A general modular specification for
distributed schedulers

Gerson G. H. Cavalheiro', Yves Denneulin? and Jean-Louis Roch’

! Projet Apache!
Laboratoire de Modélisation et Calcul, BP 53
F-38041 Grenoble Cedex 9, France
2 Laboratoire d’Informatique Fondamentale de Lille
Cité Scientifique
F-59655 Villeneuve d’Ascq Cedex, France

Abstract. In parallel computing, performance is related both to algo-
rithmic design choices at the application level and to the scheduling strat-
egy. Concerning dynamic scheduling, general classifications have been
proposed. They outline two fundamental units, related to control and
information. In this paper, we propose a generic modular specification,
based not on two but on four components. They and the interactions
between them are precisely described. This specification has been used
to implement various scheduling algorithms in two different parallel pro-
gramming environments: PM? (EsPACE) and Athapascan (APACHE).

1 Introduction

From various general scheduling systems classifications for parallel architectures
[2,6], it is possible to extract two fundamental elements: a control unit to com-
pute the distribution of work in a parallel machine and an information unit to
evaluate the load of the machine. These units can implement different load bal-
ancing mechanisms, privileging either a (class of) machine architecture or an
(class of) application structure.

A dynamic scheduling system (DSS for short) is particularly interesting in
case of an unpredictable behavior at execution time. Irregular applications and
networks of workstations (NOW) are typical cases where the execution behavior
is unknown a priori. Usually a DSS for a tuple {application,machine} is specified
by an entry in a scheduling classification, and is implemented as a black-box:
it 1s difficult to tune it or reuse it for another application or machine without
rewriting totally or partially its code. Some works in the literature discuss this
problem and present possible solutions, like [4] where scheduling services are
grouped in families and presented as functions prototypes.

In this paper we discuss the gap between the scheduling classifications and the
implementation of DSSs. We present a modular structure for general scheduling

! CAPES-COFECUB Brazilian scholarship
! Supported by CNRS, INPG, INRIA et UJF

systems. This general architecture, presented as a framework, aims at avoiding
the introduction of additional constraints to implement the different classes of
scheduling. This framework introduces two new functional units: a work creation
unit and an executor unit and specifies an interface between the components.

2 General organization of a dynamic scheduling system

In this work a DSS is implemented at software level to control the execution
of an application on a parallel architecture. It was conceived to be independent
from both application and hardware and to support various classes of scheduling
algorithms. The DSS runs on a parallel machine composed of several computing
nodes, each one having a local memory and at least one real processor. There is
also a support for communications among them.

The notion of job. Units of work are produced at the application level; from
them, jobs are built and inserted in a graph of precedence (DAG), denoted G. G
evolves dynamically; it represents at each instant of execution the current state
of the application jobs. Each node in G represents a job; each edge, a precedence
constraint between two jobs. So, a job is the basic element to be scheduled, it
corresponds to a finite sequence of instructions, and has properties to allow its
manipulation by the scheduler. At a given instant of time, a job is in one of the
following states: waiting, the job has precedence constraints in GG; ready, the job
can be executed; preempted, the execution was interrupted; running, the job’s
instructions are executed; or completed, the precedence constraints in G imposed
by the job are relaxed.

Correction of a scheduling algorithm. The scheduling manages the execution of
jobs on the machine resources. For this, any DSS has to respect the following
properties, that define 1ts semantics:

(Py) for the application: only jobs in the ready state can be put in the running
state by the DSS;

(P4) for the computing resources: if some resources of the machine (nodes) are
idle while there are jobs in the ready state, at least one job will be put by the
DSS in the running state after a finite delay. This delay, which may sometimes
be bounded, defines the liveness of the DSS.

A DSS verifying those properties is said to be correct.

3 A modular architecture for a parallel scheduling

The DSS is implemented as a framework based on four modules (Fig. 1): a Job
Builder, to construct and manage a graph of jobs; a Scheduling Policy, where
the scheduling algorithm is implemented; a Load Level, to evaluate the load
of the machine; and an Frecutor, which implements a pool of threads used to
execute the jobs. Each module defines an interface to its services. An access to
one of them represents a read or a write operation, both accomplished in a non-
blocking fashion. A read operation is a request for data; it allows a module to

get a data handled by another one. Write operations also provide resources for
data exchange, but in the opposite direction: a module decides to send a data
to another module (e.g. a data or status changes). As a reaction to the use of
a service, an internal activity can be triggered and executed concurrently with
the caller before the service ends. A short description of each module follows.

- =|Scheduling Policy, Dc
— O\\\\
o)
Job Builder F,i Fi £ Load Level
™. [
e Yy ._/
O—= Read "T------@ Executor

®— Update
@ - > Status changing

Fig. 1. Internal communication scheme between modules on the framework.

Job Builder unit. Tts role is to build jobs from the tasks defined by the applica-
tion, eventually giving access to their dependencies. So, it manages the evolutions
of GG. This module is attached to the application to receive and handle the tasks
creation requests. The Job Builder unit must be informed when a job terminates
to update the states of the jobs in GG. In Fig. 1, arrow G shows the task Executor
sending a job termination event to the Job Builder.

Scheduling Policy unit This is the core of the scheduling framework; it takes
decisions about the placement of the jobs. In order to know how the application
evolves, the Scheduling Policy receives from the Job Builder every change in G,
e.g. when a job is created (arrow 4 in Fig. 1) or when its state changed (arrow
B). To place the jobs to respect the load balancing scheme, the Scheduling Policy
may consider the load on the parallel machine (arrow D). Notice that after taking
the decisions, the load information must be updated (arrow D’). The Scheduling
Policy must also react to two signals: an irregular load distribution detected by
the Load Level (arrow C) and the requests of jobs to execute (arrow E) from the
Executor. It can also create a new virtual processor (arrow F) or destruct one
(arrow F’).

FEzecutor unit. The Executor is implemented over a support that provides fine-
grained activities; it furnishes virtual processors, called threads, to process the
execution of the application jobs. Each thread executes an infinite loop of two
actions: 1) send a request (arrow E) of a job to the Scheduling Policy; and 2)
execute sequentially the job’s instructions. The load information is updated after
and before the execution of each job (arrow H).

Load Level unit. The Load Level unit collects the load informations in the com-
puting system. These data are updated after the requests for write operations
from the Scheduling Policy and Executor units. If an irregular distribution of
the load in the machine is detected, this unit sends a message to the Schedul-
ing Policy unit (arrow C). The definition of the load and the notion of irregular
distribution depends on the Scheduling Policy unit.

4 Implemented environments

This general specification has been used to build Athapascan-GS and GTLB,
both DSSs for two distinct parallel programming environments. Athapascan-GS
[5] was implemented on top of Athapascan-0 [1] for the Athapascan-1 macro data-
flow language (INRTA APACHE Project, LMC laboratory) to support static and
dynamic scheduling algorithms. Athapascan-GS can choose in the set of ready
jobs the one that will be triggered in order to optimize a specific index of per-
formance, like memory space, execution time or communication. The Generic
Threads Load Balancer (GTLB) [3] defines a generic scheduler for highly ir-
regular applications of tree search that belongs to the Branch&Bound family;
it was implemented on the top of PM? (ESPACE project, LIFL laboratory) to
support schedulers based on algorithms of mapping with migration. On both im-
plementations, this design provides reusability opportunity in the development
of specific scheduling algorithms.

5 Conclusion

In this paper, we have proposed a specification design to implement dynamic
scheduling systems. This work completes classical classifications which analyze
only two units of scheduling algorithms, dedicated respectively to the control and
the load information. We claim that such a distinction is not precise enough; the
major argument is that 1t does not take into account the relationships with
the application (that produces tasks) and the execution (that consumes tasks).
Two new modules are proposed: one dedicated to the work creation and another
to the execution support, a protocol that specifies their interactions was also
presented.

Two examples of DSSs implementing this general structure were presented:
Athapascan-GS and GTLB, both supporting various scheduling algorithms.

References

1. J. Briat, 1. Ginzburg, M. Pasin and B. Plateau. Athapascan Runtime: Efficiency for
Irregular Problems. In Proc. of the 3th Euro-Par Conference. Passau, Aug. 1997.

2. T.L. Casavant and J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose Dis-
tributed Computing Systems. IEEE Trans. Soft. Eng.. V. 14(2): 141-154, Fev. 1988.

3. Y. Denneulin. Conception et ordonnancement des applications hautement ir-
réguliéres dans un contexte de parallélisme a grain fin. PhD Thesis, Université
de Lille, Jan. 1998.

4. C. Jacqmot. Load Management in Distributed Computing Systems: Towards Adap-
tative Strategies. DII, Université Catholique de Louvain, PhD Thesis, Louvain-la-
Neuve, Jan. 1996.

5. J-L. Roch et all. Athapascan-1. Apache Project, Grenoble, http://www-
apache.imag.fr Oct. 1997.

6. M.H. Willebeek-L.eMair and A.P. Reeves. Strategies for Dynamic Load Balancing
on Highly Parallel Computers. I[EEE Trans. Par. and Dist. Syst. V. 4(9): 979-993,
Sept. 1993.

