresponds to the Athapascan-1 reference
sequential order of statements execution.

Proposition 3 The Athapascan-1 reference order of instruction evaluation respects the lexicographic
order based access semantic and requires no copy.

This results from the conditions Cs and Cs. O

2.6 Summary

All assumptions concerning copies and synchronizations ensure that the Athapascan-1 system is not
responsible of over-memory requirement: all decisions are to be taken by the scheduling policies or the
user.

The allowed conversions of shared data version types at task creation are summarized in the following

table, figure 7.

formal parameter required type for the effective parameter
shared(r[p])< T > | shared(r[p])X T >
shared(rp_wp)<

shared(w[p])< T > | shared(w[p])<
shared(rp_wp)<
shared(cw[pl<f>)< T > | shared(cw[p]<f>)<
shared(rp_wp)<
shared(r[plwlp])< T > | shared(rp_wp)<

I
VIV V|V VIV

Figure 7: Allowed conversion for passing reference on a shared data version as parameter of a task ([p]
stands p for postponed access mode or nothing for direct access mode).

To conclude this presentation, a more complex example of an Athapascan-1 program that implements
a two-dimensionnal block LU Factorization is presented below. Only task ParBlockFact LU contains
parallelism. Once this task has been completed, the synchronization that will occur till the end of the
lgorithm between all remaining tasks ared konown. The figure 8 shows the graph generated for this
program when applied to a 8 x 8 matrix (elements being blocks of arbitrary size).

TASK Factorisation_LU(shared(r_w)<matrix<double> > a) { ... }

TASK M_TimesInverse_U(shared(r_w)<matrix<double> > m, shared(r)<matrix<double> > u) { ... }
TASK Inverse_L_Times_M(shared(r_w)<matrix<double> > m, shared(r)<matrix<double> > 1) { ... }
TASK MinusTimesEqual(shared(r_w)<matrix<double> > a, shared(r)<matrix<double> > b, shared(r)<matrix<double> > ¢) { ... }

TASK ParBlockFact_LU(array<shared(rp_wp)<matrix<double> > > A, int col_dim, int row_dim) {
for(int k = 0 ; k < col_dim ; k++) {
FORK Factorisation_LU, Al[k#(row_dim+1)]);
for(int i = k+1 ; i < col_dim ; i++)
FORK M_TimesInverse_U(A[i+k*row_dim], Al[k*(row_dim+1)]);
for(int j = k+1; j < row_dim ; j++)
FORK Inverse_L_Times_M(Al[k+j*row_diml, A[k#(row_dim+1)]);
for(i = k+1 ; i < col_dim ; i++)
for(j = k+1; j < row_dim ; j++)
FORK MinusTimesEqual(A[i+j#row_dim], A[i+k*row_dim], A[k+j*row_dim]);

-
-7 &1 1171717
oo oo o
- ===
Ml < T TT7TT
oo oo e
- —c=z-
A& T T T T
=g g)
- ~ ==
T T 77
o=
- ===
- 1=
=g
- - -
- 1T =
=)
T .
- T e
v =T
::IO
_=

Figure 8: Gauss graph for an 8 x 8 dense matrix.

3 Cost model

In this section, theoretical bounds on the time and space required to execute an Athapascan-1 program
on a distributed architecture with p identical processors are given. Bounds are related to abstract cost
measures on the program itself.

3.1 Weighted macro data-flow graph

An instant of the execution of an Athapascan-1 program (with a specific input) can be represented by
the related shared data access graph (9) which is direct and acyclic. Superposing all the graphs in the

Figure 9: The shared data access graph can be annotated by arithmetical cost for nodes and communication
costs for the edges. Here, the arithmetical cost is take as the number of task’s statements and communication
costs correspond to the communication of an integer and account for 1.

evolution (see figure 9) leads to a direct acyclic graph G. which is an abstract representation of the
whole execution that describes both shared data and tasks (control) flow. G is bipartite with node sets
J =H{J1,...,jn} corresponding to closures (j meaning job) and T'= {#1,...,t,} corresponding to shared
data versions (¢ meaning transition). An edge goes from ty (resp. j;) to j; (resp. tg) if ¢ is accessed in
a read (resp. writing) right by #5.

Since (G is at coarse-grain, it is weighted. Fach node (either closure node or transition node) is weighted
by the number of elementary arithmetic operations performed (either to execute the related task or to
elaborate the version in case of cumulative access for instance). Each edge is weighted according to the
size of the shared data related to it: any shared data passed as effective parameter accounts for 1 unit;
moreover, when the edge corresponds to an access within a direct mode, it accounts for the size of the
data pointed to by the shared.

3.2 Cost measures of an Athapascan-1 program

Due to the lexicographical semantics, costs can be evaluated directly on the program itself from related
recurrence equations (max, +) on the size of the input [12, 1]. Here, following notations in [1, 5], we
define abstract costs from G in order to relate them to a specific input.

Weights in G reflects directly an execution that respects the reference order R of execution (inner
most, outer most). Execution of a closure is then delayed until the task that has created it resumes.

Let Ty and S7 denote the serial time and space required by a serial execution of the program. It can be
seen that order R does not intrinsically increase by more than a factor 2 both the time T} and the space S;
required by a classical serial execution. In effect, since from proposition 1 fork statements are of constant
cost, Ty = Ty. Besides, due to the independence property 2, a sufficient condition to have S; = Sy is that
any task creates at most two closures just before resuming. Another semantically equivalent program
—i.e. computing the same values — satisfying this condition can be obtained by compiling continuation
of tasks; it is sufficient to replace the block of instructions following a fork statement by the forking of a
task which body is this block. This transformation increases nor the time neither the space by more than
a factor 2. Any Athapascan-1 program with serial time T} and space S can thus be directly translated in
another one for which 77 = O(T]) and S = O(§1). It can be noted that parallel time on an unbounded
number of processors remains unchanged though communication work and delay may be increased during
this transformation by more than a constant factor.

Arithmetic depth Ti, (or parallel time) and work 71 (or sequential time) are evaluated from G taking
into account weights of nodes. T, is a lower bound of the minimal time required by any schedule on an
unbounded number of processors ignoring communications times (PRAM model [8]). T} is the number
of operations required by a sequential execution of the algorithm. Since the best schedule may replicate
some arithmetic nodes in order to minimize completion time, note that 77 is also a lower bound on the
number of operations performed by any schedule.

Communication delay Cy and work C), are evaluated similarly from G taking into account only weights

of edges. Cjy is the length of the critical path in GG; Cy, is the sum the weights over all edges. Note that
C'y is then an upper bound on the total number of remote access (out of the local memory or out of the
cache) performed during a serial execution.

Since the overhead involved by the scheduling of the graph is also concerned, we denote respectively
by #N and #FE the total number of nodes and edges in G.

In the following sections we study the scheduling of an Athapascan-1 program on various machine
models; time and space required by the execution on the machine (including the cost of the scheduling
algorithm) are related to above abstract costs defined on the program itself that are independent from
the machine.

3.3 Scheduling on a PRAM

The PRAM model [8, 12] allows to get rid off communication overheads. In order to be consistent with
Athapascan-1, we consider a CRCW-PRAM with cumulative concurrent write ones. We focus here on
the time required to schedule tasks on such a machine.

With no restriction, we assume that during execution, any task has performed a bounded number
(let say 2) of fork statements. We firstly consider an unbounded PRAM (co-PRAM), consisting in an
unbounded processors. Each processor is indexed by an integer.

Proposition 4 Including the cost of the schedule computation, any Athapascan program can be executed
on the co-PRAM in time O(Tw).

Taking benefit of the lexicographical semantics of Athapascan-1, any closure ¢ can be uniquely assigned
to a sequence s(t) in {0+ 1}*. The first closure (implicitly defined in C4++ by main) is indexed by ‘1°. If
s(t) is the sequence associated to a closure ¢ that sequentially creates closures #g, %1, then s(¢;) = s(¢).i.
For any ¢, s(t) is computed in constant time and ¢ is then mapped on processor with index s(¢). Tt will
start execution when it becomes ready. The detection, that corresponds to an unbounded fan-in boolean
operation, is performed in constant time. This leads to an execution time O (7). o

We consider now a PRAM with a bounded number of processors p. We give two bounds; the first
consider

Proposition 5 Including the cost of the schedule computation, any Athapascan program can be executed
on the p-PRAM in time (a) Too-i-%-i-O(#N-%-#E) or (b) Too—i—m—i—O (log(#N +#E)+ #Np%#E)

Both schedules are obtained by deterministic non-preemptive algorithms.

Both scheduling algorithms are based on a greedy list strategy [9]: when a processor becomes idle, it gets
a ready closure if any and performs its execution. Bounds for (a) and (b) differs from implementation of
the strategy. To obtain (a), a global lock is implemented in the PRAM: each modification in the evolution
graph is performed in mutual exclusion. The number of such modifications is bounded by O(#N + #F);
thus both idle time corresponding to busy wait of the lock and management of evolutions of the graph
are bounded by O(#N + #F).
A distributed management of the list leads to bound (b): all modifications on the evolution of the graph
are performed by a specific subset of ﬁ processors in time log(#N + #F). Other p(1 — 1/logp)
processors are dedicated to execution of c%osures. a
Bounds on (a) and (b) differs only from the scheduling algorithm; however, without complete knowl-
edge of weights on G, it is not possible to decide what is the one that achieves the best bound.

3.4 Scheduling on a distributed architecture

We consider here scheduling of an Athapascan program on a distributed architecture with p identical
processors. The shared memory on this architecture is emulated with the help of universal hashing
functions [13]. The delay occurring for any access is bounded by h(p). In order to obtain efficient
emulations (h(p) constant or very small to p), a slackness strategy [15, 17] is used. Tt consists in emulating
a ¢(p)-PRAM on the distributed architecture, ¢(p) being larger enough compared to p. In the following,
the distributed machine is assumed to emulate a ¢(p)-PRAM with delay h(p).

Proposition 6 Including the cost of the schedule computation, any Athapascan program can be executed
on a distributed architecture with p identical processors in time q(p)Too—i-%—f—h(p) [q(p)C’d + (’;9—’” + O(#N + #E)|.

This schedule 1s obtained by a non-deterministic preemptive algorithm but with no migration of running
closures.

The proof is deduced from proposition 5 applied on a PRAM with ¢ processors. The whole number of
remote access with delay & is bounded by C),. This leads to a schedule on the ¢ virtual processors with
length bounded by T, + % + hcq—’”. To obtain the emulation on the p processors, ¢/p virtual processors
are emulated on each processor by synchronous preemptive threads. Due to the emulation of the shared
memory, the algorithm is non-deterministic. On each processor, threads are dedicated to execution of
closures and are emulated preemptively. However, once a closure starts its execution on a processor, it is
not migrated to another one. a

As a corollary, Athapascan-1 programs verifying Cy, = o(T1) and (#N + #FE) = o(Tw) can be

scheduled asymptotically optimally on a distributed architecture with p = o TT—l in time (1 + e)%.
This result is similar to those obtained in [5] for Cilk programs.

A negative result however is that computations that involves a large number of communications may
not been efficiently scheduled. For instance, any program with linear serial cost 71 = O(n) where n is
the size of the input requires at least W, = Q(n) access. The schedule time is then O(h(p)T1/p) and

efficiency depends on h.

In this case, other scheduling algorithms can be used. For instance, if we consider the previous 2-
dimensional block Gaussian elimination 8, after execution of closure gauss the whole graph G is computed
and remains unchanged till end of computation. Then, if cost informations can be given in the program
in order to annotate the graph with computation and communication costs (which is possible in case of
a dense matrix), a specific block-cyclic schedule can be computed which results in efficient executions.

3.5 Scheduling to minimize space

Previous schedules do not guarantee any bound concerning the space required. However, they all realize
strict multi-threaded computations [5]: a closure does not start its execution until all its arguments are
available.

Since they are based on a list of ready closures, sorting this list according to an order that minimizes
sequential space allow to bound the memory space required [5, 2]. Due to the lexicographic semantics,
this list can be directly sorted with no overhead according to the reference order.

Space required for the resulting schedule is then bounded by ¢(P)S; on the distributed machine [5].

Besides, after execution of some closures in the program, the graph G may be completely built and
annotated (see Gaussian elimination, fig. 8). Then a specific scheduling algorithm can be used that
delivers better bounds on the space required.

For instance, if the graph is known to be planar [3], it is possible to sort ready closures in the list in order
to achieve a space S1 + ¢(p) log ¢(p) Teo -

3.6 Conclusion

Abstract cost measures are defined on an Athapascan-1 program that allow to analyze its theoretical per-
formances. This allow the implementation of various scheduling algorithms with provably performances
for specific class of programs.

For a given program, execution costs on a given architecture depend heavily on the scheduling algo-
rithm used, which appear very difficult to choose.

However, since semantics of the program do not depend on the schedule used, it can be implemented
apart from the program itself. In following sections, the effective implementation of the language is
presented and a framework that allow the use and the implementation of various scheduling algorithms
is detailed.

4 Athapascan runtime and distributed implementation

In this section we describe the distributed implementation of Athapascan-1. This implementation re-
lies on a multi-threaded, portable, parallel programming runtime system, Athapascan-0, that overlaps
communication delays with computation.

4.1 Shared data versions access graph management

The maintained graph is distributed: closures and edges are unique in the system, but transitions may
be replicated (as shown in figure 10). These transitions are replicated so that a closure always locally
accesses its connected transitions (via the pointers of its possessed evolutions). So all the access to the
shared data versions or the tasks creations are local events and make no communication. The time
required for a task creation is then proportional to the number of its parameters.

In order to detect termination of access to a transition in a distributed asynchronous environment,
a termination algorithm is implemented To each transition is associated a master node that computes a
balance between increasing counters related to each of its replicate. Those counters are managed locally
on each site that possess a replicate. When there is no more local access on the site, values of local
counters are sent to the master node.

node 0

node 1

Figure 10: The graph can be distributed. In that case, only transitions are replicated and have a distributed
coherence maintained. When the task £ibo (0) will be completed, a message will be sent from node 1 to node 0
to warn the transition T2 that no more writers exist on this node.

Communications are handled by a runtime system called Athapascan-0. It allows the remote creation
of threads furnishing communications and synchronization facilities. Local scheduling of threads in a
node is managed by the runtime in order to hide communication latencies. Athapascan-1 is implemented
on this runtime and provide the global scheduling of closures (tasks) on the whole architecture.

4.2 Athapascan-0: an efficient and portable integration of communications
and multi-threading

Athapascan-0 [6] is a multi-threaded parallel programming runtime system. It is designed to support
portable development and efficient execution of irregular, fine-grained parallel programs, usually with a
number of processes much larger than the number of available processors. Processes are supported by an
inexpensive mechanism, the threads.

Athapascan-0 is designed for a general parallel machine that consists in a network of symmetric
multi-processors (SMPs) that offers the four following types of exploitable physical parallelism: between
processing nodes, between computation and communication processors within a node, between compu-
tation processors within a node, and between communications on disjoint routes.

The Athapascan-0 runtime is built on top of standard unmodified message passing and thread li-
braries and much care has been taken on communication efficiency and communication and computation
overlapping.

An Athapascan-0 parallel machine is composed by a set of nodes executing the Athapascan-0 runtime.
The operators that express a parallel computation are local and remote thread creation, local and remote
communication between threads, local synchronization between threads and remote access to shared
memory regions.

Athapascan-0 offers a library with the basic communication primitives extended to manipulate for-
matted data. A format holds a data description, which can have a regular organization in memory such
as MPI data-types or a complex packing procedure, as in XDR. This description allows the user to
communicate variable sized structures without the need to manage data packing and buffers.

4.3 Athapascan-0 performances

In this section, the performance of Athapascan-0 is compared to the thread and communication libraries
on top of which it is implemented.

The necessary time for a remote write (figure 11 (a)) accounts only for the local delay and not for the
time the write would take to complete on the remote node. This explains the different slope of the write
curve compared to the message send curve. The difference is also explained by the fact that a write is
implemented by two messages (one for the data address and format, the other for the data). The read
curve has the same slope as the send curve because a read involves a round trip of messages, the first of
which is of fixed size, regardless of the size of the read.

Large messages performance is shown figure 11 (b). Athapascan-0 overhead is small in percentage
for larger messages. Maximum throughput for MPI-F is 28.5 MBytes/sec and for Athapascan-0 27
MBytes/sec. What may seem to be a per-byte overhead is in fact due to the polling rate of the MPI
library in Athapascan-0.

700

Athapascan-Ob read —
Athapascan-0b write ----
Athapascar

600 [

500 |

conds)

300

Message time (milise

200

100

1000 1500 2000 0 200k 400k 600k 800k ™M
Message size (bytes) Message size (bytes)

(a) (b)

Figure 11: Communication performance of Athapascan-0 compared to the thread and communication libraries
on top of which it is implemented. (a) concerns short messages and (b) large ones. The machine is an IBM SP/1
with a High Performance Switch network (HPS) running AIX 3.2.5. The libraries used are IBM DCE threads
(POSIX draft 1003.4a) and MPI-F, a thread aware research prototype designed by IBM to run on the HPS.

5 Scheduling implementation

Athapascan-0 handles local scheduling of threads on a node. In this section, we present the way Atha-
pascan-1 closures are globally scheduled. A scheduling algorithm is then used to determine a site and a
date to trigger the execution of a closure (an Athapascan-1 task). The algorithm implemented by this
level of scheduling does a distribution of the work generated by an application attempting to optimize a
global index of performance, as memory use or, more typically, the execution time. The scheduling which
allows the different threads to access a (set of) real processor(s) depends on the scheme adopted by the
lowers layers.

For Athapascan-1, we propose a framework to supports this scheduling layer. With this framework
we intent to separate the scheduling from the application and from the execution support. Some static
and dynamic scheduling algorithms are delivered with the framework, but new ones can be easily added
following the rules defined for the framework interface.

5.1 Annotating a program by scheduling

The scheduler framework offers different scheduling algorithms, implemented as C++ classes. At exe-
cution time, Athapascan-1 allows the user to specify the one used by code annotation, a work-stealing
algorithm being the default one. The scheduler is selected by prefixing the fork operator:

Schedule(sched) fork user_task(<parameters>);

The task user_task will be scheduled by the scheduler sched and sched will be the algorithm default
to schedule closures created by user_task. Some attributes can be added to the task, such as priority,
computational cost or locality; they can be exploited by sched. Those attributes are specified in the
following way:

Schedule(sched) Information(p, c, 1, e) fork user_task(<parameters>);

where p, ¢ and 1 correspond respectively to priority, computational cost and locality. The information
given by e corresponds to an extra attribute which semantic depends on text.

5.2 Relationship between the graph and the schedule

Informations about a task are stored as attributes of the associated closure. After creation (fork) and
until 1t 1s completed, the state of the closure depends on the graph of evolutions. The main states are:

e waiting: the closure has at least one predecessor not yet completed;
e ready: the closure can be executed;
e running: the closure runs sequentially its instructions;

e crxecuted: the closure is completing.

Each change of state can potentially trigger a scheduling action. Then, for each operation in the
graph, a signal is sent to the related scheduler allowing it to explore the new graph configuration. So, it
can get the informations that it required about the current global state of execution: for instance, closure
attributes, parameters, state or precedence constraints.

Its is relatively easy to identify when a scheduling action may be sparked; harder is to identify when
it must be do. As seen in 3, this decision depends from the application characteristics and the machine
resources. Often is necessary a flexible scheduler environment to support both machine and application
characteristics.

5.3 Framework for scheduler development

We structure our flexible scheduler support as a framework [7] composed of four modules and a set of
callback functions (figure 12). In this scheme the Job Builder is the graph generator (an Athapascan-1
program in the context of this paper) and the Executor is a module implemented over the Athapascan-0
to handle a pool of threads to execute the closure. The number of threads of this pool may be suited for
an application in order to overlap remote access delay.

The Policy Manager is the kernel of the scheduler framework; it defines interfaces with the Job Builder
and the closure. By the interface with Job Builder, the Policy Manager receives, by a service call, infor-
mation about any graph modification.. Each scheduling algorithm may have a specific implementation
of these services (default implementations are provided). The interface defined for the closure provides
services used by the Policy Manager to read its attributes, parameters and successors and predecessors
in the graph and to move it from a processor node to another.

Associated to the Policy Manager, a Load Estimator books the load of processor nodes.

Policy Manager
5 d reading
job creations an ' i
Late transition writting index

index
. Load
Job Builder Estimator

jobs to run

w
Executor

Figure 12: Framework for a general scheduler support

5.4 Some schedulers

With the framework described above we intent to have a software layer providing facilities to implement a
large variety of scheduling algorithms independently from the application program and from the machine
resources. Then, the scheduling algorithm may be tuned to a tuple {application, machine}.

5.4.1 Work-stealing

There are a lot of works in the literature about distributed greedy scheduling algorithms, most often
being based on a work-stealing principle [4].

In the work-stealing scheduling, each processor node stores in a queue @) closures ready to be executed.
The size q; of @); represents the reserve of work in the node i. The ¢; value is always compared with the
system constants ¢™?® and ¢™" (where 0 < ¢™" < ¢™%). When ¢; < ¢™" the node i is considered
under-loaded: it chooses another node [to send a message to thief work. If ¢q; > ¢™%" the node [is
overloaded then it can answer with a work; otherwise, the message is forwarded to another node I’.

Concerning implementation, different solutions are proposed whose efficiency may depend on a tuple
{application, machine}. For instance, it is possible to discuss the influence of the threshold ¢™*" and
¢™" | the algorithm to choose a node to send a thief message and the algorithm to choose the best closure
to answer a thief message.

For a selection of a node to thief, in general, a randomly choice may be a good solution when there
are no global load information. However unsuccessful thief messages may be sent. A central node may
be used providing a global reserve list, avoiding unsuccessful thief messages but introducing an overhead
to actualize this reserve.

Also various policies can be used to select a closure to answer a thief message or to be executed locally.
The queue list may be eventually ordered. As seen before, the order may respect a sequential ordering
of the execution in order to optimize space; or, closures may be sorted according to other criteria related
to their attributes, such as computational cost.

5.4.2 Static algorithms

At a given instant of the execution, the evolution graph may represent all the closures and their depen-
dancies to be executed until a global synchronization. For instance, consider the program in section 2.6;
once the closure ParBlocFact LU has been completed, the whole dependancy graph is known since other
tasks implements sequential computations on a block.

If some informations are known about the graph such as computation costs for instance, a static
scheduling such as DSC implemented in Pyrros [18] can be used. If not, it is well known that on a
distributed uniform architecture, a two-dimensionnal block-cyclic allocation of tasks to processors leads
to good performances.

Due to the relationship between the application program and the framework we proposed, such algo-
rithms may be implemented.

6 Experimental behavior

In this section we present some performance results obtained by the execution of a recursive Athapas-
can-1 program (with the same schemes than figure 3(a)) using two different schedulers. We used two
distributed architectures and a shared memory multiprocessor in our experiments.

6.1 Experiment on distributed architectures

Figure 13 shows some performance curves obtained by the execution of a recursive algorithm: in this
algorithm each task generates new tasks until a threshold, defined by the program; then, the task starts
a sequential algorithm. Each curve represents the speed-up, ratio between execution times obtained on a
machine with 4 nodes versus an one node machine. The execution times for each case was measured 50
times and the average value calculated after elimination of abnormal results are represented. The axis X
shows the impact of different numbers of threads employed to execute the user services; note that there
are some Athapascan-0 and Athapascan-1 threads running to support the execution. The graph (a) is
the execution in a IBM-SP2 (using 4 nodes, AIX 4.2.1, MPI-IBM) parallel machine and the graph (b)
is the same experiment under a homogeneous network of workstations, NOW (4 monoprocessors, Solaris
2.5.1, LAM, Mirynet network).

‘COST 15 sp” =— ‘COST_15_NOw" +—

"COST 25 5p" ~+- "COST 25 NOW" -

“DEE15_5p" 15-NOW"

45 “DEE 25 sp" x 45 DEE 25 NOW"
Optimal" = Cpiimal" -

(1 node)/ T(4 nodes)
(1 node)/ T(4 nodes)

4 4
Number of threads by node Number of threads by node

(a)
Figure 13: Work-stealing under (a) a parallel machine (b) a homogeneous NOW

To achieve this experiments, with total cost equivalent to 40, two thresholds were used: 15 and 25.
The first one to generate a large number of tasks with a small grain and the second one to produce less
tasks with a large grain. The application was scheduled with two versions for the work-stealing, named
in figure 13 by DEE and COST; they differ by the algorithm used to select the closure sent to a thief
processor. The DEE algorithm selects the last closure that became ready; the COST algorithm selects
the closure that will generate the larger number of tasks (the first in a depth first execution). For both
algorithms, the node to be thief is chosen randomly and values for ¢™” and ¢™® were respectively 1
and 2.

Looking both figures 13(a) and 13(b), we can observe that performances decreases when the number of
threads on one node increases; note that in both NOW and SP2 architecures, nodes are mono-processor.
Also we can verify the parallel machine is more sensitive to the better distribution of the work provided
by the COST algorithm which selects the larger closure to migrate. An analysis equivalent is not possible
for the NOW where we observe a less constant behavior due at least to three factors:

e the NOW architecture proposed is not adequate for the application;
e MPI-LAM introduces an extra overhead for communications;

e the threads were created as user threads; at execution Solaris 2.5.1 adjust automatically the number
of virtual processors, changing the way how the threads are scheduled. Under ATX 4.2.1 all threads
are created as system threads.

6.2 Experiment on SMP

The same application was ran in a SMP architecture (Intel Quadriprocessor, Solaris 2.5.1, LAM). The
table 6.2 shows the execution times measured for this SMP architecture and for two monoprocessors: a
node of each distributed architecture discussed by the former paragraph.

Also the execution times for the sequential executions are presented. We distinguish the sequential
execution of a C++ equivalent program (” Sequential” in the table) from the one delivered by a depth-first
sequential scheduling of the Athapascan-1 program.

Threshold=15 Threshold=25

Monoproc | Monoproc Quadriproc Monoproc | Monoproc Quadriproc

IBM-SP2 Intel Intel IBM-SP2 Intel Intel
[Sequential [43.30 39.90 22.60 43.30 39.90 22.60
| Ath-sequential | 43.81 40.09 23.37 43.84 39.94 23.29
1 Thread 320.02 283.75 99.51 106.45 101.79 24.45
2 Threads 272.68 201.21 106.54 80.63 71.25 16.29
4 Threads 238.27 172.14 149.85 67.16 59.93 13.94
8 Threads 194.89 154.04 185.91 61.66 54.16 12.98

Table 1: Execution under a node of different architectures

From these results, it appears that the performances obtained on the SMP architecture are poor with
fine grain tasks. Increasing the number of threads introduces more overhead for the system to manage
the closures produced. However, a larger computational grain (threshold=25) leads to a speed-up when
the number of threads grows, this overhead being overlapped.

6.3 Overheads in Athapascan-1

Figure 6.2 allows to have an idea of the overhead of the distributed implementation of Athapascan-1. A
program Athapascan-1 may be compiled to generate a sequential version. Comparing the time obtained
with this version to the pure sequential program with the times for Athapascan-1 in sequential we verify
a very small overhead.

The overheads generated by Athapascan-1 (graph manipulation and scheduling framework) and by
Athapascan-0 (run time support) can be observed by comparing sequential execution (with the equivalent
C++ sequential code) with a parallel execution of Athapascan-1 using only one execution thread. These
overheads are attributed mainly to the implementation of Athapascan-1(graph management and schedul-
ing framework) and to Athapascan-0 runtime daemons. If the tasks are large enough, these overheads
however are overlapped.

7 Conclusion

We presented a language that enables the on-line building of the DAG that describes execution of a
program with bounded overhead. Semantics is based on the lexicographic order between instructions;
this allow efficient scheduling (space bounded computations) and to separate the program from the
scheduling algorithms used, that can be tuned by annotation for execution on a specific architecture.

Both grain of data and computation are explicit but independent from the target architecture (fine-
grain model). Parallelism is expressed via asynchronous creation of tasks. Any task can be scheduled
such that once started it can keep on its execution with no preemption.

A cost model allows to define parallel depth, work, sequential space, communication work and de-
lay. Efficient scheduling are given that achieve bot optimal time and bounded space on an distributed
architecture with sparse interconnection network for a large class of programs. However, in practice, the
use of this algorithm on even simple distributed architecture is far from performance obtained by simple
static strategies.

An issue is then to take benefit of the on-line partial knowledge of the annotated data-flow graph in
order to implement — in an on-line context — such a strategy. In this context, scheduling algorithms that
uses task replication in order to achieve optimal execution time with communication are attractive.

Another issue concerns the choice of the total order on tasks that allows to bound space. Since parallel
time is related to sequential space, the knowledge of memory requirements of the tasks in the graph brings

information to improve the space required by a sequential scheduling. A problem here is also to bound
the number of task replications.

References

(1]
(2]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. E. Blelloch. Programming Parallel Algorithms. Communications of the ACM, 39(3):85-97, 1996.

G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient scheduling for languages with fine-grained
parallelism. In Proceedings of the 7th Symposium on Parallel Algorithms and Architectures, pages 1-12,
Santa-Barbara, California, 1995. ACM Press.

G. E. Blelloch, P. B. Gibbons, Y. Matias, and G. J. Narkilar. Space efficient scheduling of Parallelism with
Synchronization Variables. In Proceedings of the 9th Symposium on Parallel Algorithms and Architectures.
ACM Press, 1997.

Robert D. Blumofe. Erecuting Multithreaded Programs Ffficiently. Ph.D. Thesis. MIT. Massachusetts. 1995.

R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations . STAM Journal
on Computing, 27(1):202-229, 1998.

J. Briat, I. Ginzburg, M. Pasin and B. Plateau. Athapascan Runtime: Efficiency for Irregular Problems. In:
Proc. of FuroPar’97. Passau. Aug. 1997.

Gerson G. H. Cavalheiro, Yves Denneulin and Jean-Louis Roch. A general modular specification for dis-
tributed schedulers. In: Proc. of EuroPar’98. Southampton. Sept. 1998.

S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. of the 10th ACM Symposium on
Theory of Computing, pages 114-118, San Diego, CA, 1978. ACM Press.

R. Graham. Bounds on multiprocessing timing anomalies. STAM J. Appl. Math., 17(2):416-426, 1969.

T. Gautier, J.-L.. Roch, and G. Villard. Regular versus irregular problems and algorithms. In Proc. of
IRREGULAR’95, Lyon, France, pages 1-26. Springer-Verlag LNCS 980, Sep. 1995.

M. Goudreau, J. Hill, K. Lang, and B. McColl. A Proposal for the BSP Worldwide Standard Library
(preliminary version). Technical report, http://www.bsp-worldwide.org/, Oxford University, GB, 1997.

J. J4ja. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Massachussets, 1992.

R. M. Karp, M. Luby, and F. M. auf der Heide. Efficient PRAM Simulation on a Distributed Memory
Machine. Algorithmica, 16:517-542, 1996.

J. McGraw. SISAL: Streams and Iterations in a Sigle-Assignment Language — Reference Manual. Technical
Report Manual M-146, Lawrence Livermore National Lab., 1985.

A. G. Ranade. How to emulate shared memory. In Proc. 28th Annual Symposium on Foundations of Computer
Science, pages 185-192. [EEE, 1987.

M. Rinard. The design, implementation and evaluation of Jade : a portable, implicitly parallel programming
language. PhD thesis, Stanford University, september 1994.

L. G. Valiant. A Bridging Model For Parallel Computation. Comm. of the ACM, 33(8):103-111, 1990.

T. Yang and A. Gerasoulis. Pyrros: static task scheduling and code generation for message passing multi
processors. In Proc. VI ACM Int. Conf. on Supercomputing, Washington, July 1992, pp 428-437.

