Athapascan-1: A multithreaded execution

model based on data flow

Gerson G. H. Cavalheiro, Mathias Doreille, Francois Galilée,
Thierry Gautier, Jean-Louis Roch
LMC-IMAG-APACHE Project

100 rue des Mathématiques
38041 Grenoble CEDEX 9, France

Grenoble, France

http://www-apache.imag.fr

{Gerson.Cavalheiro, Mathias.Doreille, Francois.Galilée, Thierry.Gautier, Jean-Louis.Roch} @imag.fr

CAPES-COFECUB Brazilian scholship
CNRS, INPG, INRIA and UJF

December 23, 1998 DRAFT

Abstract

We present Athapascan-1, a language implemented as a C++ library that enables the on-line compu-
tation of the macro-data flow derived from the data-dependencies of a parallel application. The parallelism
is explicit but synchronization implicit. The semantics of Athapascan-1 i1s data driven; it is independent
from the scheduling algorithm used to execute the application. The overhead introduced is bounded with
respect to the parallelism expressed by the user: each basic computation corresponds to a user-defined
task, each data-dependency to a user-defined data structure. Then, the performance of a code (parallel
time, communication and arithmetic works, memory space) can be evaluated directly from a cost model
without need of a machine model.

Keywords: Multithreading, macro-data flow languages, on-line scheduling, parallel complexity.

I. INTRODUCTION

Recent work in the field of parallel programming has resulted in the definition of ex-
tensions of sequential languages that can be efficiently scheduled on theoretical abstract
machine models. Those parallel programming interfaces are usually built on top of a stan-
dard sequential language commonly used in high performance computing; parallelism is
described at an arbitrary grain (data and control) independently of a specific architecture.

Since the parallelism of an execution is directly related to the input of the program, it is
generally unknown at compile time. Then the schedule is computed at run-time. On-line
schedules are mainly based on a mapping of ready tasks to idle processors (greedy sched-
ules). If neither memory space nor communication overheads are taken into account, such
a schedule leads to provable performances [10]. However, in practice, due to magnitude of
the ratio between local and remote memory access costs on a distributed architecture [11]
and memory space exhaustion [6], some significant improvements can be brought to such
a schedule by some knowledge about the data flow graph corresponding to the execution.
For instance, DSC [20] and Metis [14] enable to compute efficient schedules on distributed
architectures for various numerical applications from the description of the macro-data
flow related to the execution.

Being based on asynchronous primitives, most parallel programming interfaces with
provable performances give raise to such a knowledge.

In BSP [12] (and basically in MPI), parallelism is explicit. Instructions are grouped by

blocks; each block is a sequence of instructions, either local computation or communication

and access to remote data. No explicit synchronization occurs during execution of a block;
each block is delimited by a specific statement that defines a virtual global clock. Then
the parallel computation is structured in macro-steps, each step consisting in the parallel
execution of the blocks that have the same global clock value. Fach sync statement is
implicitly annotated by the remote access that will be performed during the execution of
the corresponding block. Then the data flow between two global steps could be determined
at run-time. On a theoretical point of view, this enables the implementation of an on-line
data routing algorithm that achieves provable performance [19].

Similarly, the parallelism in the Jade language [17] is expressed at the level of blocks,
each block corresponding to a computational task. However, synchronization between
tasks is implicit and defined by the access that will be performed in a virtual shared
memory. FEach block is annotated by the type of access (read or write) that will be
performed on any shared object involved in any of its execution (withonly construct).
The Jade implementation uses this data access information to automatically extract the
concurrency and map the application onto the machine. Restrictions on access that can
be performed during a block ensure that a sequential execution of the program is valid.
The resulting parallel execution preserves the semantics of the related serial program. So,
the use of data access specification enables to determine at run-time the data flow between
tasks in order to guide the parallelization.

Furthermore, the validity of a non-preemptive sequential schedule enables to bound the
memory space required for a parallel execution [6]. In the Cilk language [5], parallelism
is described by spawning a procedure call. Synchronization is explicit: the execution
of instructions following a sync statement is delayed until all previously spawned calls —
according to the sequential depth first order — are completed. Then a sequential depth first
execution of the program is a valid schedule. A work-stealing algorithm, based on a greedy
on-line schedule, takes benefit of this particularity. On the one hand, it bounds the memory
space needed for a parallel execution with respect to the one required by a sequential
execution. On the other hand, the overhead involved for the execution of a spawned call
on an idle processor is amortized by replacing spawn statements on a critical path by local

procedure calls without lost of theoretical performances. Cilk enables to unfold at run-

December 23, 1998 DRAFT

time the task precedences; however, Cilk is control-based and data dependencies cannot
be predicted.

An explicit synchronization instruction bounds the on-line computation of future data
flow dependencies that occur after the synchronization. This limits the on-line use of
static strategies although some are of theoretical and practical interest when tasks are of
known costs [20]. Besides, to enable efficient scheduling on a distributed architecture, a
migration mechanism is then required to eventually move a task that was blocked and
becomes ready to another processor.

By typing memory access a task can perform, we exhibit a parallel imperative language,
named Athapascan-1 (Ath stands for Asynchronous Tasks Handling) with no explicit syn-
chronization instruction. It allows the on-line analysis of data-dependencies. Athapascan-1
is mostly inspired from Jade [17] concerning typing of memory accesses and Cilk [5] con-
cerning the expression of parallelism. The semantics is data driven; restrictions on access
ensure that a sequential depth first execution of a program is valid. The run-time im-
plements a default order of execution with a bounded overhead both in time and space.
However, the scheduling policy that computes the data and location to execute tasks is
not part of Athapascan-1 runtime. It is a plug-in and it is completely independent both
from the application and Athapascan-1. So, tuning the schedule with an application for a
specific architecture could eventually be performed by code annotation.

The reminder of this article is structured as follows. In section 2, we introduce the syntax
and semantics of the language. The section 3 presents how the macro-data flow can be
computed on-line with a bounded overhead; we also prove that space and time efficient
executions can be achieved on theoretical machine models without need of migration. This
extends the result in BSP, Cilk and Jade, that require migration of tasks. Particularities
of the implementation, that uses low level local multithreading and high level scheduling
policies are detailed in section 4; the overhead related to the management of the data flow is
evaluated by experimental measures on a distributed and on a shared memory architecture.
The last section presents experiences with different applications programmed with Atha-

pascan-1 and their performances on various parallel and distributed architectures.

December 23, 1998 DRAFT

II. THE ATHAPASCAN-1 LANGUAGE
A. Overview

In order to deal with data and control flow at a grain defined by the application (macro-
data flow), parallelism is expressed through asynchronous remote procedure calls, called
tasks, that communicate and are only synchronized via access to a shared memory.

The Athapascan-1 semantics rely on shared data access and ensures that the value
returned by a read statement is the last written value (or a copy of) according to the lex-
icographic order defined by the program: statements are lexicographically ordered by ;.
This choice of such a sequential semantics is motivated by its direct readability on the
program source: Fig. 1 shows an obvious example. This also favors a direct reuse of
existing sequential code.

The respect of the access semantics during execution is entirely data driven: the prece-
dences between the tasks, the needed communications or the data copies are ensured
automatically by the runtime system. It is based on an entry-release consistency scheme;
the objects entries are always done at beginning of tasks and the corresponding release at
the end of tasks. The prototype of a task specifies access performed on shared objects:
R stands for read (shared R), W for write (shared W). All tasks are a priori independent;
conflicts between two tasks that access a same object are solved using the total lexico-
graphic ordering. For instance in Fig. 1, the task update(a) precedes the task print(a)
in the lexicographic order. The execution date of print(a) is delayed until update(a)
resumes. The program will thus print the value 5.

Athapascan-1 is implemented as a C+4++ library; in order to avoid typical C++ con-
structions, the codes of the examples in this paper use a simple syntaxic extension of

C++ handled by a preprocessor.

B. Syntax and abstract representation
B.1 Tasks and closures

A task corresponds to the execution of a procedure which declaration is similar to a C

procedure declaration having simply the void returned type replaced by the ath keyword:
ath user_task([parameters]) { [statements] }

December 23, 1998 DRAFT

ath update(shared W< int > x) {
x.write(5);

}

ath print(shared R< int > x) {
printf("%d", x.read());

}

ath sample() {
shared< int > a;
fork< update >() (a);
fork< print >() (a);

Fig. 1. Example of basic Athapascan-1 constructs.

More precisely, a task corresponds to the execution of a C4++ function object [18], i.e.
an object that gets only one method overloaded by the typed operator ’()” and that returns
no value.!

Prefixing any call to such a procedure by the keyword fork creates a task:
fork< user_task >() ([parameters]);

This statement creates an object, called a closure, that is given to the scheduler and returns
for continuation (asynchronous task creation). A closure is a data structure that contains
an instantiation of the user procedure (that defines the method to run) and the list of its
effective parameters. A closure is ready if all this effective parameters with read access
are ready or waiting if some argument that will be read is not ready. A parameter is not
ready for a task if and only if this task has a predecessor (with respect to the lexicographic
order) not yet completed which will write the same parameter.

The state of a closure is then directly linked to the state of the effective parameters that
will be read by the task. Two types of parameters are distinguished: first, the classical
parameters by value which are always ready since the closure stores a copy of them; and
second, the parameters which are references to a version of a shared data.

'For instance, in Fig. 1, the declaration of procedure ath print(...) { .. } is written in C4++: “struct

print { void operator() (sharedR<int> x) { body} }”.

December 23, 1998 DRAFT

B.2 Shared data and their versions

The shared memory, that allows tasks to synchronize, is composed by shared data. In

this memory, an object x of type T is declared as follows:
shared< T > x;

The type T defines the granularity of the data handled by the algorithm. A sequence
of versions 1s associated to each shared data: each shared data version in the sequence
represents the value of the shared data at a certain instant of execution. A declaration
of a shared data creates an object, called evolution, that contains pointers towards two
transitions which manage the allocation, the state and the access to data versions. The
first transition manages the version of the data that will be read (the current version of
the shared data) and the second the version that will be generated (let us say written) by
the execution of the task (the future version of the shared data).

The shared data version references possess the following methods:

T& access();
const T& read();
void write(const T&);

void cumul(const T&);

B.3 Example

Fig. 2 shows the different data structures that compose the Athapascan-1 system. All
these objects are dynamically allocated in the heap and returned to it when they are
completed: after task execution in the case of closures; when no access can be made any
more on a data in the case of transitions.

Fig. 3 shows two codes for computing the kth Fibonacci number. The first version is
the schooler recursive procedure. If the threshold is reached, the fibo task writes the
result into the shared data res. Else the execution of “fibo(n)” creates two tasks for the
computation of “fibo(n-1)” and “fibo(n-2)” and a third task sum for the addition into the
result res.

This summing task is delayed until the two Fibonacci tasks “fibo(n-1)” and “fibo(n-2)”

have been completed, due to read the access. The second version is a cumulative version

December 23, 1998 DRAFT

o |

ready transition
ready closure executable code

waiting transition
2

shared data a
2]
—

evolution value

)

L . waiting closure
waiting transition
T3 parameters

Fig. 2. Internal data structures.

of the "sum tree”.

ath sum(shared_R<int> x, shared_R<int> vy,
shared_W<int> z) { struct add {
z.urite(x.read() + y.read()); void operator() (int& x, const int y) {
) X =y
}
ath fibo(int n, shared_W<int> res) { };
if(n<2)
res.write(n); ath fibo(int n, shared_CW<add>)<int> res) {
else { if (n<2)
shared<int> x, y; res.cumul(n);
fork< fibo > () (n-1, x); else {
fork< fibo > () (n-2, y); fork< fibo > () (n-1, x);
fork< sum > () (x, y, res); fork< fibo > () (n-2, y);
} }
} }
(a) (b)

Fig. 3. Two versions of code to compute the nth Fibonacci number: (a) recursive (b) cumulative.

C. Lexicographic ordering and parallelism

In order to respect sequential consistency (lexicographic order semantic), Athapascan-1
has to identify for each read performed on a shared data the related data version. However,
parallelism detection is easily possible in that context if all tasks precise the shared data
objects accessed for their execution (for independent tasks detection), and which type of
access will be performed on them (for tasks precedence detection and shared data versions

evolution).

December 23, 1998 DRAFT

For this reason the Athapascan-1 tasks can not perform side effects (all manipulated

shared are located in the parameter list).

C.1 Access right: evolution of shared data versions

In the declaration of the formal parameters of tasks, the references to shared data version
are typed by their access right, i.e. what kind of access is allowed to perform on the shared
data. These rights are R_W for read&write modifications, W for writing, R for read only and

CW<E> for accumulation only.

C.2 Concurrent access and accumulation.

The read only — R — and accumulation only — CW<f> — access rights enable tasks to
perform a concurrent accesses on a same shared data version. The accumulation law
is user defined: the function f is supposed to be associative and commutative. Mix of
different law is not allowed on a same version; a new version is then created. The initial

value is the previous value of the shared data according to the lexicographic access order.

C.3 Postponed access right

To improve parallelism, there is a refinement to access right, that denotes if an access
will be either performed or not on the shared data. An access is “postponed” (access right
suffixed by p) if the task will not perform any access on the shared data but creates tasks
that will.

III. DATA FLOW BUILDING AND COST MODEL

Adding restrictions on accesses that can be performed by a task in shared memory,
we establish that a representation of data dependencies can be computed on-line on a
distributed architecture with a bounded overhead both in time and memory usage. This
enables the definition of a cost model related to the language. We exhibit scheduling
algorithms with provable performances with respect to this cost model on theoretical

parallel machines.

December 23, 1998 DRAFT

10

A. Shared data version access graph

In order to be able to determine the state of the transitions and closures, Athapascan-1
dynamically maintains a graph G of the shared data versions access. G is a bi-partite
graph with vertices corresponding respectively to the closures and to the transitions; an
edge denotes access to a shared data version. (G gives at each instant a partial description
of the data flow dependencies that will occur till the end of program.

The evolution of this graph takes place at each task creation or shared data declaration
(addition of edges and/or nodes) or task termination (removing of edges and/or nodes,
node’s state evolution), as shown in Fig. 4.

This graph is maintained by the system: the scheduling policies could take benefit of
it. Without adding overhead it provides some relevant information on the application to

schedule.

Fig. 4. Dynamic evolution of the shared data versions access graph for the recursive version of fibo(2):
(a) initial state, (b) after the creation of the two shared x and y, (c) after the creation of the two fibo
tasks, (d) after the creation of the sum task and just before the end of the fibo(2) (e) just after (f)

after the execution and completion of £ibo(0).

December 23, 1998 DRAFT

11

B. Bounding cost of Athapascan-1 statements

Due to the access right and the lexicographic order, the semantic of read statements is
easily determined in the source code. It is also possible to evaluate the time and memory
cost of any Athapascan-1 program. In order to bound the cost of the on-line building of
the evolution graph, the following restrictions are added:

e C;: All graph updates and task creations are local (need no communication). This is
discussed in section IV-C.

e Cy: All shared data versions that can be read by a task are always ready at the
beginning of the task execution and until its completion.

It means that the tasks which can directly read a shared data are not allowed to create
tasks that would write on this shared data: else, the creator task would have to wait
until the resuming of the new created task before any read of the new shared data version
(else the access semantic would not have been respected). So, as a consequence, the type
shared_R_WP<T> has no sense, and for example a task having a shared_R_W can not create
a task requiring a shared_W as formal parameter.

e C3: A task creation (fork) generates no data copy.

The tasks which can directly write a shared data are not allowed to create tasks that
would read this shared data: else a copy of the last written value should be stored for the
created task, or the creator would stop until the created one completes all reads on the
last shared data version. So, as a consequence, the type shared _RP_W<T> has no sense
and, for instance, a task having a shared_R_W can not create a task requiring a shared_R
as formal parameter.

Definition 1: A correct Athapascan-1 program verifies both the syntax and conditions

C, to Cs.
Conditions 4, 'y and (3 are ensured by restrictions, at task creation, on the allowed
conversions of shared data version types. Those restrictions are summarized in the table
Tab. 1. Note that the strong typing of access in shared memory enables the verification
of the correctness of a program at compile time.

Lemma 1: In a correct program, any Athapascan-1 statement (i.e. fork, read, write,

cumul, access, shared) has a bounded cost both in time and memory space. Each graph

December 23, 1998 DRAFT

12

required type for the

formal parameter .
effective parameter

shared_R[P] <T> | shared_R[P] <T>
shared_RP_WP <T>

shared_W[P] <T> | shared_W[P] <T>
shared_RP_WP <T>

shared_CW[P]<f> <T> | shared_CW[P]<f><T>
shared_RP_WP <T>

shared_R[P]_W[PI<T> | shared_RP_WP <T>

TABLE 1
ALLOWED CONVERSION FOR PASSING REFERENCE ON A SHARED DATA VERSION AS PARAMETER OF A

TASK.

modification is made with constant time and space.
This results from shared types and conditions C; and C;. O
Lemma 2: There is no precedence relation between a task and the task that creates it.
This results from shared types and condition C,. O
This property enables to exhibit a sequential schedule of tasks, denoted as the reference
order, that respects the sequential semantics while being different from the classical depth

first sequential one.

C. Athapascan-1 reference order

Let s denotes a sequence of statements containing no fork statement and F' denotes
a fork statement. Then, the trace corresponding to a sequential depth first execution
of a block of statements B can be represented by a word ¢ = s1FisoFy8, 1F,_18,
(s1 and s, can be empty). The independence between the created task and the cre-
ator task (lemma 2) implies that this trace is semantically equivalent to the trace ¢’ =
8182 ... 8p_ 18, F1Fy... F,_1. This order of execution corresponds to an inner most outer
most order of evaluation: it is called the reference sequential order of statements evaluation
and denoted by R in the following sections. Fig. 5 illustrates this execution order (note

that semantics of push and pop operations on the deque respects the FIFO order).

December 23, 1998 DRAFT

13

ath t ([parameters]) {
deque d;
ath t ([parameters]) { stmts_1;
stmts_1; push(d, [args_1]);
fork< t_1 >() ([args_1]); stmts_2;
stmts_2; push(d, [args_2]);
fork< t_2 >() ([args_2]); stmts_3;
stmts_3; fork< t_1 >() (pop(d));
} fork< t_2 >() (pop(d));
}
(a) Depth-first sequential order (b) Reference sequential order

Fig. 5. Two semantically equivalent programs.

Proposition 1: The reference sequential order of execution respects the semantics and
requires no implicit copy.
This results from the conditions C; and C3. Note that the by value passing mode generates
a copy which is considered explicit. O
All the assumptions concerning copies and synchronizations ensure that the Athapas-
can-1 system is not responsible of over-memory requirement: all decisions are to be taken
by the scheduling policies or the user. This enables to evaluate the cost of a program

directly from the code.

D. Cost measures

Proposition 1 enables non-preemptive schedules: the execution of a closure is delayed
until its parent (the task that created it) resumes. Following notations [2], [6], costs are
defined from this reference order: sequential time 77 and space Sy, arithmetic depth T,
communication volume (] and delay C.

More precisely, we define those costs on the trace of the execution. As seen in §III-A,
this trace can be represented by a bipartite DAG G = (G}, Gy) (see Fig. 4), with node
sets GGy and (G corresponding respectively to tasks (oval nodes in Fig. 4) and shared data
versions (rectangular nodes in Fig. 4). G is a weighted graph: in G}, each task node
is weighted by its computation cost, related to the execution of the body; in (G4, each

data node is weighted by the size of the data. Similarly, the edges are weighted by the

December 23, 1998 DRAFT

14

size of the shared data for a direct access and by a unit cost for a reference or postponed
access. Note that GG is usually unknown until execution completes; however, any execution
of a correct deterministic program on a same input will be related to the same graph G.
Moreover, we assume that the weights are also independent from the execution. Then G is
independent of the scheduling policy used to perform the execution on a bounded number

of processors.

D.1 Sequential time 7 and space Sj.

Sequential costs are defined from a serial execution of the program following the reference
order R.

Since all fork statements are pushed in memory until the completion of a task, it can
be noted that the space Sy can be larger than the one required by a depth-first execution.
However, if the number of fork statements is bounded by a constant, Sy is increased only
by a constant factor. For instance, S; related to program fibo in Fig. 3(a) is ©(n) which

is the space required by a depth-first execution too.

D.2 Parallel time T,,.

Arithmetic depth T, (or parallel time) is the length of a critical arithmetic path in G..
Then, T, is a lower bound of the minimal time required by any schedule on an unbounded

number of processors ignoring communications times.

D.3 Sequential volume and delay.

Communication delay ('; and work (', are evaluated similarly from G taking into
account only weights of edges in GG. U, is the length of the critical path in Gg4; Cy is the

sum of the weights over all edges in (.

D.4 Scheduling overhead o.

Since the overhead involved by the scheduling of the graph is also involved, we denote
by o the size of G. Scheduling the program will require at least o scheduling operations

that may be performed in parallel.

December 23, 1998 DRAFT

15

FE. Provable execution time bounds on a DCM

On a distributed architecture with p identical processors, denoted by DCM(p), the
parallelism of an Athapascan-1 program has to be bound: tasks and shared data versions
are to be scheduled on the p processors. For a general program, neither the shape of
the data flow graph nor the time of its tasks is known before the execution completes.
The schedule is computed at run-time. Most on-line scheduling algorithms are based on
a greedy strategy [10]: when a processor becomes idle, it gets a ready closure if any and
performs its execution.

To bound the delay of remote accesses, the algorithms proposed in [13] are used to em-
ulate a global memory on the p processors with the help of universal hashing functions. In
order to obtain near-optimal emulation (constant or very small to p delay), a multithread-
ing technique, often referred as “parallel slackness” [16], [19], is often used. It consists in
emulating preemptively several virtual processors on each processor of the architecture.
In the following, we assume that ¢ is the number of virtual processors emulated on the
DCM(p) and that the resulting delay (related to any remote access performed by one of
the ¢ virtual processors) is bounded by h.

Then, an execution of an Athapascan-1 program has to be scheduled on the g virtual
processors. Applying the greedy scheduling strategy proposed in [4] in order to bound
the memory space, the next theorem gives time and space bound for any execution of an
Athapascan-1 program including the cost of the scheduling algorithm.

Proposition 2: Let M be a distributed architecture with p identical processors that
emulates a global memory on ¢ virtual processors with a delay h. Then, any Athapascan-
1 program can be executed on M in time

T C
iy o4 [QCOO + —1+] +hLo(0).
p P P p p

This time includes the overhead due to the computation of the schedule which requires no
migration of running closures.

Proof. Let G be the graph related to the execution. The schedule is performed on ¢(p)
virtual processors. To compute the schedule, a data structure s is stored in the global

memory which access is protected by a lock e. This structure contains both the graph ¢

December 23, 1998 DRAFT

16

— transitions and closures that are not yet completed — and two lists, R; of the ready tasks
and P; of the idle virtual processors.

(7 is direct and stored as depicted in Fig. 4 but with additional backward pointers. So,
each task in GG has backward pointers to the shared data versions it reads and forward
pointers to the shared data versions it writes. Similarly, each shared data version has a
pointer to the tasks that write it (may be several in case of accumulation) and to the ones
that read it. Furthermore, two counters are related to each data version that indicate
the number of tasks that can respectively write and read the data; similarly, a counter
is related to each task that indicates the number of shared data version it is waiting for
reading. Besides, during its execution, a task may create new tasks by executing fork
statements. Those tasks are linked with respect to the reference order. Moreover, a task
has a backward pointer to its creator if it is yet in . All changes to s are performed in

mutual exclusion?

using the lock e. They occur at task creation and or at shared data
version declaration or evolution. The total number of those changes is clearly bounded by
o. When a task becomes ready (related counter becomes 0), it is added in constant time
in R; which is maintained sorted according to the reference order.

The schedule is computed as follows. Fach time a new task is added to Ry, it is assigned
to an idle processor which is removed from the list P;. When a processor completes a task,
it takes a new ready one in the list R; if any. If R; is empty, the processor is added to the
list P; of idle processors.

Let T denotes the execution time on the DCM(p) using this schedule. We assume
that, on each processor, % virtual processors are executed preemptively at the grain of
the elementary machine operation. Let T = é—jT; for convenience, elementary tops are
assumed to range in {1,...,7"}. Following [10], 7" is bounded by the characterization of
a subset of tasks in GG that are on a critical path. The tops in {1,...,T"} are partitioned
into three disjoint subsets:

« A (active computation): at each top in A, all virtual g processors are executing an
instruction of the application (including access to a remote data).

o O (schedule overhead): at each top in O, a schedule operation (either graph management

ZNote that, due to access restrictions, most modifications are local: thus, they do not require a global lock to be

implemented.

December 23, 1998 DRAFT

17

or virtual processor assignment) is being performed on one virtual processor.
o I (idle time): at each top in I, the list P, is not empty but no schedule operation is

being performed.

Then, we have T" = #0 4+ # A + #1 which leads to the following inequality:
pT = q.T' < q(#0 + #A+ #1). (1)

Clearly, # A is bounded by % When the lock e is free, the time required to acquire
it is bounded by O(h). When e is not free, a processor is performing an operation in
O (eventually taking or releasing the lock). Then the numbers of tops in O is bounded
by #0 < O(ho). Besides, #1 is bounded as in [10]; when a processor is idle and no
processor is executing a schedule operation, there exists a task on a critical task that is
being performed on a processor. So, #/I is bounded by T., + hCs. Replacing in (1)
concludes the proof.

O

As a corollary, Athapascan-1 programs verifying C; = o(Ty) and 0 = o(T.) can be

scheduled asymptotically optimally on a distributed architecture with p = o (%) in time
(1+ 6)%. This result is similar to those in [6] for Cilk programs.

A negative result however is that computations that involves a large number of commu-
nications may not been efficiently scheduled. For instance, any program with linear serial
cost Ty = O(n) where n is the size of the input requires at least W, = Q(n) accesses. The

schedule time is then O(hT}/p): efficiency depends heavily on h.

Bounding the space. The previous schedule executes task with respect to the reference
sequential order. Let S denotes the space required by this sequential schedule. The result
in [4] leads to bound the space required for the execution on DCM(p) with respect to Sy. If
all tasks are assumed to allocate O(1) memory space for the execution of their own body,

then the space required for the resulting schedule on the distributed machine is bounded

by 51 + O(qTs) [4].

IV. DISTRIBUTED IMPLEMENTATION

In this section we describe the distributed implementation of Athapascan-1. At compile

time, correctness of the program is verified using the strong typing of accesses that will

December 23, 1998 DRAFT

18

be performed. For each fork statement, code is generated to create the corresponding
closure. Then the closures must be scheduled to be executed on a processor. Two levels

of scheduling are distinguished (Fig. 6).

tions Scheduler
" |clonareserv

Application

@\O tasks to run
~——— | Executor \i\ ocal Mem]
task terminations - > -

< < <

Node 1 < <K<
> > =

1 2 m

Fig. 6. Two levels scheduling: at a high level, a global scheduling manages the load distribution between

graph transitions Scheduler
" |cloval resenl][TTID

Application

Work lists

1

{1
2 [

tasks to run

~——— | Executor

task terminati

Noden

nodes while, at a lower level, a local multithreaded kernel optimizes the use of each processor. The

zoomed regions show details of the lower level scheduling.

A high level scheduling distributes the load among the nodes of the parallel architec-
ture. From the knowledge of macro-data flow dependencies, various schedules can be
implemented, from greedy to static ones.

A low level scheduling, on any particular node, overlaps part of system overheads by
effective computation using multithreading. Each node of a parallel machine emulates a
certain number of virtual processors (threads) that share a single address space. In theo-
retical works (see section III-E), this technique, often referred as “parallel slackness” [19],
enables to provide near-optimal emulation of a global memory on a network of identical
processors [13]. On a practical point of view [9], various experimentations show that a
certain amount of local multithreading enables to hide part of communication delays. This
low level local scheduling is implemented by a multi-threaded, portable, parallel program-

ming runtime system, named Athapascan-0 [7].

A. Athapascan-0: an efficient and portable integration of communications and multi-

threading

Athapascan-0 allows remote creation of threads and provides communications and syn-

chronization facilities. The local scheduling of threads in a node is managed by the runtime

December 23, 1998 DRAFT

19

in order to hide communication latencies. Athapascan-1 is implemented on this runtime
and provides the global scheduling of closures (tasks) on the whole architecture.

Athapascan-0 is designed for a general parallel machine that consists of a network of sym-
metric multi-processors (SMPs) that offers the four following types of exploitable physical
parallelism: between processing nodes, between computation and communication proces-
sors within a node, between computation processors within a node and between communi-
cation on disjoint routes. Athapascan-0 is built on top of standard, unmodified, message
passing and threads libraries. Much care has been taken on communication efficiency and
communication overlapping with computation.

An Athapascan-0 parallel machine is composed of a set of nodes executing the Athapas-
can-0 runtime. The operators that express a parallel computation are: local and remote
thread creation; local and remote communication between threads; local synchronization

between threads; and remote access to shared memory regions.

B. Athapascan-0 and the implementation of Athapascan-1

Athapascan-0 is the system layer that allows practical implementation of parallel slack-
ness in an effective distributed architecture with p processors that may be heterogeneous.
In the implementation of Athapascan-1, a certain number of Athapascan-0 threads are cre-
ated on each processor in order to emulate identical processors. So, a scheduling algorithm
may assume that the machine is a set of ¢ identical virtual processors that communicate
with a bounded delay h. This practical emulation is inspired from the theoretical one
presented in section III-E to perform scheduling on a distributed architecture, DCM(p),

with p identical processors connected by a network.

C. Shared data versions access graph management

With the help of Athapascan-0, the management of the data-dependencies between
closures (shared data versions access graph) is distributed: closures and edges are unique
in the system, but transitions may be replicated (Fig. 7). So, a closure always locally
accesses its connected transitions (via the pointers of its possessed evolutions). Then all
the access to the shared data versions or the tasks creations are local events and make

no communication. The time required for a task creation is therefore proportional to the

December 23, 1998 DRAFT

20

number of its parameters.

In order to detect termination of access to a transition in a distributed asynchronous
environment, a classical termination algorithm is implemented [15]. Each transition is
associated to a master node that computes a balance between increasing counters related
to each of its replicates. Those counters are managed locally on each site that possesses a
replicate. When there is no more local access on the site, the values of local counters are

sent to the master node.

D. Annotating a program by a scheduling algorithm

The distributed implementation of Athapascan-1 ensures that the semantics of the pro-
gram is respected whatever the global scheduling algorithm is. To be used as a plug-in, a
scheduling algorithm has to be implemented as the specification of a virtual class. Then,
Athapascan-1 allows the user to specify the schedule used at task creation by code anno-

tation at creation of a task:
fork< user_task > (sched, attributes) ([parameters]);

The scheduling attributes specifies the global scheduling to be used; the task user_task
will be scheduled by the scheduler sched and sched will also be the default algorithm to
schedule the closures created by user_task. Additional attributes (priority, computational
cost and locality) can be exploited by sched.

Schedule attributes of a task are stored in its closure. After creation (fork) and until

it is completed, the state of the closure depends on the graph of evolutions. The possible

ready

waiting

node 0 i node 1
Fig. 7. Replicated transitions on a distributed graph. When £ibo(0) is completes, a message is sent

from node 1 to 0 to warn the transition T2 that no more writers exist on 1.

December 23, 1998 DRAFT

21

states are:

o waiting: the closure has at least one predecessor not yet completed;

o ready: the closure can be executed;

o running: the closure is running sequentially its instructions;

o execuled: the closure is completing.

Each change of state can potentially trigger a scheduling action. Then, for each operation
in the graph, a signal is sent to the related scheduler allowing it to explore the new graph
configuration. So, it can get the informations that it needs about the current global state

of execution: for instance, closure attributes, parameters, state or data dependencies.

E. Framples of implemented scheduling policies

Different scheduling algorithms have been implemented in Athapascan—lWe present here
two basic schedules that we have used to evaluate the performances of Athapascan-1: a
greedy distributed algorithm (which is the default one) and a static algorithm that uses
the knowledge of the macro-data flow graph.

E.1 Greedy schedule

Classical scheduling algorithms to minimize completion time on a given number of vir-
tual nodes are based on a greedy strategy: when a node becomes idle, it steals a ready
task available on a non-idle processor in order to execute it. As seen in section III-E,
such a strategy achieves provable time performances but, in order to prevent for memory
exhaustion, some precautions have to be taken [6]. In Athapascan-1 on each processor,
tasks are ordered with respect to the reference sequential order which is computed in con-
stant time. However, it can be overloaded by assigning priorities to each task at creation.
Then, scheduling tasks with respect to this order allows to bound the memory space with
respect to the one required by such a sequential execution [4].

Such a strategy has been implemented in the Cilk parallel language where the lexico-
graphic order is used both to bound the memory space and to provide efficient sequential
execution for dynamic series-parallel graphs; it has lead to very good experimental perfor-
mances [1] on parallel architectures with uniform memory access.

Similarly to Cilk, the high level scheduling implements a work-stealing algorithm. On

December 23, 1998 DRAFT

22

each node of the architecture, a list of ready tasks is managed. Fach node uses it to store
tasks that become ready. When a node completes a task, it picks another ready task
from its local list to execute it. When the size of its list reaches a minimal threshold, a
thief procedure is trigged: a victim node is randomly selected and a task is stolen from its
reserve list. Moreover, if the size of the victim reserve list is null, the stolen message is
forwarded to another victim.

In order to optimize the memory space, the management of the reserve on each node is
not symmetric. Each node adds new ready tasks on the head of its reserve. Then, when
it completes a task, it takes a new one also from the head, privileging a depth traversal
of the task graph. However, tasks are stolen by other processors from the tail of the
list. Especially for recursive programs, this strategy enables to bound the memory space
required on each processor [6] while not increasing the critical path.

Moreover, when a task ¢ is stolen by an idle node P; on a non-idle one Ps, all successors
of t located on Ps will wait for the completion of ¢ on P; to become ready. In order to
avoid extra communications related to ¢ completion, it thus can be worth fully to export
not only ¢ to P; but also some of its successors (at least all successors of ¢ that have no
other predecessor on Ps except t). This strategy tries to reduce the number of three kinds
of communications:

o Tasks state management: since the graph is distributed, immediate successors of ¢ that
are waiting for its completion will be locally updated.

o Data transfers: data updated by ¢ that are required by its successors already in P; can
be accessed directly on the local memory cache of P; with no communication.

o Work-steal messages: it can be expected that when ¢ will be completed on P;, one of its

successor will be ready on Fr.

E.2 Static algorithms

At a given instant of the execution, the evolution graph represents all the already created
closures and their dependencies. Each closure being assumed to correspond to a sequential
algorithm, the related macro-data flow graph then represents the execution. Its annotation
by cost information enables the use of static strategies.

Since the runtime allows the global scheduling to have access on those dependencies,

December 23, 1998 DRAFT

23

we have been able to use the scheduling algorithm DSC, implemented in the parallel
programming environment Pyrros [20], as a plug-in.

An additional information is required by the scheduling to trigger the computation of
this schedule, which is performed sequentially on one node. Then each tasks is assigned
to a node; the order of execution of the tasks on each node is managed by Athapascan-1

runtime.

F. Overhead of the distributed implementation

TABLE 11

INFLUENCE OF THE LOCAL SCHEDULING OF THREADS ON GLOBAL GREEDY ON-LINE SCHEDULING.

1 node architecture 4 nodes parallel architecture 1 node SMP architecture
IBM-SP NOW IBM-SP NOW
1 proc/node | 1 proc/node || 1 proc/node | 1 proc/node 4 proc/node
Sequential 43.30 39.90 22.60
Ath-sequential 43.84 39.94 23.29
1 Thread 106.45 101.79 27.30 27.76 24.45
2 Threads 80.63 71.25 20.99 21.51 16.29
4 Threads 67.16 59.93 18.34 18.40 13.94
8 Threads 61.66 54.16 18.51 21.05 12.98

To analyze the overhead related to the distributed implementation of Athapascan-1
and the overhead related to local multithreading, we present in table II some performance
results (time in seconds) obtained from the execution of the Fibonacci program (Fig. 3(a))
for an input value of 40, using a threshold of 25 to halt the task creations < 25; then,
roughly half of the generated closures require less than a micro-second to run to completion
and the other ones (that sequentially compute fibo (25 or 24)) a few milliseconds; #N =
32000 tasks are generated producing about #FE = 100000 edges. The experiments were
achieved on five architectures: two mono-processors, a IBM RS-6000 (AIX 4.2) and a
Pentium (Solaris 2.5.1); two distributed architectures: a four nodes IBM-SP architecture
(IBM RS-6000/370, AIX 4.2, IBM-MPI) and a four nodes network of workstation - NOW
(Pentium, Solaris 2.5.1, LAM-MPI, Myrinet); and also under a SMP (4 Pentium Pro,
Solaris 2.5.1). In the table, the lines correspond respectively to the execution of a pure
C++ sequential algorithm, to an Athapascan-1 program compiled to generate a sequential

code and to the parallel execution using n execution-threads in each node. When several

December 23, 1998 DRAFT

24

nodes are used, the default greedy high-level scheduling is used.

Comparing the performances of the pure sequential algorithm with the sequential version
for the Athapascan-1 code, we verify that the overhead introduced in Athapascan-1 is
small. This is not true in the parallel version where we can observe the overhead produced
by the scheduling policy and graph management. This overhead is partially overlapped
when the number of threads on each node is increased, though. Besides, on the three
parallel architectures, a speed-up of about 2 can be obtained with 4 processors. Speed-ups

close to 4 were obtained with thresholds larger than 35.

G. Analysis of the overhead and amortizing

Most of the overcost of the execution of Athapascan-1 program is due to the closure
creation (fork statement). The dynamic memory allocation and the graph management
are costly related to a function call. Following [5], this cost can be amortized using a
lazy scheme in the implementation of a work-stealing algorithm. However, in order to not
increase the critical path while avoiding migration of running closure, the serialization of
tasks is performed according to the reference sequential order.

At runtime, we split the graph management of forked tasks into two parts. The one
corresponds to closure creations; the other to updates of the data flow graph when a
request of work is received from an idle processor. At each fork statement, we copy into
a stack the related closure. Then, when the tasks completes, the next closure (according
to the reference sequential order) is executed locally as a function call.

When a request of work steal is received, the data flow graph is built from the local
shared data and closures into the stack. Under assumption that they are few work steal
requests compared with the number of created tasks — which is verified for programs having
small T, —, this strategy could be used to achieve parallel execution with a cost closed to
pure C++ sequential execution.

Table IV-G presents the times to execute the same program Fibonacci (described in
Fig. 3(b)) with input n = 10 and n = 20 at the finest grain: recursive splitting is not
stopped (Pentim II, Solaris 2.6, Posix threads). The first column shows the running time
of the program in one thread one node machine using the parallel runtime presented in the

previous section; the second column implements the reference sequential order as described

December 23, 1998 DRAFT

25

TABLE III

TIMES IN SECOND TO EXECUTE THE PROGRAM FIBONACCI WITH DIFFERENT RUNTIMES AND INPUTS.

Parallel Reference Pure C++
input | runtime | sequential order | function
10 0.028 1.5e-4 11.4e-6
20 37.2 18.3e-3 1.4e-3

in this section. The last column gives the time obtained by an equivalent C++ program
where fork statements are replaced by function calls and shared objects implemented by
pointers. The ratios of the time per task creation are for input 10: 1.6e-4 for the parallel
runtime, 8.5e-7 for the reference sequential order and 6.4e-8 for the pure C++ program.
For input 20, these ratios are respectively: 1.4e-3, 8.4e-7, 6.4e-8.

The reference sequential order can then be implemented with a constant overhead of
about 10 with respect to a pure C++ function call. The improvement expected with
respect to the parallel implementation is within a factor of about 10000 in the best case

for the creation of an elementary task.

V. EXPERIMENTAL EVALUATION

In this section, we present experimental performances of Athapascan-1 on two groups
of applications:
+ Recursive algorithm: the computation of the Mandelbrot set and the resolution of the
eight queens problem.
o Numerical algorithm: the LU factorization of a matrix using Gauss elimination.

For each example the scheduling policy used is described and the obtained performances

commented.

A. Recursive parallelism

Recursive algorithms leads to data flow graphs with small critical path. Then, the
greedy schedule presented in the previous section, that privileges a depth-first traversal of

this graph, should achieve good performances.

December 23, 1998 DRAFT

26

A.1 Mandelbrot

In this section we present some performance results obtained for a Mandelbrot com-
putation. The Mandelbrot algorithm implemented is recursive: it takes in input a start
region and a threshold. While the threshold is not reached, the region is splinted in four
sub-regions; otherwise, the sub-region is sequentially computed. For each experiment, 314
tasks were generated: among those, 256 tasks correspond to the sequential computation
of a sub-region (with size lesser than the threshold) each of unknown computational cost;
the others compute the recursive splitting.

The Fig. 8 shows a distribution of work obtained after the execution of a Mandelbrot
computation. The threshold for halting the recursive splitting is fixed: it corresponds to
the size of the smallest squares in the image on the right. Note that in this experiment,
256 additional tasks are executed by the node 0 (the dark-grey one in Fig. 8) to display
the plotting; it can be noted that this processor among the five is the one that computes
the smallest surface. Besides, as it can be seen on the right image, only few fine grain
tasks are exported to other processors (except at the end of the execution). This is related
to the implementation of the greedy scheduling described in section IV-E.1; it privileges
local depth first execution. As it appears on the right image, this enables to bound the

space of the distributed execution and to avoid unnecessary steal messages.

A.l.a Performances of the two levels scheduling . To evaluate the speed-up, plotting
tasks have been suppressed; only the 314 tasks corresponding to recursive splitting and
computation are executed. Experiments have been performed on two different architec-
tures: a SMP machine with 4 Pentium Pro (Solaris 2.6, Posix threads) (performances are
presented in the table on the left of fig. 9) and a IBM-SP (IBM RS-6000/370, AIX 4.2,
IBM-MPI, kernel threads) using from 1 to 6 monoprocessor nodes (performances are pre-
sented in the graphic on the right of Fig. 9). On both machines, speed-up (sp) has been
computed by: sp =T /T?, where T? is the time obtained for the parallel execution on a
p node parallel machine using m threads by node; then T} is the time for the execution
on an one node machine with only one execution thread.

Observing the given measures on the SMP, we deduce that local multithreading enables

to overlap the system overhead: a speed-up 3.6 is obtained which is near to the number

December 23, 1998 DRAFT

27

Fig. 8. A Mandelbrot plotting and the related distribution of the work on a 5 node parallel machine.
The algorithm is recursive: it cuts the original region in four sub-regions until a fixed threshold
(which corresponds to the size of the smallest squares on the right). On the right image, each color
corresponds to the specific node that has computed the corresponding area in the Mandelbrot set
on the left; the line on the bottom of this image depicts the five colors, each one corresponding to a
node. The processor that starts the computation and performs the display of the Mandelbrot set is
the left-most one (indexed 0 and colored dark-grey).

threads | T! | sp
1 23.80 | 1.0
2 12.04 | 1.9
4 7.71 | 3.0 E
6 722 |33 | 4
8 7.02 | 3.3 :
10 6.68 | 3.6
12 6.74 | 3.5 0
14 6.73 | 3.5
16 6.74 | 3.5

Fig. 9. Performance measurements for Mandelbrot on 2 architectures. In left side, a table presents the
time (in seconds) and the speed-ups obtained on a 4-processors SMP architecture. The graph in the

right side presents the speed-ups on a IBM-SP, using from 1 to 6 nodes.

of available processors (4). Moreover, the basic time T} is very close to the cost of a pure
sequential execution (with no parallelism overhead) on this architecture.

On the IBM-SP also, the system overheads (including the one related to the high level

December 23, 1998 DRAFT

28

work-stealing when p > 2) are partially overlapped by using local multithreading. In
this experiment, it can be seen that the best value for m depends on p. Besides, a good
speed-up (about p with the best value for m) is obtained related to T}'. However, a large
overhead is introduced here with respect to a pure sequential computation on one node (a
factor of about 3), mainly due to the polling of communications; this overhead is recovered

when using several computational resources (p > 4).

A.2 Queens

The goal of this famous problem is to place n queens on a chess board, of dimension
n X n, so that none is in a position to take another one. The implemented parallel algorithm
computes the number of positions; it creates tasks recursively to explore the searching tree
of the problem. As input of each task is given the chess board with the already placed
positions. The algorithm uses a compressed representation of the chess board of size 5n
instead of n%. The parallel program takes as input the number n defining the size of the
problem and a threshold to stop the recursive generation of tasks.

The tables IV and V show times for the execution of the n-queens problem on 3 parallel
architectures with 3 problem sizes: n = 13,14 and 15, using a threshold of 3 on each case.
The given times are the average of ten executions for each case (aberrant values have been
deleted). The effective number of generated tasks are given as additional information. The
scheduler chosen to execute this experience uses the same depth first greedy algorithm
(section IV-E.1) employed for Mandelbrot plotting.

TABLE 1V

TIMES IN SECONDS ON THE IBM SP MACHINE FOR n-QUEENS PROBLEM WITH 3 PROBLEM SIZES.

IBM SP
size | # Tasks | Sequential | 1 node 2 nodes | 4 nodes | 8 nodes | 12 nodes | 16 nodes
13 1178 36.66 38.04 20.03 9.28 5.06 2.92 2.40
14 1537 223.13 225.34 113.95 57.01 28.44 18.65 14.65
15 1964 1451.92 1450.74 779.39 364.84 188.41 130.80 91.60

The table IV presents the times on a dedicated IBM-SP distributed architecture (IBM
RS-6000/370, AIX 4.2, IBM-MPI, kernel threads) using from 1 to 16 mono-processor

nodes. On each node there is only one thread dedicated to execute the tasks generated by

December 23, 1998 DRAFT

29

TABLE V
TIMES IN SECONDS ON A SMP ARCHITECTURE AND ON AN HETEROGENEOUS NOW FOR n-QUEENS

PROBLEM WITH 3 PROBLEM SIZES.

SMP Heterogeneous NOW with p(g): p nodes adn g processors
size | # Tasks | Sequential | Parallel || Sequential | 1(2) 2(4) 3(8) 4(9) | 6(11) | 8(13) | 10(15)
13 1178 6.51 1.83 3.91 2.50 1.61 1.31 1.25 1.60 1.36 1.14
14 1537 39.50 11.40 23.78 14.19 8.37 6.60 6.25 5.02 4.84 4.96
15 1964 255.18 70.56 153.57 91.55 | 51.67 | 34.90 | 38.80 | 27.73 | 25.24 23.51

the program.

The performances show a good utilization of the machine, obtaining speed-up close to
the optimal expected. The results in table V present the performances obtained with an
SMP architecture (4 Pentium Pro, Solaris 2.6, Posix threads) and under a not dedicated
heterogeneous network of workstations (NOW), composed by 10 Intel based nodes with
different frequencies and memory capacities (two bi-processor nodes, one four-processor
node and seven mono-processor nodes running Solaris 2.6, MPI-LAM, Posix threads). On
the SMP, eight threads are used to explore the parallelism of the program; as on the
IBM-SP architecture, the performances show values near the optimal.

To get the performances on heterogeneous NOWs, we have used different configura-
tions, composing sub-networks with different number of processors in order to analyze
the evolution of the performance. Each subnetwork with p nodes is always build with
the faster machines among the ten. On each node there are three threads dedicated to
execute the tasks generated by the program. From the results obtained, in most cases the
performances are good even if better on the IBM SP architecture. We attribute this to the
ratio between communication and computation costs, because performances are improved

when more computational work is added.

B. Numerical computing: The Gauss elimination

In this section, we present a two-dimensional block LU factorization as example of a
numerical algorithm; the matrix to be factorized has size n and is partitioned in (%)2
blocks of dimension (k x k). The factorization is achieved on these matrix of blocks using

the classical Gauss elimination algorithm where the scalar operations are replaced by block

December 23, 1998 DRAFT

30

operations. The sequential complexity for this algorithm is © (%n?’)

The code of this algorithm in Athapascan-1 is the direct implementation of the sequential
two-dimensional block LU factorization at the grain of a block. The Fig. 10 shows this
code. Tasks consist in block computations: factorization, multiplication or triangular
system resolution. The parallel time is then T, = O ((%)3 + nkQ). Since all the tasks
have a fixed number of arguments, the cost to build the data flow graph is bounded by

the number of tasks, i.e 0 = O ((E)S) The volume of communications is bounded by

¢y =0(2).

By specializing the schedule on a distributed architecture, the number of communi-
cations can be reduced without increasing the parallel arithmetic time if the nodes are
identical. A classical schedule is based on a bi-dimensional cyclic mapping of the blocks of
the matrix (e.g., ScaLAPACK [8]). Equivalently, each task can be indexed by the indices
(i,7) of the block it updates. Assuming that ¢* = p nodes are available, the task (,7)
is mapped on the node (¢ mod ¢)q + (7 mod ¢). The resulting total amount of commu-
nications is reduced O(n*,/p) on a parallel machine with p nodes. To implement this
schedule in Athapascan-1, each fork is annotated by the indices of the related task and a
bi-dimensional cyclic mapping scheduling policy is used.

The tables VII and VI show performances of this scheduling policy on various archi-
tectures with identical nodes. The SMP architecture is the same than the one used in
the previous example (n-queens problem); performances are presented in table VI. The
distributed architecture used in table VI is an homogeneous NOW (2 bi-processor nodes,
Pentium II, Solaris 2.6, MPI-LAM, Posix threads); on this architecture, each node has five
threads dedicated to execute the tasks generated by the program.

On the SMP architecture, good performances are obtained. This proves that the par-
allelism of the algorithm is well exhibited. However, performances are poor on the dis-
tributed architectures where the ratio between communication and execution costs induces
bad speed-ups. We attribute this to the overhead introduced by the current version of
Athapascan-1 in the distributed management of the transitions: the master node site re-

lated to a transition remains unchanged during the execution while it could be changed

to the node where the corresponding data is updated.

December 23, 1998 DRAFT

31

ath Factorization_LU(shared_R_W<matrix<double> > a) {

// Sequential LU factorization of block a ...

ath M_TimesInverse_U(shared_R_W<matrix<double> > m,
shared_R<matrix<double> > u) {
// Sequential computation of "m = m * Inverse(up)" where up

// 1is the upper triangular part of u ...

ath Inverse_L_Times_M(shared_R_W<matrix<double> > m,
shared_R<matrix<double> > 1) {
// Sequential computation of "m = Inverse(low) * m'" where low

// is the lower triangular part, with unit diagonal, of 1 ...

ath MinusTimesEqual(shared_R_W<matrix<double> > a,
shared_R<matrix<double> > b,
shared_R<matrix<double> > c¢) {

// Sequential computation of "a = a - b * c"

ath ParBlockFact_LU(matrix<shared <matrix<double> > > A) {
for(int k = 0 ; k < A.dim ; k++) {
fork<Factorization_LU> () (A[k,k]) ;
for(int 1 = k+1 ; i < A.dim ; i++)
fork<M_TimesInverse_U> () (A[i,k], Al[k,k]) ;
for(int j = k+1; j < A.dim ; j++)
fork<I nverse_L_Times_M> () (A[k,j], Alk,k]) ;
for(i = k+1 ; i < A.dim ; i++)
for(j = k+1; j < A.dim ; j++)
fork<MinusTimesEqual> () (A[i,jl, AL[i,k1, ALk, j1) ;

}

Fig. 10. The program implements the classical block LU factorization. The type matrix is a con-
tainer for two dimensional square matrices (dim gives the dimension of the matrix). This con-
tainer is related to a format descriptor, allowing its use both to put objects in shared memory
(shared<matrix<...>>) and to pass by value to a task a data structure containing several shared

objects (matrix<shared<...>>).

December 23, 1998 DRAFT

32

TABLE VI
TIMES IN SECONDS OF LU BLOCK-FACTORIZATION FOR VARIOUS MATRIX SIZES ON A SMP

ARCHITECTURE WITH BLOCK SIZE = 120 AND ON A NOW ARCHITECTURE WITH BLOCK SIZE = 200.

SMP NOW
size # Tasks | Sequential | 4 procs # Tasks | Sequential | 1 node, 2 procs | 2 nodes, 4 procs
1000 287 13.02 4.25 57 15.64 8.32 10.43
1400 652 35.67 11.09 142 38.95 26.39 25.29
1800 1242 75.71 23.26 287 89.60 48.75 64.80
2200 2472 138.58 42.65 508 158.83 90.72 206.16

Besides, another more general static schedule can be used that takes benefit of the
knowledge of the macro-data flow graph, once the main task — ParBlockFact LU in Fig.
10 — is completed. By schedule annotation, we have experimented on this application
the DSC schedule (presented in section IV-E.2) on the IBM-SP architecture previously
described (n-queens problem) The table VII allows comparison with the bi-dimensional
cyclic schedule The overhead due to the computation of the schedule when DSC is used
is only related to the size of the macro-data flow graph and independent of the number
of processors. If this overhead is not considered, the DSC scheduling algorithm leads to
similar performances than the one obtained with the bi-dimensional cyclic schedule (which
is computed “at hand”).

TABLE VII
TIMES IN SECONDS ON THE IBM SP MACHINE FOR LU BLOCK-FACTORIZATION WITH MATRIX SIZE

1280, BLOCK SIZE = 128 FOR TWO SCHEDULING POLICES.

IBM SP
scheduling | # Tasks | Sequential | 1 node | 2 nodes | 4 nodes | 8 nodes | 12 nodes | 16 nodes
Cyclic 387 134.04 140.36 79.25 46.49 30.48 23.6 23.46
DSC 387 134.04 142.02 83.27 52.62 35.62 31.70 28.51

VI. CONCLUSION

In order to achieve practical efficient execution on a parallel architecture, the knowl-
edge of the data dependencies related to the application motivates the development of
various on-line and off-line scheduling algorithms. By typing and restricting access in

shared memory, we show that such a data dependency graph can be computed on-line

December 23, 1998 DRAFT

33

on a distributed architecture. We introduce an imperative language named Athapascan-1
implemented as a C++ library, that enables the on-line computation of the embedded
macro-data flow. Athapascan-1 is inspired both from Jade [17] concerning the typing of
memory access and from Cilk [5] concerning the expression of parallelism. Parallelism is
explicit but synchronization implicit. The semantics of Athapascan-1 only defines the data
flow:; it is independent from the scheduling algorithm used to execute the parallel program.
Moreover, the semantics enables the use of a sequential and non-preemptive schedule: the
reference sequential order.

The overhead introduced is bounded with respect to the parallelism expressed by the
user: each basic computation corresponds to a user-defined task, each data-dependency
to a user-defined data structure. So, the theoretical performance of a code (parallel time,
communication and arithmetic works, memory space) can be evaluated directly from a
cost model without need of a machine model. We exhibit on-line schedules with provable
performances related to those costs on a distributed architecture. This extends the work
on Jade where no time bound have been given and the work on Cilk where only strict
multithreaded computations are considered. Using the result from [4], the bound on the
memory space 1s achieved by taking benefit of the reference sequential order which is
computed in constant time.

Athapascan-1 has been implemented on various parallel architectures. We detail its
compilation and implementation on a general parallel architecture (cluster of symmetric
multi-processors). The possibility of unrolling on-line the macro-data flow allows the use
of various scheduling policies, from greedy on-line algorithms [5] to static tasks clustering
such as DSC [20]. We present various experiments to study the impact of the scheduling
policy on two classes of programs: recursive computations and numerical computations
with predicted data flow.

We find that the semantics of Athapascan-1 makes easier the development of parallel
programs and the portability of the code by changing the scheduling policy. However, al-
though bounded by a constant, the overhead related to the computation of the macro-data
flow, is important especially on a distributed architecture; so it requires the programmer to

take care of tasks granularity. On considered applications, this appears natural in the sense

December 23, 1998 DRAFT

34

that corresponding efficient sequential programs implement a different algorithm when the
size becomes too small: unrolling function call for recursive programs and blocked algo-
rithms for linear algebra computations.

An issue to decrease this overhead is to take benefit of the reference sequential order
to avoid the building of the data flow with no loss of parallelism. Experiments performed
to evaluate the overhead of this schedule with respect to a pure sequential code shows
that it could be used to amortize the cost of task creation. Then a future work consists
in implementing a work-stealing algorithm similar to the one developped in Cilk [1]. The
difference here is that the schedule will be based on the reference sequential order to execute
efficiently programs with neither resctrictions on the pattern of the synchronizations nor

migration of running closures.

REFERENCES

[1] N.S. Arora and R. D. Blumofe and C. G. Plaxon. Thread scheduling for multiprogrammed multiprocessors.
In Proc. of X SPAA, Puerto Vallarta, Mexico, June, 1998.

[2] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85-97, 1996.

[3] G. E. Blelloch, P. B. Gibbons and Y. Matias. Provably efficient scheduling for languages with fine-grained
parallelism. In Proc. of the 7th Symp. on Parallel Algorithms and Architectures, pp 1-12, Santa-Barbara, 1995.
ACM Press.

[4] G. E. Blelloch, P. B. Gibbons, Y. Matias and G. J. Narkilar. Space efficient scheduling of parallelism with
synchronization variables. In Proc. of the 9th Symp. on Parallel Algorithms and Architectures. ACM Press,
1997.

[5] R.D. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In Proc. of 5th ACM-SIGPLAN Symp. on Principles and Practice of Parallel Programming.
ACM, New-York. 1995.

[6] R.D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations. STAM Journal
on Computing, 27(1):202-229, 1998.

[7] J. Briat, I. Ginzburg, M. Pasin and B. Plateau. Athapascan runtime: efficiency for irregular problems. In
Proc. of the FuroPar’97. Passau. Aug. 1997.

[8] J. Dongarra and D. Walker. Software Libraries for Linear Algebra Computations on High Performance Com-
puters, STAM Review, 37(2), June 1995.

[9] [I. Foster, C. Kesselman and S. Tuecke. The Nexus Approach to Integrating Multithreading and Communica-
tion, IFEFE Journal of Parallel and Distributed Computing, 1997.

[10] R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17(2):416-426, 1969.

[11] T. Gautier, J.-L. Roch and G. Villard. Regular versus irregular problems and algorithms. In Proc. of the
IRREGULAR’95, Lyon, France. Springer-Verlag LNCS 980, Sept. 1995.

[12] M. Goudreau, J. Hill, K. Lang and B. McColl. A proposal for the BSP worldwide standard library (preliminary
version). TR, http://www.bsp-worldwide.org, Oxford University, 1997.

December 23, 1998 DRAFT

35

[13] R. M. Karp, M. Luby and F. M. auf der Heide. Efficient PRAM simulation on a distributed memory machine.
Algorithmica, 16:517-542, 1996.

[14] G. Karypis and V. Kumar. Multilevel k-way partitionning scheme for irregular graphs. Journal of Parallel
and Distributed Computing, 48(1):96-129, 1998.

[15] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press. Nov. 1994.

[16] A. G. Ranade. How to emulate shared memory. In Proc. of the 28th Annual Symp. on Found. of Computer
Science, IEEE, 1987.

[17] M. Rinard. The design, implementation and evaluation of Jade. ACM Transactions on Programming Lan-
guages and Systems, 20(3):483-545, May 1998.

[18] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachussets, 3rd. ed., 1997.

[19] L. G. Valiant. A bridging model for parallel computation. Comm. of the ACM, 33(8):103-111, 1990.

[20] T. Yang and A. Gerasoulis. Pyrros: static task scheduling and code generation for message passing multi

processors. In Proc. VI ACM Int. Conf. on Supercomputing, July 1992.

December 23, 1998 DRAFT

