Scheduling parallel programs on non-uniform memory architectures

Gerson G. H. Cavalheiro! Mathias Doreille Frangois Galilée
Thierry Gautier Jean-Louis Roch

Projet Apache!
Laboratoire de Modélisation et Calcul
100 rue des Mathématiques BP 53
38041 Grenoble Cedex 9, France
http://www-apache. imag. fr

Abstract. This paper presents a hierarchical scheduling runtime to support efficiently the execution of
irregular application on a distributed machine. A high level scheduling provides the distribution of load
between the nodes of the machine, based on a work-steal mechanism. A low level scheduling implements a
multithreading scheme to hide communication latency and exploit the computation power of each node.

1 Introduction

Many irregular applications present a high degree of parallelism, unpredictable at compile time. To obtain
efficient executions on a distributed architecture, the scheduling has to bound this parallelism to the one available
on the architecture. Two levels of scheduling are usually considered:

— A high level scheduling distributes the load among the nodes of the parallel architecture. One of the most
commonly used technique is greedy: when a node becomes idle, 1t picks some ready tasks if any from a list
that may be distributed among nodes. On uniform memory architectures, this technique leads to provable
performances for executions that have a small critical path [10,5]. Various practical implementations on
such architectures have given experimentally good performances for a wide range of applications [14, 5].

— A low level scheduling, on any particular node, overlaps part of system overheads by effective computation.
Here, the most commonly used technique is multithreading. In theoretical works [13,11], this technique,
which is often referred as “parallel slackness” [13], enables to provide near-optimal emulation of a global
memory on a network of identical processors [11]. On a practical point of view [8], various experimentations
show that a certain amount of local multithreading enables to hide part of communication delays. On
synchronous architectures, the number of threads is related to the hardware characteristics (e.g. TERA
machine). Besides, on an asynchronous one, it is also related to the application itself [3].

A scheduling algorithm based on those two levels of scheduling has been proposed and evaluated on a
theoretical machine model in [12]. In this paper, we present the implementation of a similar scheduling algorithm
but that requires no global synchronization. It takes benefit of those two levels of scheduling on a non-uniform
access architecture. The resulting algorithm is general and extends previous works (in particular related to Cilk)
in two ways: first, there is no restriction on the synchronization structure in the execution; second, it enables to
schedule a program on a hierarchical memory architecture, integrating a multithreading technique to hide part
of memory latency.

The description is based on the default scheduling strategy implemented in the Athapascan-1 parallel pro-
gramming interface [9]. Some experimental results are provided on a simple applications programmed in Atha-
pascan using this strategy.

2 Application modelling and input of the scheduling

At runtime, we assume that the execution of a parallel application generates tasks, submitted to precedence
relations. Execution of a task is assumed to be non-blocking but can generate new tasks, recursively for instance.
Typically, a precedence between two tasks corresponds to a write-read data dependency. We represent the non
completed tasks and their precedences by a graph which is unfolded on the fly at runtime; it evolves depending
on tasks creations and completions. Then, at any instant of the execution, this graph represents the state of the
parallel program.

! CAPES-COFECUB Brazilian scholarship
! Supported by CNRS, INPG, INRIA et UJF



Ezrample. Figure 1 gives an example of a code written in a pseudo-language that enables dynamic task creations
(FORK statement) and where tasks precedences are deduced from input-output dependencies; an example of a
graph describing a possible state for an execution is given on the right side of the figure.

void Factorization_LU( matrix<TYPE> A ) : INPUT A; OUTPUT A;

{

for( int k = 0 ; k < A.row_dim() ; k++ ) {
FORK Block_Factorization_LU( A(k,k) );

for( int i = k+1 ; i < A.col_dim() ; i++ )
FORK Block_Times_Inverse_U( A(i,k), A(k,k) );

for( int j = k+1 ; j < A.row_dim() ; j++ )
FORK Block_Times_Inverse_L( A(k,j), A(k,k) );

for( i = k+1 ; i < A.col_dim() ; i++ )
for( j = k+1 ; j < A.row_dim() ; j++)

FORK Minus_Times( A(i,j), A(i,k), A(k,j) );
¥
b

Fig.1. A pseudo-parallel code for a Gauss LU-factorization. The graph on the right corresponds to the state of an
execution for a 2 x 2 input block-matrix, after execution of the task FactorizationLU. In this graph, ellipses represent
tasks that are not yet completed and boxes data. Arrows correspond to data dependencies and define synchronizations
between tasks. Note that tasks computing blocks (e.g. Block_Factorization LU) may generate other tasks (using FORK
statements in their body).

More generally, a task is submitted to synchronization conditions (precedences), called transitions. A task
is sald waiting while all its input transitions are not completed; then it is said ready. In order to respect
synchronization conditions, we assume that a task cannot be scheduled (on a processor) before being ready.
Thus, the scheduling can only execute ready tasks on the processors of the architecture.

We assume that a distributed runtime manages tasks creation and state modifications with a constant
bounded overhead [9]. When such a modification is performed on a processor (for instance a FORK statement
or a task completion), the runtime calls a function implemented by the scheduling algorithm, called the scheduler.
This scheduler is itself a distributed algorithm [7]. Taking benefit of the availability of several processors in the
architecture, its objective is to optimize the completion time of the whole execution. Furthermore, due to the
non-uniformity of the distributed architecture, it has to hide latency of remote memory access.

3 A two levels scheduling algorithm

We first present the scheduling of tasks on the various processors on the architecture, which is greedy and based
on work-stealing. Then, at a second level, the use of threads on each node of the architecture enables to hide
communication latency related to non-local access. An overview of this hierarchical scheduling with two levels
is presented in figure 2; its components are described in the next paragraphs.

graph transitions Scheduler
" |clonareserv

Application

%D\O tasks to run

~——— | Executor

task terminations

graph transitions Scheduler
" |cloval resenl][TTTID

Application

Work lists

+ [
2 [

tasks to run

~——— | Executor

task terminati

(Locd Mem)

Node 1 Noden

Fig. 2. Runtime scheduling has two levels: at a high level, a global scheduler manages the load distribution between
nodes while, at a lower level, a local multithreaded kernel optimizes the use of each processor. The zoomed regions show
details of the lower level scheduling.



3.1 High level scheduling: work-stealing

Classical scheduling algorithms to minimize completion time on a given number of processors are based on a
greedy strategy [10]: when a processor becomes idle, it steals a ready task available on a non-idle processor
in order to execute it. Such a strategy achieves provable performances but, in order to prevent for memory
exhaustion, some precautions have to be taken [5].

In the following, we assume that a total order on the tasks is known by the scheduler that would result in a
correct sequential execution (lexicographic order for instance [9]). Then, scheduling tasks with respect to this
order allows to bound the memory space with respect to the one required by such a sequential execution [4].
Such a strategy has been implemented in the Cilk parallel language for dynamic series-parallel graphs; 1t has
lead to very good experimental performances [6] on parallel architectures with uniform memory access.

Similarly to Cilk, the high level scheduling implements a work-stealing algorithm. On each node of the
architecture, a list of ready tasks is managed. Each node uses it to store tasks that become ready. When a node
completes a task, it picks another ready task from its local list to execute it. When the size of its list reaches
a minimal threshold, a thief procedure is trigged: a victim node is randomly selected and a task is stolen from
its reserve list. Moreover, if the size of the victim reserve list is null, the stolen message is forwarded to another
victim.

In order to optimize the memory space, the management of the reserve on each node is not symmetric. Each
node adds new ready tasks on the head of its reserve. Then, when 1t completes a task, it takes a new one also
from the head, privileging a depth traversal of the task graph. However, tasks are stolen by other processors
from the tail of the list. Especially for recursive programs, this strategy enables to bound the memory space
required on each processor [5] while not increasing the critical path.

Moreover, when a task ¢ 1s stolen by an idle node Pr on a non-idle one Pg, all successors of ¢ located on Pg
will wait for the completion of ¢ on P; to become ready. In order to avoid extra communications related to ¢
completion, it thus can be worth fully to export not only ¢ to Pr but also some of its successors (at least all
successors of ¢ that have no other predecessor on Pg except t). This strategy tries to reduce the number of three
kinds of communications:

— Tasks state management: since the graph is distributed, immediate successors of ¢ that are waiting for its
completion will be locally updated.

— Data transfers: data updated by t that are required by its successors already in Pr can be accessed directly
on the local memory cache of Py with no communication.

— Work-steal messages: it can be expected that when ¢ will be completed on Py, one of its successor will be
ready on Pr.

3.2 Low level scheduling: multithreading

In order to overlap communication latencies and other systems overheads (I/O, swap, etc.) by the effective
computation of the application, a pool of m threads is used on each node. Each of those threads executes an
infinite loop: at each iteration, it gets a task from the reserve and executes it until completion.

On each node, this reserve list is seen by the high level scheduling. However, in order to avoid contentions
due to unnecessary mutex [1,2], this reserve is splited in m sub-lists, one for each thread of the node (see details
in the figure 2). Preserving the depth first strategy of the high level work-stealing scheduling, each of the m
threads handles its sub-list in a LIFO manner. When a thread tries to get a task from an empty list, 1t first
looks for work in the tail of the sub-lists of the other threads running on the same node. The work-stealing level
may be activated to thief tasks from another node if all sub-lists are empty.

Multithreading on a SMP architecture. In the case of a symmetric multiprocessors node (SMP), the use of
several local threads also attempts to exploit the various processors availables on the node.

4 Experimentation

In this section we present briefly some performances results obtained for a Mandelbrot computation. The
Mandelbrot algorithm implemented is recursive: it takes in input a start region and a threshold. While the
threshold is not reached, the region 1s splitted in four sub-regions; otherwise, the sub-region is sequentially
computed. For each experiment, 314 tasks were generated: among those, 256 tasks correspond to the sequential
computation of a sub-region (with size lesser than the threshold) each of unknown computational cost; the
others compute the recursive splitting.



Behaviour of the high level scheduling The figure 3 shows a distribution of work obtained after the execution
of a Mandelbrot computation. The threshold for halting the recursive splitting is fixed: it corresponds to the
size of the smallest squares in the image on the right. Note that in this experiment, 256 additional tasks are
executed by the node 0 (the dark-grey one in figure 3); it can be noted that this processor among the five is
the one that computes the smallest surface. Besides, as it can be seen on the right image, only few fine grain
tasks are exported to other processors (except at the end of the execution). This is related to the previously
described implementation of the high level scheduling; it privileges local depth first execution. As it can be seen
on the right image, this enables to bound the space of the distributed execution and to avoid unnecessary steal
messages.

Fig.3. A Mandelbrot plotting and the related distribution of the work on a 5 node parallel machine. The algorithm
is recursive: it cuts the original region in four sub-regions until a fixed threshold (which corresponds to the size of the
smallest squares on the right). On the right image, each color corresponds to the specific node that has computed the
correspondig area in the Mandelbrot set on the left; the line on the bottom of this image depicts the five colors, each
one corresponding to a node. The processor that starts the computation and performs the display of the Mandelbrot set
is the right-most one (indexed 0 and coloured dark-grey).

Performances of the two levels scheduling To evaluate the speed-up, plotting tasks have been suppressed;
only the 314 tasks corresponding to recursive splitting and computation are executed. Experiments have been
performed on two different architectures: a SMP machine with 4 Pentium Pro (Solaris 2.6, POSIX) (performances
are presented in the table on the left of figure 4) and a IBM-SP (IBM RS-6000/370, AIX 4.2, IBM-MPI, kernel
threads) using from 1 to 6 monoprocessor nodes (performances are presented in the graphic on the right of
figure 4). On both machines, speed-up (sp) has been computed by: sp = T} /T¥,, where T%, is the time obtained
for the parallel execution on a p node parallel machine using m threads by node; then T} is the time for the
execution on an one node machine with only one execution thread.

Observing the given measures on the SMP, we see that local multithreading enables to overlap the system
overhead: a speed-up 3.6 is obtained which is near to the number of available processors (4). Moreover, the
basic time T} is very close to the cost of a pure sequential execution (with no parallelism overhead) on this
architecture.

# threads| T}, |sp
1 23.80[1.0 7
2 12.04[1.9 g
4 7.71 3.0 4
6 7.22 3.3 3
8 7.02 3.3 2
10 6.68 (3.6 1
12 6.74 (3.5
14 6.73 3.5
16 6.74 (3.5 10

Fig. 4. Performance measurements for Mandelbrot on 2 architectures. In left side, a table presents the time (in seconds)
and the speed-ups obtained on a 4-processors SMP architecture. The graph in the right side presents the speed-ups on
a IBM-SP, using from 1 to 6 nodes.



On the IBM-SP also, the system overheads (including the one related to the high level work-stealing when
p > 2) is partially overlapped by using local multithreading. In this experiment, it can be seen that the best
value for m depends on p. Besides, a good speed-up (about p with the best value for m) is obtained related to
Ti. However, a large overhead is introduced here with respect to a pure sequential computation on one node (a
factor of about 3), mainly due to the polling of communications; this overhead is recovered when using several
computational ressources (p > 4). We are now working to decrease this basic overhead on this machine.

5 Conclusion

In this paper we have presented a hierarchical scheduling runtime for irregular applications on a distributed
non-uniform architecture. The higher level implements a greedy scheduling algorithm to distribute the load
between the nodes of the architecture. The lower level uses multithreading to overlap systems overheads by
effective computation and to exploit SMP architectures.

Experimentations were obtained by the execution of an application implemented in Athapascan-1 [9], a
parallel programming interface that provides an implicit scheduling. Athapascan-1 is implemented as a C++
library on top of a multithreaded runtime, named Athapascan-0, available on various distributed architectures
(http://wuw-apache.imag.fr). In order to deal with data and control flow at a grain defined by the user
(macro-data flow), parallelism is expressed through asynchronous remote procedure calls, denoted tasks, that
communicate and are synchronized only via access to a shared memory by read and write operations.

References

1. S. Aditya, Arvind, L. Augustsson, J-W. Maessen, and R. Nikhil. Semantics of ph: A parallel dialect of haskell.
Computation Structures Group Memo 377-1, June 1995.

2. Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxon. Thread scheduling for multiprogrammed multiprocessors.
In Proceedings of X SPAA, Puerto Vallarta, Mexico, June 1998.

3. P.-E. Bernard, B. Plateau, and D. Trystram. Using threads for developing applications: Molecular dynamics as a
case study. In Trobec, editor, Parallel Numerics 96, pages 3-16, Gozd Martuljek, Slovenia, Septembre 1996.

4. Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar. Space efficient scheduling of Parallelism
with Synchronization Variables. In Proceedings of the 9th Symposium on Parallel Algorithms and Architectures. ACM
Press, June 1997.

5. Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded computations. SIAM
Journal on Computing, 27(1):202-229, 1998.

6. Robert D. Blumofe and Dionisios Papadopoulos. Semantics of ph: A parallel dialect of haskell. TR-98-13, May. 1998.
7. Gerson G. H. Cavalheiro, Yves Denneulin, and Jean-Louis Roch. A General Modular Specification for Distributed
Schedulers. In LNCS 980 Springer Verlag, editor, Proceedings of Europar’98, Southampton, England, Sept. 1998.

8. I. Foster, C. Kesselman, and S. Tuecke. The nexus approach to integrating multithreading and communication.
IFEFE Journal of Parallel and Distributed Computing, 1997.

9. Francgois Galilée, Gerson G. H. Cavalheiro, Jean-Louis Roch, and Mathias Doreille. Athapascan-1: On-line building
data flow graph in a parallel language. In PACT, Paris, France, October 1998.

10. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17(2):416-426, 1969.

11. R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM Simulation on a Distributed Memory Machine.
Algorithmica, 16:517-542, 1996.

12. J.-C. Konig and J.-L.. Roch. Machines virtuelles et techniques d’ordonnancement. In Proceedings of ICARE’97,
Aussois, France, Dec. 1997. école du CNRS.

13. L. Valiant. A bridging model for parallel computation. Communication ACM, 33:103-111, 1990.

14. M. H. Willebeek-Le-Mair and P. Reeves. Strategies for dynamic load-balancing on higly parallel computers. IEEE
Transactions on Parallel and Distributed Systems, 4(9):979-993, 1993.



