Athapascan-1: On-Line Building Data Flow Graph in a Parallel Language

Francois Galilee Jean-Louis Roch
Gerson G. H. Cavalheiro Mathias Doreille

LMC-IMAG-A PACHE Project
Grenoble, France
http://www-apache.imag.fr

Abstract tion on an architecture is then related to the scheduling al-
gorithm used. To cope with programs including branch-
In order to achieve practical efficient execution on a par- ing instructions that are unpredictable at compile time, th
allel architecture, a knowledge of the data dependencies re schedule is computed on-line. Costs then include schedul-
lated to the application appears as the key point for build- ing overheads.
ing an efficient schedule. By restricting accesses in shared Most on-line scheduling algorithms rely on a (greedy)
memory, we show that such a data dependency graph carist schedule [7]. This consists of an on-line mapping of
be computed on-line on a distributed architecture. The-over ready tasks to idle processors. Such a schedule leads to
head introduced is bounded with respect to the parallelism nearly times optimal executions, including scheduling-ove
expressed by the user: each basic computation correspondsieads, on theoretical machine models such as the PRAM.
to a user-defined task, each data-dependency to a user- To achieve efficiency regardless various criteria, some
defined data structure. knowledge about the execution is often required. For in-
We introduce a language named Athapascan-1 that allowsstance, to bound the amount of memory usage, the knowl-
built a graph of dependencies from a strong typing of shared edge of a sequential schedule (i.e. a total ordering of tasks
memory accesses. We detail compilation and implementathat results in a correct sequential execution) may be used.
tion of the language. Besides, the performance of a codeln this way, list scheduling leads to parallel computations
(parallel time, communication and arithmetic works, mem- achieving a linear speed-up while requiring a space related
ory space) are defined from a cost model without the needto the one of the sequential execution for certain classes of
of a machine model. We exhibit efficient scheduling with re- programs: strict computations [4], nested computatiohs [2

spect to these costs on theoretical machine models. or planar graphs [3]. Furthermore, in practice, due to the
Keywords: Multithreading, macro-data flow languages, magnitude of the ratio between local and remote memory
on-line scheduling, parallel complexity. access costs, some significant improvement can be brought

to a schedule some knowledge about the data flow corre-
sponding to the execution [8]. Some programming environ-
1. Introduction ments use such a graph in input [16].
Several languages have been designed that enable the
on-line building of the data flow describing the execution.

ited in the definiti f extensi H tial | Most of them are built on top of a standard sequential lan-
sultedintne detinition otextensions of sequentialiangsag guage commonly used in high performance computing. To
that can be theoretically proven efficient when scheduled

_~ bound the related overhead, parallelism is expressed by the
L e . fuser who defines the grain of data and control. Although in
parallelism independently of a specific architecture. The Jade [14] and BSP [9] instructions are grouped by block,

performance of a program is evaluated directly from a lan- most languages are based on a parallelism expressed via
guage based performance model [1] that specifies the C()Stélsynchronous function calls, like Cilk [11]. Synchroniza-

of the primitive instructio_ns and rules for composing costs tions that will occur during a sequence of instructions is ex
a;fross _prtl)gram exp(;eismn;) The adefquacy betwien thespf‘\ressed at task creation or by specific statements (often a
theoretical costs and the effective performances o eXecu'sync instruction [15, 11]) that allows a task to synchronize

* CAPES-COFECUB Brazilian scholarship with others. o _
TCNRS, INPG, INRIA and UJF Such an explicit synchronization instruction bounds the

Recent work in the field of parallel programming has re-

on-line computation of future data flow dependencies thatupdat e(a) precedepri nt (a) in the lexicographic or-

will occur after the synchronization. So, it forbids the on- der; then,pri nt (a) is delayed untilupdat e(a) re-

line use of static strategies although some are of theatetic sumes. The program will thus priaiton the output.

and practical interest when tasks are of known cost [16]. Athapascan-1 is implemented as a C++ library and is

Besides, to enable efficient scheduling on a distributed ar-then fully compatible with C and C++ languages. A sim-

chitecture, a migration mechanism is then required to even-ple ANSI C extension is handled by a basic preprocessor.

tually move a task that was blocked and becomes ready td~or the sake of simplicity, the syntax presented here is the

another processor. one recognized by this preprocessor; it makes the use of the
By typing the memory accesses a task can perform,C++ library easier by replacing typical C++ constructions

we exhibit a parallel language, named Athapascan-1 (Athby keywords.

stands forAsynchronous Tasks Handlingith no explicit task updaie(shared(w)< int > X)
synchronization instruction that allows the on-line analy { x.wite(5); }

sis of data-dependencies. Athapascan-1 is mostly inspired task print(shared(r)< int > x)

from Jade [14] concerning typing of memory accesses and { printf("%", x.read()); }

Cilk [11] concerning parallelism expression.

In section 2, we detail the syntax and semantic of the
language. The section 3 presents how the macro-data flow
can be computed on-line with a bounded overhead; we
also prove that space and time efficient executions can be
achieved on theoretical machine models without need of
migration. Particularities of the implementation, thaésis
local multithreading, are detailed in section 4; this setti 2.2. Syntax and abstract representation
presents also some experimental measures on a distributed
and on a shared memory architecture.

task test() {
shared< int > a;
fork update(a);
fork print(a);

Figure 1. Lexicographic based semantic.

Tasks and closuresA task definitioris similar to a C pro-
cedure definition, having simply thei d returned type re-

2. The Athapascan-1 language placed by the ask keyword:
_ task user_task(<parans>) {<statenents>}
2.1. Overview A task implements a sequential computation whose

granularity is fixed by the user; it is created in program

In order to deal with data and control flow at a grain de- statements by prefixing a standard C++ procedure call by
fined by the user (macro-data flow), parallelism is expressedthef or k keyword: f or k user _task(<args>);.
through asynchronous remote procedure calls, denoted aghis statement creates an object, caliexbure gives it for
tasks that communicate and are synchronized only via ac- scheduling to the current scheduler and returns for contin-
cess to a shared memory. uation (asynchronous task creation). A closure is a data

The Athapascan-1 semantics rely on shared data accesstructure that contains an instantiation of the user tdwskt (t
and ensure that the value returned by the read statements igefines the method to run) and the list of its effective pa-
the last written value (or a copy of) according to the lexico- rameters. A closure is said to beadyif all the arguments
graphic order defined by the program: statements are lexi-that will be read by the task are readywaiting if some
cographically ordered by . This choice of such a sequen- argument that will be read is not ready. A parameter is said
tial semantic is motivated by its direct readability on the to be not ready for a task iff this task has a predecessor not
program source (an obvious example in Fig. 1). This orderyet completed in lexicographic order which will write the
defines a total ordering on all tasks during the execution. same parameter.

The control of the accesses semantic during execution is The state of a closure is then directly linked to the state
entirely data driven: the precedences between the tagks, thof the effective parameters that will be read by the task. Two
needed communications or the data copies are ensured auypes of parameters are distinguished: first, the clasgial
tomatically by the runtime system. It is based on an entry- rameters by value which are always ready since the closure
release consistency scheme; the objects entries are alwaysossesses a copy of them; and second, the parameters which
done at beginning of tasks and the corresponding release atre references to shared data versions.
the end of tasks. The prototype of a task specifies accesseshared data and their versionsThe shared memory, that
performed on shared objectssstands foread, wfor write. allows the tasks to synchronize, is composed by shared data.
All tasks are a priori independent; conflicts between two In this memory, an object of typeT is declared as follows:
tasks that access a same object are solved using the totalhared< T > x ;
lexicographic ordering. For instance, in Fig. 1, the task The typeT defines the granularity of the data handled in the

algorithm. A succession afersionds associated with each
shared data: each shared data version represents the val
at a certain instant of execution. When declared, a shared
data creates an object, calledolution containing pointers
toward twotransitions these transitions are objects manag-
ing the allocation, state and accesses of data versions. Th
first transition manages the version of the data that will be
read (thecurrentversion of the shared data) and the second
the version that will be generated (let us say written) by the

e el se {

task fibo(int n, shared(wW<int>res) {
if(nk2) res.wite(n);

shared<int> x, vy;
fork fibo(n-1, x);
fork fibo(n-2, y);
fork sum(x, y, res);
e}
}
task sum(shared(r)<int> x, shared(r)<int>y,
shared(w<int> z) {
z.wite(x.read() + y.read());

execution of the task (thfetureversion of the shared data).

}
(a) —recursive version

The shared data version references possess the followin
methods:

T& access(); void wite(const T&);
const T& read(); void cumul (const T&);

Example. Fig. 2 shows the different data structures that

compose the Athapascan-1 system. All these objects are

dynamically allocated in the heap and return to the heap

Ycunulative add(1nt& x, const Tnt&y)
{ x +=y; }
task fibo(int n, shared(cwadd>)<int>res) {
if(nc2) res.cumul(n);
el se {
fork fibo(n-1,
fork fibo(n-2,
}
}

X);
y)

D

when they are completed: after task execution in the case of
closures; when no access can be made on a data in the case

of transitions.

"

ready transition ready closure executable code
] s -
g waiting transition
o T2
% evolution value
5 . vtask

waiting closure
waiting transition 9
T3 parameters

Figure 2. Internal data structures.

Fig. 3 shows two codes for computing th#h Fibonacci
number. The first version is the familiar recursive procedur
that computes theth Fibonacci number. If the threshold is
reached, théi bo task just writes the result into the shared
datar es; else it creates two tasks that will compute concur-
rently the two previous Fibonacci numbers and a &sk
that will add these two numbers and write the result in the
shared data es. This summing task will be delayed un-

(b) — cumulative version

Figure 3. Two versions of code to compute
the nth Fibonacci number.

data version for each read performed on a shared data. How-
ever, parallelism detection is easily possible in this ernt

if all the tasks define the shared data objects that will be
accessed during their execution (for independent tasks de-
tection), and which type of access will be performed on
them (for tasks precedence detection and shared data ver-
sions evolution).

For this reason the Athapascan-1 tasks can not perform
side effects (all manipulated shared data are located in the
parameter list) and shared parameters are typed according
to the future manipulation.

Access right: evolution of shared data versionsin the
declaration of formal parameters of tasks, the refererxes t
shared data version are typed by thegcess righti.e. the
kind of manipulation the task (and all its sub-tasks, due to
lexicographic order semantic) is allowed to perform on the
shared data. These rights arew for read&write modifi-
cations,w for writing, cw<f > for accumulation and for
read only.

Remark concerning accumulation. The accumulation
law is an user defined law that is supposed to be associative
and commutative. Note that this law is part of the reference

til the two Fibonacci tasks have been completed, becauseype, so a mix of different laws is not allowed, but obey to

the access made on the shared data are incompatible (writ

fexicographic order semantic (Fig. 3(b)). The initial valu

and read) and the two Fibonacci tasks have been createdk the previous value of the shared data according to the lex-

before. The second version is a cumulative version of the
"sum tree” developed by the first version.

2.3. Lexicographic ordering and parallelism

In order to respect sequential consistency (lexicographic
order semantic), Athapascan-1 has to identify the related

icographic access order.

The postponed access righfTo improve parallelism, there

is a refinement to access right, that denotes if an access will
be either performed or not on the shared data. An access
is said to be “postponed” (access right suffixedd)yf the

task will not perform any access on the shared data but will
create tasks that may benefit of this right.

3. Data flow building and cost model It follows that the tasks which can directly write a shared
data are not allowed to create tasks that would read on this

Adding restrictions on accesses that can be performed bfhared data: else a copy of the last written value shou!d be
a task, we establish that a representation of data dependerptored for the created task, or the creator stopped until the
cies can be computed on-line on a distributed architecturecreated resumes all reads on the last shared data version.
with a bounded overhead both in time and memory usage.S0: &S & consequence, the tyiear ed(r p_w) <T> has
This enables the definition of a cost model related to the "C S€nse and, for instance, a task havisgar ed(r _w)
language. We exhibit scheduling algorithms with provable ¢&" not create a task requiringshiar ed(r) as formal
performances with respect to this cost model on theoreticalParameter.

parallel machines. o
Definition 1 A correct Athapascan-1 program verifies both

3.1. Shared data version access graph the syntax and conditior to Cs.
) ~ Note that the strong typing of accesses in shared memory

In order to be able to determine the state of the transitionsgaples the verification of the correctness of a program at
and closures, Athapascan-1 dynamically maintains a graphbompile time. The allowed conversions of shared data ver-

of the shared data versions access. This graph is composeg, types at task creation are summarized in Fig. 5.
of the closures and transitions for the nodes and the pasinter

of evolutions for the edges. At each instant it gives a plartia
description on the data flow dependencies that will occur
until the end of program.

The evolution of this graph happens at each task or
shared data creation (addition of edges and/or nodes)lor tas
termination (removing of edges and/or nodes, node’s state
evolution), as shown in Fig. 4. Schedulers can take bene-
fit of this graph which is maintained, for semantic reasons,
by the system. Without over-cost they have some relevant
information on the application to schedule.

3.2. Bounding cost of Athapascan-1 statements

Due to the access semantic (based on the Iexicographi (e
order), the accessed values can be easily determined on
the source code. It is also possible to evaluate the time
and memory cost of any Athapascan-1 program. In order
to bound the cost of the on-line building of the evolution
graph, the following restrictions are added:

¢ Cy: All graph modifications and task creations are local
(need no communication). This is discussed in the section
4.1.

¢ Cy: All shared data versions that can be read (read right
and direct mode) by a task are always ready during the task
execution.

It follows that the tasks which can directly read a shared
data are not allowed to create tasks that would write on this
shared data: else, the creator task would have to wait until
the resumption of the newly created task before any read of Figure 4. Dynamic evolution of the shared
the new shared data version (else the access semantic would data versions access graph for the recursive
not have been respected). So, as a consequence, the type version of fibo(2): (a) initial state, (b) af-
shar ed(r_wp) <T> has no sense, and for example atask ter the creation of the two shared x and y, (c)
having ashar ed(r _w) can not create a task requiringa afterthe creation ofthetwo fi bo tasks, (d) af-
shar ed(w) as formal parameter. ter the creation of the sumtask and just before

e C3: A task creationf(or k) generates no data copy. the end of the fibo(2) (e) just after (f) after
the execution and completion of fi bo(0).

0
waiting | Waiting

(€ ' 0

task user_task(<parameters>) {
formal parameter reqwr_ed type for the stnms_1;
effective parameter fork Task 1(<args>):
shared(r[p])<T> | shared(r[p]) <T> stmts 2. 9 ’
shared(rp_wp) <T> < - oy
shared(w[p])<T> | shared(W p])y <T> fs?:nkst S_Sk_z(args>);
shared(rp_wp) <T>) -
shared(cw p] <f>) <T> | shared(cw p] <f >) <T> (a) Depth-first sequential order
shared(rp_wp) <T>
shared(r[p]wW p]) <T> | shared(rp_wp)<T> task user_task(<parameters>) {
stnts_1;
Figure 5. Allowed conversion for passing ref- stnts_2;
erence on a shared data version as parameter stmts_3;
of a task. fork task_1(<args>);
fork task_2(<args>);
Lemmal In a correct program, any Athapascan-1 state-

ment (i.e. fork, read, wite, cunul, access, (b) Reference sequential order

shar ed) has a bounded cost both in time and memory Figure 6. Two equivalent programs.
space. Each graph modification is made in constant time
and space.

This results from shared types and conditiGngndC,. O 3.3. Cost measures

Proposition 1 enables non-preemptive schedules: execu-
tion of a closure is then delayed until its parent (the task th
has created it) resumes. From this reference order, costs
. _ (time, space, depth, communications) are defined directly
Pﬁ!s results from ir:ared typesha_lgpl condiifhn il sch 3 | fon the code itself by related recurrence equations (RrX,

Is property enables us to exhibit a sequential schedule ok 1) Here, following notations in [1, 4], those costs are

tasks, denoted as theference orderthat respects the se- jefinaq on the trace of the execution. This trace can be rep-
quential semantics while being different from the cladsica oo qonteq by a bipartite DAG' (see Fig. 4, with node sets
depth-first sequential one. N corresponding respectively to tasks (oval nodes in Fig. 4
Let s denotes a sequence of statements containing NOnq shared data versions (box nodes in Fig. 4). Each task
fork statement and” denotes & or k statement. Then, e js weighted by its computation cost, related to the ex-
the trace corresponding to a sequential depth first execu-cytion of the body and excluding forked tasks; each data
tion of fork statements can be represented by a word hoqe is weighted by the size of the data for a direct access

f = siFisaly . sn_1Fpo1s, (any s; may be empty). white box) and a unit constant for a reference or postponed
The entire independence between the created task and thg.egg (black box). Note that those costs, related to the

crea_ltor task (lemma 2) implies that this trace is sematyical trace, may be unknown until execution completes; they are
equivalenttothe tracg’ = sisy ... sn—152F1F2 ... Fy1. usually bounded with respect to the size of the inpiit.
This order of execution corresponds to an inner most OUterand51 denote the sequential time and spake, the paral-
most order of evaluation: it is qalled theference sequen- |g| time, ¢, andC., the communication volume and delay.
tial order of statements evaluation and denotedibin the Sequential time7} and spaceS; . These are defined from
following sections. Fig. 6 illustrates this execution arde a serial execution of the program following ther reference

orderR. Since all fork statements are pushed in memory
Proposition 1 The Athapascan-1 reference order of execu- until the completion of a task, it can be noted that the space
tion respects the semantic and requires no implicit copy. g, can be larger than the one required by a depth-first execu-

tion. However, if the number of fork statements is bounded
This results from the conditio®s andCs. Note thatthe by by a constant$; is increased only by a constant factor. For
value passing mode generates a copy which is considered agistance, the spac§, related to program in Fig. 3(a) is
explicit. O O(n).

All assumptions concerning copies and synchronizations Parallel time 7.,,. Arithmetic depth7,, (or parallel time
ensure that the Athapascan-1 system is not responsible ofs the depth of~ taking into account weights of task nodes.
over-memory requirement: all decisions are to be taken by7,, is then a lower bound of the minimal time required by
the scheduling policies or the user. This enables us to eval-any non-preemptive schedule on an unbounded number of
uate the cost of a program directly from the code. processors ignoring communications times (PRAM model

Lemma 2 There is no any precedence relation between a
task and the task that creates it.

[6D). 3.5. Scheduling on a distributed architecture
Communication volume and delay.Communication vol-

umeC and delayC',, are evaluated frontr similarly to7; We consider now the scheduling on a distributed archi-
andT,, but taking into account only weights of shared data tecture DCM withp identical processors. The shared mem-
version nodes.C; is the sum of the weights over all data ory is emulated with the help of universal hashing func-
nodes; Assuming that the shared memory is emulated in artions [12]. The delay occurring for any access is assumed
auxiliary file,Cy is then an upper bound on the total number bounded byh(p). In order to obtain efficient emulations
of accesses performed in this file during a serial execution.(h(p) constant or very small tg), a slackness strategy
C« is the length of the critical communication pathGn [13, 15] is used. It consists in emulating; ép)-PRAM on
Scheduling overheads. Since the overhead involved by the distributed architecture(p) being larger enough com-
the scheduling of the graph is also involved, we denote by pared top. From here, the distributed machine is assumed
the size ofG. Scheduling the program will require at least to emulate g(p)-PRAM with delayh (p).

o scheduling operations that may be performed in parallel.

In the following sections, we study the scheduling of an Proposition 3 Including the cost of the schedule compu-
Athapascan-1 program on various machine models; timetation, any Athapascan-1 program can be executed pn a
and space required by the execution on the machine (in-pcm intimeﬂﬂle+ﬂ+h(p) ﬂpﬁlcoo + % +0(0)|.
cluding the cost of the scheduling algorithm) are related to ;g schedulep is non-}(;leterministic and preemptive but re-
_above abstract costs def_lned on the program itself that argyuires no migration of running closures.
independent of the machine.

The proof is deduced from proposition 2 applied on a
3.4. Scheduling on a PRAM PRAM with ¢ processors. The whole number of remote
access with delay: is bounded byC;. This leads to a

We consider a PRAM [6, 10] with a bounded number schedule on thg virtual processors with length bounded

p of processors; this allows us to eliminate communication by 7., + % +h (Too 4 %) To obtain the emulation

overheads. In order to be C(_)nsu;tent W.'th Athapascan-l_, Weon thep processors;/p virtual processors are emulated on
consider a CRCW'PRAM_W'th_ gumulatwe concurrent wrr_[e each processor by synchronous preemptive threads. Due to
ones. _For the sake of simplicity, we assume that, duringy, s emyjation of the shared memory, the algorithm is non-
execution, any task performs a bounded number (say 2) Ofjeterministic. On each processor, threads are dedicated to
fork statements. the execution of closures and are emulated preemptively.
However, once a closure starts its execution on a processor,
itis not migrated to another one. o

As a corollary, Athapascan-1 programs verifyifig =
™ , o(T1) ando = o(Tw,) can be scheduled asymptotically op-
(0) Too + sr=i/1egzy + © (lOg(U) + 5)' timally on a distributed architecture with = o (%) in
Both schedules are deterministic and non-preemptive. °°

Proposition 2 Including scheduling overheads, any
Athapascan-1 program can be executed onfRRAM in
time (8)Two + I + O(o) or

time (1 +¢) %. This result is similar to those in [4] for Cilk

Both schedules are based on a greedy list strategy [7]: wherprograms.

a processor becomes idle, it gets a ready closure if any and A negative result however is that computations that in-

performs its execution. Bounds for (a) and (b) differs from volves a large number of communications may not been ef-

implementation of the strategy. To obtain (a), a global lock ficiently scheduled. For instance, any program with linear

is implemented in the PRAM: each modification in the evo- serial costl; = O(n) wheren is the size of the input re-

lution graph is performed in mutual exclusion. The number quires at leastV. = Q(n) accesses. The schedule time is

of such modifications is bounded I6y(c); thus both idle thenO(h(p)T1/p): efficiency depends heavily on

time corresponding to busy wait of the lock and manage-

ment of evolutions of the graph are boundedhfy). 3.6. Scheduling with space constraint

A distributed management of the list leads to bound (b): all

modifications on the evolution of the graph are performed Previous schedules do not guarantee any bound concern-

by a specific subset £ processorsin timg(c). Other ing the space required. However, since they are based on a

p(1—1/logp) processors are dedicated to execution of clo- list of ready closures, sorting this list according to the re

sures. | erence order allows us to bound the memory space required
Bounds on (a) and (b) differs only from the scheduling with respect taS; [3]. Due to the lexicographic semantic,

algorithm; however, without knowledge of weights(it this list can be maintained sorted with no overhead accord-

is not possible to decide which one achieves the best bounding to the reference order: all insertions and deletions are

performed in constant time. If all tasks are assumed to al-4.2. Scheduling implementation
locateO(1) memory space for the execution of their own
body, then the space required for the resulting schedule on The global scheduling algorithm is used to determine a
the distributed machine is bounded$y+ O(¢(p)7s) [8]. site and a date to trigger the execution of a closure. The al-
gorithm implemented by this level of scheduling distrilsute
the work generated by an application attempting to optimize
4. Distributed implementation a global index of performance (memory, execution time or
other).
After creation { or k) and until it is completed, the state
In this section we describe the distributed implementa- of a closure depends on the graph of evolutions. Added
tion of Athapascan-1. We focus on the transition distridute to the statesvaiting and ready (paragraph 2.2), a closure
management and on the scheduling implementation. Parimay also get into the stateinning when its instructions
ticularly, we exhibits performance results obtained bysa li are executing sequentially aegecutedvhen the closure is
scheduling which theoretical efficiency has been studied incompleted. Each change of state can potentially trigger a
the previous section. scheduling action. Then, for each operation in the graph, a
In order to bound the delay occurring for remote ac- signal is sent to the_ relate_zd sched_uler allowing i_t to explc_)r
cesses, each compute node of a parallel machine emulated€ Néw graph configuration. So, it can get the information
a certain number of virtual processotsréads that share a that_ it requires about the_ current global state of execution
single address space. These threads are implemented bnyr instance, c_Iosure attributes, parameters, state @epre
runtime kernel, called Athapascan-0 [5]: it defines a paral- d€nce constraints.
lel machine composed of a set of nodes executing a runtime
environment providing communication and synchronization 4.3. Scheduling layers: an experimentation
facilities and a local scheduling of threads enabling teehid
communications latencies for remote memory access. Atha- We present in Fig. 8 some performance results (time
pascan-1 is implemented on this runtime environment, us-in seconds) obtained from the execution of the Fibonacci
ing a bounded number of threads on the architecture. It pro-program (Fig. 3(a)) for an input 40, using valugs25 as
vides the global scheduling of closures on the threads of thethreshold to halting the task generation; then, roughly hal
whole architecture. of the generated closures require less than a micro-second
and the other ones (that sequentially compute fibo(25 or
24)) few milliseconds.#N = 32000 tasks were gener-
4.1. Shared data versions access graph management ated, producing aboutE = 100000 edges. The exper-
iments were performed on five architectures: two mono-
processors, an IBM RS-6000 (AIX 4.2) and a Pentium (So-
At compile time, besides verification of the correctness |aris 2.5.1); two distributed architectures, four nodesiof
of the Athapascan-1 program, a code is generated for eachBM-SP architecture (IBM RS-6000/370, AlX 4.2, IBM-

fork statement, in order to create the CorreSpO_nding CIO'MP|) and afour nodes network of workstation - NOW (Pen-
sure. The management of the data-dependencies between

closures (shared data versions access graph) is disttibute
closures and edges are unique in the system, but transitions
may be replicated (Fig. 7). So, a closure always locally ac-
cesses its connected transitions (via the pointers of gs po
sessed evolutions). Then all the accesses to the shared data
versions or the tasks creations are local events and create
no communication. The time required for a task creation is
therefore proportional to the number of its parameters.

ready

In order to detect termination of accesses to a transition
in a distributed asynchronous environment, a termination a
gorithm is implemented. Each transition is associated with
a master node that computes a balance between increasing
counters related to each of its replicate. These counters
are managed locally on each site that possesses a replicate. Figure 7. Replicated transitions on a dis-
When there is no more local access on the site, values of tributed graph. When fi bo(0) is completes,
local counters are sent to the master node. amessage is sentfromnode 1 to 0towarnthe
transition T2 that no more writers existon 1.

\Waiting

node 0 : node 1

1 node architecture 4 nodes parallel architectur 1 node SMP architecturé
IBM-SP NOW IBM-SP NOW
4 proc/node
1 proc/node| 1 proc/node|| 1 proc/node| 1 proc/node P
[Sequential [43.30 39.90 22.60
| Ath-sequential] 43.84 39.94 23.29
1 Thread 106.45 101.79 27.30 27.76 24.45
2 Threads 80.63 71.25 20.99 21.51 16.29
4 Threads 67.16 59.93 18.34 18.40 13.94
8 Threads 61.66 54.16 18.51 21.05 12.98

Figure 8. Influence of the local scheduling of threads on glob al greedy on-line scheduling.

tium, Solaris 2.5.1, LAM-MPI, Myrinet); and also under a References
SMP (4 Pentium Prp, Solaris 2.5.1). I_n the table, the lines [1] G. E. Blelloch. Programming parallel algorithm@ommu-
correspond respectively to the execution of a pure C++ se- nications of the ACV39(3):85-97, 1996.

quential algorithm, to an Athapascan-1 program compiled |5 . E. Blelloch, P. B. Gibbons and Y. Matias. Provably effi-
to generate a sequential code and to the parallel execution =~ cient scheduling for languages with fine-grained parateli

usingn execution-threads in each node. In Proc. of the 7th Symp. on Parallel Algorithms and Archi-
Comparing the performances of the pure sequential al- tecturespp 1-12, Santa-Barbara, 1995. ACM Press.

gorithm with the sequential version for the Athapascan-1 [3] G. E. Blelloch, P. B. Gibbons, Y. Matias and G. J. Narkilar

code, we verify the overhead introduced by the Athapas- Space efficient scheduling of parallelism with synchroniza

tion variables. InProc. of the 9th Symp. on Parallel Algo-

n-1 programming style is very small. However this is not
ca progra g style IS Very sma oweve S1Sno rithms and ArchitecturesACM Press, 1997.

true in the parallel version where we can observe the over- [4] R.D. Blumofe and C. E. Leiserson. Space-efficient schedu

hef”‘d prOduced. by th‘? scheduling and graph management. ing of multithreaded computationSIAM Journal on Com-
This overhead is partially overlapped when the number of puting 27(1):202-229, 1998.

threads on each node is increased. Besides, on the threes) 3 priat, I. Ginzburg, M. Pasin and B. Plateau. Athapasca

parallel architectures, a speed-up of about 2 can be oldtaine runtime: efficiency for irregular problems. Rroc. of Eu-
with 4 processors. Speed-ups close to 4 were obtained with roPar'97. Passau. Aug. 1997.
thresholds larger than 25. [6] S. Fortune and J. Wyllie. Parallelism in random access ma

chines. InProc. of the 10th ACM Symposium on Theory of
Computing San Diego, CA, 1978. ACM Press.
5. Conclusion [7] R. Graham. Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math.17(2):416-426, 1969.
[8] T. Gautier, J.-L. Roch and G. Villard. Regular versusgs
We present the Athapascan-1 language that enables the ular problems and algorithms. Proc. of IRREGULAR’95,

on-line building of data flow dependencies with bounded Lyon, France Springer-Verlag LNCS 980, Sept. 1995.
overhead. Its semantic is based on a lexicographic order [9] M. Goudreau, J. Hill, K. Lang and B. McColl. A proposal
between instructions; it enables an implicit sequentia-no for the BSP worldwide standard librarpréliminary ver-

preemptive schedule. Both grain of data and computation ~ Sion- TR, http:/iwww.bsp-worldwide.org, Oxford Univer-
are explicit butindependent of the target architecturealPa " j'%’,l_?gg' introduction & llel algorithmsAddi
lelism is expressed by asynchronous creation of tasks. Any[10] 3. Jaja.An introduction to parallel algorithmsAddison-

. Wesley, Reading, Massachussets, 1992.
task can be scheduled such that, once started, it can cons

. [11] C. Joerg.The Cilk system for parallel multithreaded com-
tinue its execution with no preemption. This property en- puting PhD thesis, Massachussets Inst. of Tech., Jan. 1996.

ables provable scheduling. [12] R. M. Karp, M. Luby and F. M. auf der Heide. Efficient
The language is related to a cost model that defines par- PRAM simulation on a distributed memory machifdgo-
allel depth, work, sequential space, communication volume rithmica, 16:517-542, 1996.
and delay. Efficient schedules are developed that achieve[13] A.G.Ranade.How to emulate shared memorftoc. 28th
both optimal time and bounded space on a distributed archi- ~ Annual Symp. on Found. of Computer Scigfe&E, 1987.
tecture for a large class of programs. However, for lots of [14] g/l.denard. ;'—hb‘? d?s'gin’_tl'mp'er':le?tat'on and e"f"”a“on of
H H H H H . ade: a portaple, Implici arallel programming languex
practhal _appllcatlon_s, the use of this scheduling alganit PHD theZis, Stanforg Uni?l/é)rsity, Sgpt.gl994. glanguag
on a distributed architecture leads to poor performanees, f

. [15] L. G. Valiant. A bridging model for parallel computatio
from the ones obtained by simple static strategies. Since Comm. of the ACMB3(8):103-111, 1990.

the scheduling can be changed by code annotation, an issu?w] T. Yang and A. Gerasoulis. Pyrros: static task scheguli
is then to take benefit of the on-line partial knowledge of

the annotated data flow graph in order to implement —in an
on-line context — such strategies.

and code generation for message passing multi processors.
In Proc. VI ACM Int. Conf. on Supercomputidyly 1992.

