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Ce rapport contient les deux premiers chapitres du tutoriel “Parallel ComputerAlgebra” donné
au colloque annuel de calcul formel ISSAC (Juillet 97, Hawaii) par Jean-Louis Roch et Gilles Vil-
lard. Il décrit les bases pour la construction, l’analyse et la programmationd’algorithmes parallèles
sur des architectures distribuées. Utilisant les techniques à la basede l’algorithmique parallèle syn-
chrone PRAM, il montre comment elles peuvent être appliquées à la construction d’algorithmes
parallèles qui conduisent à des programmes performants sur des architectures distribuées asyn-
chrones. Deux points sont alors critiques: la prise en compte des surcoûts de communication et
d’ordonnancement.

Le premier chapitre présente les techniques permettant la construction d’algorithmesefficaces.
Différents critères doivent être minimisés: le nombre d’opérations qui doit rester proche du nom-
bre optimal d’opérations sur une machine séquentielle, le temps parallèle minimal (i.e. sur un
nombre infini de processeurs) pour permettre que le temps d’exécution diminue lorsque lenom-
bre de processeurs augmente (on parle d’extensibilité), le volume de communications pour limiter
leur surcoût sur une architecture distribuée. Pris séparément, cesdifférents critéres conduisent à
des algorithmes fondamentalement différents. Un algorithme efficace doit alors réaliser un bon
compromis entre ces critères, pris deux à deux ou dans leur ensemble; il est souvent basé sur un
couplage entre ces différents algorithmes: on parle depoly-algorithmesou d’algorithmes en cas-
cade.
Différents exemples illustrent les techniques de base pour construire des algorithmes efficaces
réalisant des compromis intéressants. Les algorithmes sont représent´es par des graphes de flots de
données. Leur programmation est explicitée à partir d’un langage abstrait,ATH (Asynchronous
Tasks Handling).

Le deuxième chapitre étudie l’ordonnancement de tels algorithmes sur une architecture dis-
tribuée asynchrone (modèle LogP). Le cas le plus général où le graphe est inconnu (les tâches qui
le constituent sont construites en cours d’exécution et sont de durées inconnues) estspécifique-
ment étudié. Un algorithme d’ordonnancement en-ligne qui assure des exécutions optimales pour
un algorithme parallèle efficace tel ceux étudiés dans le chapitre 1 estexplicité. En conclusion,
le langage ATHAPASCAN qui permet l’implémentation d’un tel ordonnancement est présenté. Ce
langage (implémenté par une bibliothèque C++) est une réalisation concrète du langage ATH.
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4 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

Parallel algorithmic is a successful theory. Several methods, techniques and paradigms, which
are presented in several books and surveys [60, 5, 30, 38, 35, 20, 41, 28, 39, 45] have been devel-
oped to build powerful theoretical algorithms. Furthermore, they stand as a basis for implementa-
tion of performant programs on effective parallel architectures. Those general techniques overflow
computer algebra framework even if arithmetic and algebraic computations are of specific interest.

In this chapter, we introduce the main techniques involved in the building of parallel algorithms.
They are illustrated on elementary computer algebra problems. The underlying model is PRAM but
the data-flow graph representation is also introduced. It is used to describe executions of a parallel
algorithm and to define its cost. Three factors are here preponderant: parallel execution time,
number of operations and granularity which is related to the required volume of communications.
An efficient algorithm realizes a compromise solution between those three factors.

The organization of the chapter is as follows. Section 1 describes the local PRAM model,
the data-flow graph representation and cost analysis. Following sections illustrate, using simple
examples, the main techniques involved in the building of:

� section 2: a coarse granularity algorithm from a fine grain optimal one;

� section 3: a fast optimal algorithm from a very fast but non optimal one;

� section 4: a very fast optimal randomized algorithm from a deterministic butnon optimal
one.

Finally, in the last section, we give an overview of parallel time complexity, focusing on boolean-
arithmetic circuits which are commonly used in computer algebra.

1.1 PRAM, DFG and cost analysis

The Parallel Random Access Machine (PRAM) [18, 4] is the most common execution model used
to build and analyze parallel algorithms. Its major feature is to be independentfrom the number
of processors used. In this section we focus on the local PRAM model introduced in [38]. Cost
analysis takes into account both arithmetic and communication complexities.

In the following,
�

denotes an algorithm and
� �

its restriction for input of size� � � � .
1.1.1 The PRAM model

A Local Parallel Random Access Machine (PRAM) is set of:
� an (infinite) number of processors� � 	 
 
 
 	 � � 	 
 
 
, each indexed by an integer (processor

identifier or pid in short). Each processor is a RAM (Random Access Machine [2]) and
gets its own local memory which contains its own pid.

� a global (or shared) memory. Each processor can copy data from the global memory intoits
own local memory: this operation is calledglobal read or read in short. Conversely,
each processor can copy a data from its own local memory into the global one: this operation
is awrite operation.
Initially, the input data are available in global memory. At the end of the computation, the
output data are also stored there.
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� A program that consists in a finite sequence of RAM elementary instructions, extended by
the global elementary (i.e. single word location) read and write instructions.

� a global clock that ensures a synchronous mode of computation. After initialization (first
top), processors are ready to execute the first instruction of the program. At each top (or
step), each processor executes the next RAM instruction in the program. Thus it performs
either an elementary arithmetic operation within its local memory or anaccess to the shared
memory (read or write).
The program terminates when processor with pid 0 executes thehalt instruction.

Note that the program may contain branching instructions eventually depending on the pid value.
Due to branching instructions, at a given top, processors may execute different instructions (Mul-
tiple Instruction Multiple Data – MIMD – type).

Shared Memory
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Figure 1.1: The local PRAM execution model

Semantics of access in shared memory.Due to the synchronous mode of computation, seman-
tics of global memory access is simple and only depends on the behavior when, at a same top,
several processors concurrently accede to a same single location in the shared memory.

At a same top, two processors can’t perform both a read and a write in the samelocation. But
concurrent read (or concurrent write) access may be allowed, depending on the PRAM:

� an EREW-PRAM (Exclusive Read Exclusive Write) does not allow concurrent access to a
single location.
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� a CREW-PRAM (Concurrent Read Exclusive Write) allows only concurrent read access.

� a CRCW-PRAM (Concurrent Read Concurrent Write) allows concurrent access(all in the
same mode, either read or write).

When a concurrent write operation is performed into a single location in the shared memory, dif-
ferent semantics are considered depending on the reduction operation performed toproduce the
final value:

� COMMON: all processors have to write the same value. If not, an error is produced.

� ARBITRARY: an arbitrary processor writes its value.

� PRIORITY: the processor with the minimum pid writes its value.

� CUMULATIVE: the sum of all the concurrent values is written. The addition operation
(defined between single location values) is assumed to be associative. Furthermore, it is
assumed to be commutative; this ensures, a semantic independent from the pids of thewrit-
ing processors likewise concurrent read and common or arbitrary write operations. This
concurrent write mode is also calledcombining[41].

As detailed further, those different variants of the PRAM are relatively closed to each others:
each one can simulate the other one with small overheads [14, 41, 28].

Dynamic task creation The above definition presents two drawbacks:

� it assumed that, after initialization, an unbounded number of processors start execution;

� dynamic creation of parallelism has to be described in the program using busy-waiting; this
means that the scheduling of the program is completely described in the program.

In order to address this second point, in the initial definition from [18], only the processor with pid
0 starts execution of the program. To generate parallelism, an elementary fork � e� instruction
is defined. When a processor� executes this instruction, an inactive processor� �

is reset. The
accumulator of� (which may contain an address in the shared memory where some parameters
are stored) is first copied into the one of� �

. The pid of� �
is then put into the accumulator of� .

This allows� and� �
to later communicate via the shared memory.

At the next step,� executes the following instruction (the one that follows thefork) and� �
starts

the execution of the program at the instruction labelede.
Usingfork, dynamic task creation is made possible, scheduling (allocation of inactive processors)
being ensured by the PRAM machine. However, this modification implies that any PRAM program
that uses a polynomial number� � � � �

of processors takes a time� � � 	 
 � � to be executed, forbidding
the building of constant time algorithms; if an algorithm is involved during the execution of a
program (e.g. inside the body of a loop), this overhead may easily be avoided. Analysisof costs
in this chapter are made under the previous model, thus without taking into account task allocation
overhead.



1.1. PRAM, DFG AND COST ANALYSIS 7

Randomized PRAM To support execution of randomized algorithms, the PRAM is extended in
the following way. A newrandom instruction is introduced that allows each processor to generate
(in one top) a random bit (or a random number that fits in a single memory location).

Random generations (i.e.random instructions) performed by a processor during the execution
are assumed to be independent realizations of an uniform law. Moreover, generations performed
in parallel at a given top by different processors are also assumed to be independent.

1.1.2 Execution of a PRAM program and data-flow graphs

Being given the input data, the execution of a PRAM program may be represented as adirect
acyclic graph. Vertices correspond to instructions that are executed (one vertex, one instruction)
and edges to precedence relations between instructions.

Basically, due to the synchronicity of the PRAM, if� (resp. � ) is the vertex representing an
instruction executed1 at step

�
(resp.

� � �
), then there is an edge from� to � . If we forget extra

synchronization due to the machine model, synchronizations required by the algorithm itself to
ensure correctness of the execution correspond to the ordering of access into a location in memory.
This ordering can be represented by the (macro) data-flow graph (DFG) related to the execution.
DFG is direct acyclic and bipartite with node sets� � � � � 	 
 
 
 	 � � 	

corresponding to instructions (�
meaningjob) and
 � � � � 	 
 
 
 	 � � 	

corresponding to single assignment data (� meaning transition).
An edge goes from�  (resp.� � ) to � � (resp.�  ) if � � is a read (resp. write) instruction of the global
data related to�  .

In this DFG, any memory access, either global or local, is represented by an edge between
a location (represented by a transition node) and an instruction (a job node) that requires the ac-
cess. Except for transitions related to input, immediate ancestors of eachtransition �  are write
instructions: only one on an exclusive-write PRAM, eventually more on a concurrent-write one.
Conversely, its immediate successors (except for transitions relatedto output) are read instructions:
only one on an exclusive PRAM, eventually more on a concurrent-read one. This meansthat when
all immediate successors (job nodes) of a transition have been executed, the location related to it
in global memory may be garbaged.

Let us consider the DFG related to a tree computation scheme. As an illustration, we consider
two algorithms that solve theiterated product2 problem: it consists in computing the product
of � elements. In order to exhibit parallelism, multiplication is assumed tobe associative and
commutative. A balanced binary tree scheme gives an algorithm that works on anEREW PRAM;
related DFG is shown in figure 1.2.a. On a CUMULATIVE-ERCW PRAM all products may be
performed concurrently and cumulated on a shared location (fig. 1.2.b).

This graph defines a precedence relation, denoted� , between instruction nodes in� . Let
� � 	 � � be two nodes in� ; � � � � � if there is a path in DFG from� � to � � . In the following, we
will consider the subgraph� � � � � � 	 � � of � � � , where only arithmetic instructions and their
precedence relations are represented.

Remark 1. The data-flow description of the algorithm is roughly equivalent to astraight-line
program [32].

1Instructions corresponding to� and� may be executed by different processors.
2also callediterated sumwhen an addition law is considered
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Figure 1.2: DFG of two iterated products: (a) EREW (b) cumulative-ERCW

Remark 2. Note that symmetry of input (resp. output) edges to a transition node assumes com-
mutativity of access. This is verified for any concurrent write (resp. read) access defined on the
PRAM.

1.1.3 Describing PRAM algorithms: ATH language

PRAM stands as an abstract model virtualizing any parallel architecture. In order to describe
PRAM algorithms, we need an elementary programming language which leads to aneasy descrip-
tion of algorithms.

Since the evaluation of a parallel algorithm is directly related to the analysis of DFG, a sequen-
tial description should be sufficient thanks to the implicit appearance of data-dependencies: each
read access to a location gets the value put by the last write in a sequentialexecution. However,
two characteristics, which do not appear in a sequential description, are tobe taken into account:

� two levels of memory access are distinguished: local and global. Global memoryaccess
support CUMULATIVE-CRCW semantics.

� the elementary unit of instruction is the block. A block is a sequence of elementaryRAM
instructions. A block is executed in sequential; it takes benefit of local access.

In the following, we consider an extension of the basic PRAM basic language introducedin [18]
based on those two considerations. This abstract language is calledATH, an acronym forAsyn-
chronous Tasks Handling.

Blocks of instructions are defined as procedures bodies. The execution of such a block iscalled
a task. Tasks may be ordered either in sequence using synchronous procedure call or in parallel
using asynchronous procedure calls (prefixed byfork). In this last case, precedence relations
between tasks are defined in a natural way, according to shared-data dependencies that appear
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in a sequential execution of the program. Data dependencies concerning local data are then not
considered in the relative DFG.

Figure 1.3 gives two different recursive programs for the iterated product usinga C++-like
langauage. Version (a) works on an EREW PRAM and is related to the DFG presented in figure
1.2.a. Version (b) works on a CUMULATIVE-ERCW; the corresponding DFG is presented in
figure 1.2.b.

Product(a : in E,
b : in E,
c : out E)

begin
c.Write( a.Read()*b.Read() );

end

IterProd( n : in integer,
a[1..n] : in array of shared E,
res : out shared E)

begin
if(n==1)
res.Write( a[1].Read() );

else
tmp1i, tmp2 : shared E;

fork IterProd(n/2, a[1..n/2], tmp1);
fork IterProd(n-n/2, a[n/2+1..n], tmp2);
fork Product(tmp1, tmp2, res);

end if
end

IterProd( n : in integer,
a[1..n] : in array of shared E,
res : out shared E )

begin
if(n==1)

res.Cumul<*>( a[1].Read() );
else

fork IterProd( n/2, a[1..n/2], res );
fork IterProd( n-n/2, a[n/2+1..n], res );

end if
end

(a) (b)

Figure 1.3: ATH code of two iterated products: (a) EREW, (b) cumulative-ERCW. Data in shared
memory are explicitly declared by the prefixshared. Notationx.f() means that functionf
is called on the data in shared memoryx. In program (b), the function callx.Cumul� *� ( v
)specifies a cumulative concurrent write on the data in shared memoryx; the commutative and
associative binary function implementing the operation is*.

1.1.4 Time, work and communication costs

Consider a PRAM program. In the following,� denotes the size of the input. The arithmetic cost
is characterized by:

� theparallel time
 � � � which corresponds to the number of executed steps;

� thearithmetic work� � � � � , i.e. the whole number of operations performed.

Those quantities are independent of the number of processors and thus may be defined directly
from the DFG description of the execution.

Definition 1 The parallel time
 � � � is the maximal depth of DFG(� ) for any input� of size� :


 � � � � � � �� � � � � � � � 	 
 � � � � � � � � � � � (1.1)



10 CHAPTER 1. PARALLEL EFFICIENT ALGORITHMS

The arithmetic work� � � � � is the number of instruction nodes of DFG(� ) for any input� of size
� :

� � � � � � � � �� � � � � � � � � � � � � � � � � � (1.2)

The arithmetic cost is denoted:
� � � 
 � � � 	 � � � � � � (1.3)

Similarly, the communication cost is characterized by two factors:

� the communication delay3 � � � � � , i.e. the maximal number of global memory access per-
formed by a processor;

� thecommunication work� � � � � , i.e. the whole number of global memory access performed.

The PRAM program implements a scheduling of the DFG on an infinite number of processors:
any access to the local memory on each processor is not considered as a communication. Thus, the
communication cost may vary depending on the number of processors used in the program.
To define communication cost with respect to a parallel algorithm (independent of anumber of
processors, and so more general than the program that implements it), we will refer to its DFG.

Definition 2 The communication work� � � � � is the maximal number of edges for any input of size
� :

� � � � � � � � �� � � � � � � � � � � � � � � � � (1.4)

The communication delay� � � � � is the maximal length of a path in� � � from an input data to an
output one:

� � � � � � � � �� � � � � � � � 	 
 � � � � � � � � � � (1.5)

The communication cost is denoted:

� � � � � � � � 	 � � � � � � (1.6)

In order to compare arithmetic and communication costs, the granularity� � � � is defined.

Definition 3 Thegranularity� � � � is the ratio between the arithmetic and communication works:

� � � � � � � � � �
� � � � � (1.7)

Remark. Previous costs are defined at for DFGs with unit time instructions and unit size transi-
tions. For general non unit size DFGs (denoted as macro data-flow graphs), costs are weighted by
the size of each node: either the number of elementary instructions for a job node or the size of
related data for a transition node. Macro data-flow graphs will be specifically studied in chapter 2.

3� � 	 
 � is calledcommunication complexityin [28].
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1.1.5 Efficient algorithms

Let � be an algorithm with cost
 � � � 	 � � � � � 	 � � � � � 	 � � � � � . Let � � � � � be the work of the best
known (sequential) algorithm that solves the same problem.

The building of a parallel algorithm to solve a given problem may be aimed at different direc-
tions:

� either finding the smallest amount of time required to solve a problem. In this context,
the class� � of problems that may be solved in parallel time
 � � � � � 	 


� � � � � using a
polynomial number of processors� � � � � � � � � � �

plays a central role.

� or building anefficientprogram that leads to solve larger problems in a reasonable amount
of time taking benefit of the ability to use several processors, let us say
 . Here, arithmetic
and communication overheads (i.e.� � � � � and� � � � � ) are to be carefully taken into account
in order to guarantee efficient executions.

A common trade-off [38] consists in building parallel algorithms that:

� havepolynomial speed-up, i.e.


 � � � � � � � � � � � � � with � � � 
 (1.8)

� arework-preserving, i.e.
� � � � � � � � � � � � � � 
 (1.9)

The inefficiency� measures the arithmetic overhead:

� � � � � � � � � �
� � � � � 
 (1.10)

� requirefew communications, i.e

� � � � � � � � � � � � � � � with � � � 
 (1.11)

Such an algorithm is also saidlocal or of coarse-granularityor with polynomial granularity
(note that� � � � � � � � � � with � � �

).

Definition 4 � is said:

� fastif it achieves poly-logarithmic parallel time with a polynomial number of operations, i.e.

 � � � � � 	 


� � � � � and � � � � � � � � � � �
.

� optimal if it is fast and has constant inefficiency.

� efficientif it has a polynomial speed-up and a constant efficiency.

In order to not absolutely reject fast algorithms involving a small overhead in arithmetic opera-
tions, fast algorithms with poly-logarithmic inefficiency will be considered asefficientalso.
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In the following, some main techniques that lead to the building of an efficientandof coarse-
granularity algorithm are overviewed. It turns out that minimizing time withoutpreserving work
(i.e. building� � algorithm) is of specific interest:

� algorithmic techniques involved for both are very close;

� it gives a lower bound on the best parallel time that may be achieved;

� an inefficient but fast algorithm may successfully be coupled to a slower butefficient one to
build a faster program.

1.1.6 Example

We illustrate the previous definitions on the iterated sum algorithm presented infigure 1.3.a. Scalar
product of two vectors is directly reduced from iterated sum; it may be applied to perform matrix
multiplication in a semi-ring.

Iterated sum

For the EREW algorithm presented in figures 1.3.a and 1.2.a (balanced tree computation scheme),
we assume� � � � :


 � � � � � 	 
 �
� � � � � � � � � � � � � � � � 	 
 � � �

� � � � � � � � � � (1.12)

This algorithm is optimal since its cost is – asymptotically – a lower bound.
As a consequence, the scalar product of two vectors is computed on an EREW with cost:

� � � � 	 
 � 	 � � and � � � � 	 
 � 	 � � 
 (1.13)

On a semi-ring,
�

is commutative. Thus, on a cumulative-CRCW PRAM, this problem may
be computed with parallel cost (fig. 1.2.a):

� � � � 	 � � and � � � � 	 � � 
 (1.14)

However, the description of the computation scheme (cf program in fig. 1.3.b) may require
� � � � 	 
 � 	 � � .
Matrix product

Consider the problem of computing a square matrix product� � � �
in a semi-ring (i.e. using

only
�

and � operations).
Let � be the dimension of the matrices: since� � � � � �

�
 � � � � �  �  � � , the problem reduces to� �

independent scalar products. Using 1.13, we obtain a parallel algorithm with cost:

� � � � 	 
 � 	 � � � and � � � � 	 
 � 	 � � � 
 (1.15)

Since� � � � � � � � � � � [37], this algorithm is efficient.
However,� � � � � � � � � and it is not coarse-granularity. Besides, it can be seen that, if� is a

field (or ring), the above algorithm is not efficient (polynomial inefficiency) neither theoretically
since� � � � � � � � � � 	 � [15, 45] nor practically since� � � � � 
 � � algorithms are of practical use [3, 40,
17]. We will see in following sections how to overcome those problems.
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1.1.7 Relations between PRAMs

We consider the cost of the execution of a parallel algorithm (defined on a CUMULATIVE-CRCW
PRAM for instance) on a given PRAM with a fixed number of processors and with its own seman-
tics for access in shared memory. Two cases are distinguished: when the number of processors is
decreased and when memory access are restricted. We consider here only arithmetic costs. The
main consequence is the existence of optimal – within a constant factor – simulations of a CRCW
algorithm that uses an unbounded number of processors on an EREW machine with a fixed number
of processors.

Theorem 1 Fine grain simulation with fewer processors - Brent’s principle [9, 28]. Let �
be an algorithm that can be implemented to run in (arithmetic) parallel time
 and work � �
on a given PRAM with an unbounded number of processors. If each local access corresponds
to a global one, then� can be scheduled on the same PRAM, but with
 processors, to run in
(arithmetic) parallel time
 � � � � :�

� � � � �

 � � 
 � � � � � � � � � � �


 � � 
 � � � (1.16)

It can be noted that this fine grain simulation does not take into account additive costdue to the
computation of the schedule [12, 22].

Remark. In chapter 2, theorem 10 gives a more general simulation result with analoguous
bounds. It consists in a constructive coarse grain simulation for DFGs where arithmetic nodes
may represent a sequence of elementary instructions.

Theorem 2 Simulation with restricted access in global memory[28, 38]. Let � be an algo-
rithm that can be implemented to run in (arithmetic) parallel time
 � on a CUMULATIVE-CRCW
PRAM with
 processor. Then,� can be implemented on an EREW PRAM with
 processors to
run in time� � 
 � � 	 
 
 � .

1.2 Increasing granularity

Efficient parallel algorithms require near-optimal work; obviously, the careful analysis of the small-
est depth DFG induced by a sequential algorithm among the best is then of practical interest.

As a major example, sequential algorithms based on a partitioning of the problem into– many –
independent subproblems have intrinsic parallelism if partitioning and merging (torecover the
global solution) steps are either parallel or of neglected cost. This situation appears frequently
in numerous divide&conquer algorithms (let us sayparallel divide&conquer). As a computer
algebra instance, modular methods based on Chinese remainder computations [2, 10] amount to
this scheme.

Once a fine grain fast parallel algorithm is built, increasing granularity is required to obtain an
efficient algorithm with coarse-granularity. In this section, the technique consisting in stopping the
recursive splitting is illustrated on the matrix product problem; we prove an optimal granularity for
this problem.
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1.2.1 Parallel divide and conquer

Let us consider the example of matrix multiplication using a standard bi-dimensional block algo-
rithm: � � � � � � �� � � � � � �

�
� � � � � �� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � 
 (1.17)

All block matrices products, of dimension� � � , can be multiplied in parallel. Applying recursively
this splitting scheme leads to a parallel algorithm with cost:

� � � � 	 
 � 	 � � � � � � � 	 
 � 	 � � � (1.18)

Note that, since coefficient addition is associative, each entry in the outputmatrix may be computed
as an iterated sum of� values. This allows the whole computation to take a time� 	 
 � (instead
of � 	 
 � � if additions where performed naively at each step). This remark appears directly on the
DFG description for a CUMULATIVE-CRCW PRAM 1.4: all final sums are made in O(1) time.
But the splitting process, which involves no arithmetic operation but recursive forks (cf fig. 1.3.b),
requires� � � 	 
 � � time using recursive forks4. Another technique to obtain� � � � 	 
 � 	 � � � consists
in pipelining additions [1].

Remark. The same strategy applied to Strassen’s algorithm leads to a parallel algorithm with
cost:

� � � � 	 
 � 	 � � � � � � � � � � � 	 
 � 	 � � � � � � � (1.19)

Optimal in work (on a semi-ring), this algorithm has granularity� � � � � � � � � : it is roughly
equivalent to a recursive version of 1.15). In the next section, we detail how toincrease granularity
in order to build an efficient algorithm with coarse-granularity.

1.2.2 Minimizing communication work

Obtaining a coarse-granularity algorithm requires to minimize communications. This can be done
by stopping the recursive parallel splitting process at a given depth, let us saywhen sub-matrices
are of size lesser than� (i.e. depth� 	 


�
 ). Operations – resp. sums and products – on matrices

of dimension� are then performed sequentially, using an optimal algorithm – resp. in time� � � � �
and� � � � � –. The cost is then:

� � � � � � � 	 
 � 	 � � 	 � � 
 � � � � 	 
 �� 	 � �� � (1.20)

which gives an algorithm with granularity� � � � � � . We thus obtain a parallel efficient algorithm
with arbitrary (polynomial) granularity.

Theorem 3 For any � , � 	 

� �

� � � � � � , two � � � matrices can be multiplied by an algorithm
of granularity � with parallel cost:

� � � � � 	 � � 	 � � 
 � � � � 	 
 � 	 � �
� � 


4Note that the brute force program (fig. 1.4) which performs iteratively fork instructions requires � 	 
 � � 
 � � !
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CumulProductTerm( a : in E,
b : in E,
c : out E )

begin
c.Cumul<+>( a.Read()*b.Read() );

end

MatrixProduct( n : in integer;
a : in array[1..n,1..n] of E,
b : in array[1..n,1..n] of E,
c : out array[1..n,1..n] of E )

begin
i, j, k : local integer;

for i = 1..n loop
for j = 1..n loop
for k = 1..n loop
fork CumulProductTerm( a[i,k], b[k,j], c[i,j] );

end loop
end loop

end loop
end

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

c13 c21 c32

c31

c33

c23

c22

c12

c11

a11 a12 a13 a21 a22 a23 a31 a32 a33

b11 b21 b31 b12 b22 b13 b23b32 b33

Figure 1.4: DFG of the multiplication of two� � � matrix (cumulative-CRCW)

The previous algorithm 1.20 proves the upper bound.� .
The following theorem gives lower bounds for communication costs. It shows that theprevious

algorithm achieves an optimal communication delay and an optimal granularity among algorithms
that achieve an optimal communication delay.

Theorem 4 Let � be an efficient parallel algorithm that multiplies two matrices of dimension�
in time 
 using � � 	 � � only and performing� � � � � operations. Then,

� � � � � 
 � �
� � � 	 
 � 	 � � � � 
 � �

� � � �� � 

Since � is efficient, 
 � � � � � � with � � � ; by reduction from iterative sum, we thus have
� � � � � � 	 
 � � .
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Kerr [37, 1] shows the lower bound� � � � � on the arithmetic work. Since� performs� � � � �
operations, its execution can be scheduled in time� � 
 � using
 �

� �
� processors. Let� � , � � � � 
 ,

be the number of shared memory access performed by processor
�
. We then have� � � � �� � � � �

and� � � � � � �� � � � � . To obtain a lower bound on� � and� � , we use the following lemma [1, 25]:
if a processor reads at most� elements of input matrices and computes at most� partial sums of
their product, then this processor can compute no more than� �

� � multiplicative terms for these
partial sums.
Applying this lemma to
 � which reads or writes at most� � elements and since� � � � � multiplicative
terms are to be computed, we have: ��

� � � � �
� �� � � � � � � 
 (1.21)

Bounding� � by � � and replacing
 by
� �
� leads to:

� � � � � 
 � �
� 	 
 (1.22)

Noticing that� �� � � � �
� �� � � � � �� � �� � � � � , we obtain:

� � � � 
 � �
� � � �� � (1.23)

which concludes the proof� .

Recursive multiplication algorithms. A similar study can be applied to other recursive matrix
multiplication algorithms (e.g. Strassen). It also lead to efficient parallel algorithms with both
polynomial speed-up and polynomial granularity that lead to performant implementations [17].

1.2.3 Conclusion

In this section, we have studied the DFG of a sequential algorithm, based on a divide&conquer
scheme, that contains inherent parallelism. By halting the recursive process in order to minimize
communications, we have exhibited a family of efficient parallel algorithms with arbitrary coarse-
grain granularity.

Due to its practical interest, this technique has been successfully appliedto various problems.
One of significant interest in computer algebra is the discrete Fourier transform. The direct analysis
of the FFT algorithm leads to a parallel algorithm with cost:

� � � � 	 
 � 	 � � 	 
 � � � � � � 	 
 � 	 � � 	 
 � � 

A clustering of elementary instructions (block clustering on the first� � � �

� steps and cyclic clustering
on the last� � � �

� steps, cf fig. 1.5) leads to an algorithm with parallel cost [41, 39]:

� � � � � � 	 
 � 	 � � 	 
 � � � � � � � 	 � � 

This algorithm has polynomial speed-up, optimal work and achieves also optimal granularity [1].
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Figure 1.5: DFG of the EREW� � � � � � � � � � � � � � � 	 FFT algorithm of 16 points. There are
 � � arithmetic tasks (represented by square boxes embedding elementary operationsand local
dependencies), each corresponding to a sequential FFT computation on� � points. For any task
on the left, shared data dependencies imply a precedence relation with the� � tasks on the right.
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The resulting algorithm is based on coupling a very fast parallel algorithm, optimal in time but
requiring many communications, to a sequential one which minimizes communication. Such an
algorithm is called “poly-algorithm”; the technique that underlies this coupling is called “cascading
divide&conquer”.

Cascading divide&conquer may be applied in a more general context, by coupling a very fast
parallel algorithm, yet requiring many operations, to a slower one which performs an optimal
number of operations. This technique makes the building of very fast algorithms attractive even if
the required number of operations is larger.

1.3 Breaking data-flow dependencies by redundancy and cas-
cading divide&conquer

It may appear that DFGs related to a sequential algorithm contain data-dependencies that bound
parallelism. Introducing redundant computations may then allow to break dependencies in order
to minimize parallel time. Cascading divide&Conquer may then be used to obtainan optimal
arithmetic work. In this section we illustrate this technique on the computation of the solution of a
triangular linear system presented in [46]. We focus on communication costs.

Let
�

be an� � � nonsingular triangular matrix with coefficients in a field� . We assume by
convenience� � � � . Let � a vector in�

�
. We consider the computation of� � � � �

� .

1.3.1 DFG of the best sequential algorithm

The simple forward substitution algorithm has sequential cost� � � � � � � � � � � . Direct analysis of
its DFG (see fig. 1.6) gives its parallel cost:

� � � � 	 � � � � � � � 	 � � � 	 (1.24)

which leads to an algorithm with polynomial speed-up but small granularity� � � � � � � � � .
If entries of

�
are in global memory after initialization, we have� � � � � � � � � � � . In a view

to minimizing the communications involved by the algorithm itself, in the following we do not
consider the access to

�
in the communication work� � � � � .

In order to increase granularity, we consider a divide&conquer version of this algorithm [7].
Let

�
, � and� be divided into blocks:

� �
� � � � �� � � � � � � � �

�
� �
� � � � �

�
� �
� � � 
 (1.25)

Here
� � � is of size� � � , � � and� � are of size� . We have:

� � � � � � � � and
� � � � � � � � � � � � � � 
 (1.26)

where� � and � � are computed recursively using the same algorithm;
� � � � � is computed using a

scalar product (see 1.13). Note that the use of a pipeline scheme leads to the previous parallel cost
1.24.



1.3. REDUNDANCY AND CASCADING DIVIDE&CONQUER 19

Update( x : out E,
a : in E,
y : in E )

begin
x.Cumul<+>( -a.Read()*y.Read() );

end

FinalDivision( x : in and out E,
a : in E )

begin
x.Write( x.Read() / a.Read() );

end

TriangularSolve ( n : in integer,
a : in array[1..n, 1..n] of E,
b : in array[1..n] of E,
x : out array[1..n] of E )

begin
i,j : local integer;

for i = 1..n loop
x[i].Cumul<+>( b[i].Read() );
fork FinalDivision(x[i], a[i,i]);
for j = (i+1)..n loop
fork Update(x[j], a[j,i], x[i]);

end loop
end loop

end

b1 a11

X1 a31

a21

b2

a22

-*

/

-*

+

/

X2 a32

-*
b3

a33

/

X3

X2

X3+

Figure 1.6: DFG for the solving of a� � � nonsingular triangular matrix

We may then stop the recursive splitting when matrices are of size� � � , and use sequential
algorithms (triangular system inversion and matrix-vector product) on matrices of size lesser than� . The resulting parallel cost is:

� � � � � � � � 	 � � �
� � � � �� � (1.27)

which leads to an algorithm with granularity� � � 	 � � � � 	 .
Theorem 5 For any 	 
 � , a triangular nonsingular linear system can be solved by an efficient
parallel algorithm of coarse granularity� � in time � � �  � � 	 .
Choosing� � � � � � � � 	 in 1.27 proves the upper bound.� .

1.3.2 Breaking dependencies

The linear time lower bound on previous algorithm time comes from the dependency in formula
1.26 between computations of�  and � � . This dependency may be broken by directly computing
the inverses of the triangular nonsingular matrices�   and� � � .
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Consider the matrix
�

split in four blocks of dimension� � � (1.25 with � � � � � ). Then we
have: � � � �

� � � �� � �
� � � �

� � � � � � � �� � � � �
� � � (1.28)

From theorem 3, the product of two matrices of dimension� is computed with parallel cost
� � � � 	 
 � 	 � � � . In the following, we will refer to this cost.

To compute the inverse of
�

from 1.28, we first compute recursively and in parallel
� � �� � and� � �

� � . Then we compute the last block of
� � �

by performing sequentially two parallel matrix
products. The parallel cost for inverting

�
is then:

� � � � � � � � 	 � � � � � 
 � � � � � 	 � �
� 	 


� �
� � � (1.29)

Once
� � �

is computed,� � � � �
� can be computed with the same cost. However, even if polylog-

arithmic in time, this algorithm has polynomial inefficiency. In the next paragraph, we use it on� � � in 1.26 in order to decrease parallel time.

Remark. The above algorithm is efficient for computing the inverse of a nonsingular triangular
matrix. Note that by using fast matrix multiplication, the parallel cost isreduced to� � � � 	 
 � � 	 � � �
with � � � 
 � � [46]. Besides, if computations are performed sequentially when the dimensions of
the matrices are lesser than� � � � , � � � � � , the obtained algorithm is efficient and has polynomial
speed-up and polynomial granularity.

1.3.3 Cascading divide&conquer to minimize time

The previous algorithm is not efficient but may be combined to the recursive sequential algorithm
(formula 1.26). The trick is to use it on small dimension matrices (let us say � ) when the overhead
� � � � � due to the fast inversion of such a matrix becomes neglectible compared to coefficients
updates (roughly� � ). This leads to the following algorithm of Pan&Preparata [46].

Theorem 6 The solution of a nonsingular triangular system can be computed in

� � � � � � � � 	 
 � 	 � � �
using a standard� � matrix multiplication algorithm.
If a fast � � multiplication is used then the parallel cost is:

� � � � �
� � � � � �

� � � �
� 	 
 � � 	 � � � 


The following 1.27, let
�

be split in� � � � � blocks of size� � � . Though, note that a direct com-
putation (see theorem 1.27) leads to a parallel time� � � � � � � 	 
 � � � . To avoid the� 	 
 � overhead
factor in the parallel time, we proceed by gathering computation on� 	 
 � � blocks.
Let � � � � 	 
 � ; the matrix

�
may be seen as split in� � � � � � blocks, each block consisting in� 	 
 � �

sub-blocks of dimension� (cf fig. 1.7).
We use the sequential iterative algorithm on the� � � � � � � � � � � coarse grain matrix. At step

�
, we
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of size h.log(h) * h.log(h)
n/h.log(h) blocks

log(h) blocks
of size h * h

Figure 1.7: Splitting used for� � � , � � 	 
 � � � � , � � � �

have to invert the triangular system corresponding to the diagonal block� � 	 � � . For this compu-
tation, we first invert concurrently the� 	 
 � diagonal sub-blocks of this block. Then, we update
others sub-blocks of� � . At the end of the step, blocks� � , for � � �

, are updated.
The algorithm is the following:

Initialization.
Let

�
be split into� � � blocks� � � � of dimension� (� � � � 	 
 � ). For

� � � � � � � � � , let
� � � � be split into� 	 
 � � � 	 
 � block �  � �� � � of dimension� .
Let � be initialized to� and split according to

�
.

for
� � � 
 
 � � � do

1. for � � � 
 
 � 	 
 � do

fork � �
� � �� � � 	 � �

� invert� � � � �� � � � .
Using fast inversion and Brent’s principle, the cost is� � � � 	 
 � � 	 � � � 	 
 � � .

2. for � � � 
 
 � 	 
 � do
update� �� in parallel

� �� � � �
� � �� � � 	 � � � � �� � � � � �

� � � �
� � �� � � � �� 	

Scalar product are performed in parallel: thus� � is computed with a cost� � � � 	 
 � � 	 � � � 	 
 � � .
3. for � � � � � 
 
 � � � fork update� � in parallel

� � � � � � � � � � � �
Performing scalar product in parallel, the cost is� � � � 	 
 � 	 � � � 	 
 � � .

The final cost is :� � � � � 	 
 � � � � 	 � � � � � � � � � � 	 
 � 	 � � � 	 
 � � � . Since� � � � 	 
 � , it reduces to:

� � � � � 	 
 � � � 	 � � � � � � � 	 � � � � 	
and the optimal value for� is the larger one that leads to a work� � � � � � � � � � � . Thus, we choose
� � � � � � and we obtain the upper bound.
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The same technique is applied to obtain the upper bound when a fast matrix multiplication algo-
rithm is used.�

1.3.4 Applications in linear algebra

Many linear algebra algorithms are based on a Gaussian elimination scheme: linear system solving,
normal forms (Hessenberg, Smith, Frobenius, symbolic Jordan). Such a scheme provides parallel
algorithms with polynomial speed-up: at each step, a transformation is computed that can then be
applied in parallel to each coefficient of the matrix. For instance, solving anon-singular linear
system using standard Gaussian elimination leads to a parallel algorithm with cost:

� � � � 	 � � � � � � � 	 � � � (1.30)

Moreover, very fast deterministic algorithms (polylogarithmic paralleltime) are known for most
problems [45, 24, 58, 57] but they are often inefficient (� � � � � � � � � � �

� � � � � ). For instance,
solving a non-singular linear system can be computed in parallel with cost:

� � � � � � � � 	 � � � � � (1.31)

with � � � � � in characteristic zero [16, 50] and� � �
in the general case [11]. Applying the same

cascading divide and conquer strategy leads to sub-linear parallel algorithms with optimal5 work
[46]:

� � � � � � �
� 	 
 � � 	 � � � 
 (1.32)

Remark. The same technique applied on Strassen formulation [56] (which may take benefit of
fast � � � � � � � 	 � matrix multiplication algorithms), does not succeed in the building of a sub-linear
algorithm with parallel time� �

, � � �
.

1.3.5 Conclusion

In this paragraph, we have used bi-dimensional block matrix partitioning in order to:

� increase the granularity to build polynomial speed-up algorithms with polynomial granular-
ity; the technique used is cascading divide and conquer with a sequential algorithm in order
to decrease communication costs.

� decrease parallel time while preserving the work; the technique used is cascading divide and
conquer with a very fast but inefficient algorithm in order to make the computationfaster.

In [46], the same technique, calledwork-preserving speed-up, is applied to several linear algebra
algorithms: LU factorization, inversion, quasi-inversion, solution of linear structured systems.

5relatively to the standard 	 
 � � sequential algorithm
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1.4 Randomization to decrease time or preserve work.

When an algorithm has a bounded degree of parallelism or a polynomial efficiency, randomization
may help in order to either decrease time or preserve work, eventually both. This section illustrates
both aspects on the computation of the rank of a matrix.

In computer algebra, randomization is most often introduced via the verificationof a polyno-
mial identity by evaluation on a random value. Testing whether a polynomial is identically zero
can deterministically be solved by evaluating the polynomial, represented as a straight-line pro-
gram, at a sufficient number of points. However, depending on the degree and on the number of
indeterminates, such a deterministic test can require a huge number of evaluations. Following the-
orem, due to Schwartz [54], uses randomization in order to reduce this number while bounding the
probability of failure.

Theorem 7 [54, 28] Let � � � � 	 
 
 
 	 � � � be a polynomial in the variables� � � � , � � � � � , over
a field � . Let � be a finite subset of� with cardinal � . Let � � � 	 
 
 
 	 � � � be a vector selected at
random in�

�
. If � is not identically zero then

Prob � � � � � 	 
 
 
 	 � � � � � � � � deg� � �
�



Once a problem is reduced to the verification of a polynomial identity, this theoremallows

to build a Monte-Carlo algorithm to solve it (for an introduction on Monte-Carlo and Las Vegas
algorithms, see [36]). It is sufficient to build a parallel algorithm that evaluates the polynomial at
a given input point. By choosing this point at random in a large enough finite subset6 we obtain a
Monte-Carlo algorithm whose probability of error is at most

� � � . This technique may be applied
in a very large framework [36, 28] and is commonly used in computer algebra [45] tobuild fast
algorithms with optimal work. We illustrate it on the problem of computing the rank ofa matrix.

In the following,
�

denotes a matrix of dimension� � � with coefficients in a field� . For the
sake of simplicity,� is assumed infinite.

1.4.1 Randomization to suppress dependencies

The rank of a matrix can be computed using a standard pivoting Gaussian elimination. Similarly
to 1.24, this results in an algorithm with parallel cost:

� � � � 	 � � � � � � � 	 � � � (1.33)

On the contrary to triangular system solving, the computation scheme (DFG) is relatively un-
known: coefficients to modify are determined at each step only once the pivot element has been
chosen.

In [8], randomization is used in order to reduce the whole problem to a fixed DFG onwhich
parallelization techniques can be applied. The algorithm is based on the following characterization
of the rank: rank� � � � � iff there exist two non-singular matrices� and � such that the principal
minor of dimension� in �

� � is non zero while principal minors of dimension larger than� are

6Note that, if� is not large enough, this may require to work in an extension of � [24].
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zero. Moreover,� and � can be taken at random with a high probability of success: the use of
theorem 7 to evaluate this probability requires to express the problem as a polynomial identity.

Let � � � � 	 � � denote the principal minor of dimension
�

of �
� � . Due to multi-linearity of the

determinant,� � is a polynomial of degree� � with indeterminates� � � � and � � � � (
� � � 	 � � � ).

Previous rank characterization leads to the following polynomial identities:

� � �� � � � � � �
� � � � � � � � � (1.34)

This suggests the following Monte-Carlo algorithm to compute� :

1. Choose two random non-singular matrices� and � with coefficients in a finite subset of
cardinal� of � ;

2. Compute:� � �
� � ;

3. For
� � � � � , compute� � � det� � � � and let� � � �

;

4. Return� � Max � � � � � � � � � � � �  �� � 	
.

(Note that step 3 and 4 may be replaced by a logarithmic search to compute� ).

In any case,� � � . The probability of error, which occurs when� � � , corresponds to executions
where the evaluation� � of polynomial� � is zero although� � , of degree� � , is not identically zero.
From theorem 7, this probability is bounded by� �

� . Choosing� � � � results in a Monte-Carlo
algorithm with probability of error lesser than

�
� .

Arithmetic cost is dominated by the computation of the� determinants. If Chistov’s method
[11] is used, this cost is:

� � � � � � � � 	 � � �
� � (1.35)

In order to improve efficiency, determination of� may be computed using a logarithmic scheme
instead of the previous brute force method. Using an efficient randomized algorithm to compute the
determinant (for instance the randomized one of Kaltofen and Pan [33], the parallel cost becomes

� � � � � � � � 	 � � � 	 
 � � 	 (1.36)

From Monte-Carlo to Las Vegas. The building of a Las Vegas algorithm from a Monte-Carlo
one mainly consists in verifying that the output is a correct solution to the initial problem. Such a
verification is easy from the previous algorithm; it suffices to verify thatall columns (resp. rows)
of the matrix� � �

� � are linear combinations of� independent columns (resp. rows) in� , �
being the output of the algorithm.

Consider the following splitting for� , the first block� � � being of size� � � :

� �
�

� � � � � �
� � � � � � � 
 (1.37)

� � � is a non-singular matrix. Let� � � � � �
� �� � and � � �

� �� � � � � ; note that� and � � are of
size � � � � � � � . Since� and � are non-singular,

�
is of rank � iff the last � � � � � rows and
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columns of� are respectively linear combinations of the� first ones. This relies on the following
identities: ���

��

�
� � � � � � � � � �

� � � � � � ��
� � �
� � � � �

�
� � �
� � � � � (1.38)

Assuming a Las Vegas algorithm to compute�
� �� � with parallel cost� � � � 	 
 � � 	 � � � 	 
 � � ([33],

those identities can be verified with a parallel cost:

� � � � 	 
 � � 	 � � � 	 
 � � 
 (1.39)

This results in an optimal randomized Las Vegas algorithm to compute the rank.
In the above algorithm, randomization is strongly used for preconditionning the input (compu-

tation on �
� � instead of

�
) in order to suppress data dependencies that bounds parallelism. A

natural question is then the existence of a fast deterministic algorithm, i.e. with few dependencies.
In [44], Mulmuley provided such a deterministic algorithm for computing the rank: it achieves
parallel time� � � 	 
 � � � but polynomial inefficiency. Then, randomization is required to provide
efficiency.

1.4.2 Randomization to provide efficiency

Based on a generalization of a method developed in [27] for arbitrary fields, Mulmuley algorithm
[44] reduces the problem of computing the rank to the computation of a characteristicpolynomial
in an extension of the ground field� .
In the following,

�
is assumed symmetric; this is done without loss of generality since

rank� � � �
�
� rank 
 �

� �
� � � � � 


Theorem 8 [44] Let
�

be a square symmetric matrix over a field� and let � be the highest
integer such that� � divides the characteristic polynomial� � � � � � � �

�
� � � � � � 	 � � � of the matrix� 


over � � 	 � :
� 
 �

�
����

�
	 �

� ...
	

� � �

�
�����

� 


Then rank� � � � � � � .

Deterministic parallel algorithms for computing the characteristic polynomial in parallel time
� � � 	 
 � � � are known [16, 11] but they have work� � � � �

� � . Even if we assume an optimal algo-
rithm for computing the characteristic polynomial with arithmetic work� � � � � , due to polynomial
arithmetic, the cost of the above algorithm would be:

� � � � 	 
 � � 	 � � � � � �
� � � � � � (1.40)

Since� � � 	 � are polynomials of degree� � � � , a way to obtain efficiency is to get rid off polynomial
arithmetic on� using evaluation at a random value.
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Moreover, efficient� � � � � � � � 	 � � � 	 
 � � randomized algorithm are known for computing the min-
imal polynomial. Multiplying

� 

by a random non-singular matrix over� results, with high

probability, in a matrix with distinct eigenvalues; then, minimal and characteristic polynomial are
equal.
Those two steps of randomization result in the following efficient Monte-Carlo algorithm for com-
puting the rank:

1. Choose a random non-singular matrix� ;

2. Choose a random value	 in � (or in an extension if� is too small);

3. Compute the minimal polynomial� � � � � � � of the matrix� � �
;

4. Return� � � where� is the highest integer such that� � divides� � � � � � � .
The parallel cost is then:

� � � � 	 
 � � 	 � � � 	 
 � � (1.41)

which results also in an efficient Monte-Carlo algorithm.

Remark. The above algorithm is very close to the one presented in 1.4.1; Mulmuley algorithm
can effectively be considered as an inefficient deterministic versionof 1.4.1. This is not surprising
since both randomized algorithms solve efficiently the same problem. However, we have pointed
out two different motivations for the use of randomization.

1.4.3 Conclusion

In the above examples, randomization is used to provide work-optimal computations from either
slow or fast but not efficient deterministic algorithms. Due to the fact thatonly randomized algo-
rithms are known for computing efficiently the inverse of a matrix in polylogarithmic time [33],
randomization is an important tool in parallel computer algebra.

1.5 Parallel time complexity and NC Classification

An efficient parallel algorithm achieves polynomial speed-up within an optimal(or near optimal)
number of operations. Obtaining bounds on the parallel time required to solve a given problem
within a reasonable number of operations is then of fundamental interest. Moreover, as detailed in
previous sections, very fast parallel but inefficient algorithms may be of practical interest if they
can be coupled to an efficient but slow algorithm.

In the framework of parallel complexity,� � class [13] which includes polynomial sequential
time problems that have a polylogarithmic parallel time plays an important role [35]. The parallel
model used in the formal definition of� � is log-uniform family of boolean circuits [53].� �  is
the class of problems that can be solved by such a family with depth� � � 	 
  � � and� � � � �

boolean
gates7. For instance, integer arithmetic (

�
, � , � and Euclidean division) lies in� � �

. Introduction

7Gates compute bounded fan-in boolean operations (or, andandnot) and have unbounded fan-out [26]. Extensions
to unbounded fan-in gates leads to class

� � [29].
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of gates that deliver in output a random bit allows to define corresponding randomized classes:� � � for Monte-Carlo circuits and� � � for Las Vegas ones. Problems� -complete [28, 49, 35]
are in � � only iff � � � � ; among them, themonotone circuit value problem(MCVP) consists
in the evaluation of a boolean circuit, roughly equivalent to a DFG with boolean nodesas defined
in this chapter. The integer greatest common divisor remains an open question; only sub-linear
� �

�� � � � � algorithms are known [34, 35].
The algebraic extension [61] of this primitive model allows to build circuits which gates com-

pute arithmetic operations in an algebraic domain. A gate testing nullity (� � � ) is introduced
in order to mix boolean and arithmetic operations. For instance� � � (� stands forfield) is the
class of problems that can be solved by log-uniform family of circuits whose gatesperform arith-
metic operations in any field, i.e.

�
, � , � , � and � � � . Complexity of basic computer algebra

problems has been extensively studied [8, 13, 59, 60, 35, 45]. Polynomial arithmetic(
�

, � , �
and Euclidean division) lies in� � �� [45]. An important class is� � 
 � which contains problems
� � �

-reducible to the determinant of a matrix; matrix powering is complete for� � 
 � . � � 
 �
is included in� � �� . Most of linear algebra problems lie in� � �� : rank, null-space, minimal and
characteristic polynomial, gcd of many polynomials [8, 44], Hermite normal form ofpolynomial
matrices [31], Smith and symbolic Jordan forms [52, 58, 57, 21]. Note that those problems admit
an optimal� � � � 	 
 � � 	 � � � � � � parallel algorithm by using randomization [33, 23, 24, 45]. Though,
in certain cases, some general techniques are known to remove randomness without increasing the
work [42], no work optimal deterministic algorithms with poly-logarithmic timeare known for
those problems.

As it appears for most computer algebra problems studied in this chapter, parallel algorithms
often appear as a restructuration of sequential ones, taking into account algebraic properties of the
arithmetic operations involved. Although evaluation of a boolean circuit is� -complete, several
algorithms have been developed to evaluate arithmetic DFGs (also called straight-line programs)
taking benefit of the underlying structure. In a semi-ring, DFG that are trees can be evaluated in
� � � 	 
 � � time without increasing the number of operations performed [9]. Any DFG performing
� operations in a semi-ring and whose outputs are of arithmetic degree8 � can be evaluated in
� � � � 	 
 � � 	 
 � � � � 	 � � � [32]. This result has been extended to DFGs performing operations in a
lattice [51]. A more general simulation of a RAM machine on a PRAM one [43] shows that any
DFG can be evaluate in parallel on an unbounded number of processors with polynomial speed-up.

1.6 Conclusion

This chapter overviews the PRAM framework (execution model and main algorithmic techniques)
in which parallel algorithms are built and analyzed. The macro data-flow graph (DFG) related to
the execution plays a central role: it describes data-dependencies between blocks of instructions.

Abstract measures used to analyze algorithms aredepthandwork; arithmeticandcommuni-
cationcosts are distinguished. The one corresponds to operations performed (macro-instructions
nodes) while the other to access in the shared memory (data dependencies nodes). Arithmetic
work and depth have been used for many years to analyze performances of parallelalgorithms

8In such a DFG, any output may be equivalently seen as a polynomial whose indeterminates are the inputs. The
arithmetic degree is then the maximal degree of polynomialscorresponding to the outputs.
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[9, 55, 35, 28, 6]. Due to experimental constraints, the relevance of communications costs (i.e. to-
tal communication traffic – work - and total communications delay) has been pointedout to obtain
practical performant programs [5, 19]. Since minimizing communications overhead and minimiz-
ing parallel time are antagonist, good trade-offs have been studied for several common algorithms
[47, 1, 48]. The granularity, defined as the arithmetic-to-communication works ratio, appears as a
good parameter.
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In order to analyze performance of algorithms, a formal model is needed to take thecosts into
account. The success of the PRAM model is mainly due to the fact that it does not attempt to
represent any parallel architecture but can be mapped onto various ones. Moreover, the simulation
on a realistic machine can be made efficient (up to a constant related to thegranularity), provided
many processors of the PRAM are mapped onto a single processor of a host machine. Thissuccess
is brought to evidence by the fact that most of the tricks used to optimize practicalperformances
when programming on a given architecture are relevant to algorithmic techniques that are theoret-
ically justified on the PRAM model.

Given an algorithm (let us say a macro data-flow graph – DFG – as presentedin chapter 1) and
a particular multiprocessor architecture, the problem then is reduced to:

� find a good (the best) schedule of the DFG;

� implement the resulting algorithm in a programming language.

Only now, the performance of the program, i.e. the completion time of an execution,may be
determined. Assuming fixed the initial algorithm, the machine and the input, this performance
depends directly on the scheduling strategy. Tuning the program ammounts to improving the
schedule it implements.

This chapter presents the main techniques used to schedule data-dependencies graph (DFG)
on a given architecture. As presented in chapter 1, a DFG is the abstract representation of the
execution of a particular program on a specific input data� . A fine grain description (elementary
instruction, elementary data dependency) is unrealistic for executions requiringhours of compu-
tation time. We will thus assume that arithmetic nodes of the DFG correspond tosequence of
instructions: each arithmetic node is then weighted by the number of elementary instructions it
performs.

Arithmetic depth
 � � � and work� � � � � are evaluated taking into account nodes weights.
 � � �
is a lower bound of the minimal time required by any schedule ignoring communications times.
� � � � � is the exact number of operations required by a sequential execution of the algorithm. Since
the best schedule may replicate some arithmetic nodes in order to minimize completion time, note
that � � � � � is also a lower bound on the number of operations performed by any schedule.

Similarly, transition nodes may correspond to a complex data structure (not a single word);
each transition node is weighted by the size of the data it corresponds to. Communication delay
� � � � � and work� � � � � are also evaluated accordingly. Ignoring arithmetic time,� � � � � is an upper
bound on the minimal communication time required by the best schedule for an infinite number of
processors.� � � � � is an upper bound on the number of remote access (communications) performed
by any schedule.

As straightened in the previous chapter, the initial parallel algorithm is assumed efficient, i.e.
� � � � � � � � � � � � � where� � � � � is the time of the best known (uniform) sequential algorithm,�
being the size of the input. Moreover, in order to make performance evaluation with � in input, we
assume that there exists a constant� such that:

� � 	 � � � � � � � � � � � � � � � � � � � (2.1)

Note that, for a given input� , DFG� may be known only after completion: instructions or
transitions nodes and edges are dynamically built. In the language ATH introduced in chapter 1,
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those nodes are created either by execution of afork instruction or by access to a shared data.
Similarly, the cost of any instruction node (resp. size of data related to any transition) is known
only after completion of the instruction (resp. communication). In such a generalcontext, DFG�
has to be scheduled using an on-line algorithm. Related to a functional programming model,
most of computer algebra algorithms present such a dynamic behavior; we thus focus on on-line
scheduling algorithms.

Organization of the chapter is as follows. In the first section, specific characteristics of asyn-
chronous distributed architectures are recalled. Costs of basic operations are modeled by theLogP
model introduced in [15]. Basic mechanisms allow parallel and distributedprogramming: com-
munications, threads, remote memory access and synchronizations tools. In the second section,
the scheduling of a PRAM algorithm on such a machine is discussed. Approaches may be distin-
guished in two classes. The first one [54, 28] is based on the simulation of a PRAMmachine on a
given architecture: the execution of the parallel algorithm is managed via thesimulation. Global
synchronization and emulation of the shared memory, which are at the basis of the PRAM model,
are key points. The second one [26, 51, 38, 50, 5, 19] is based on the direct scheduling of the
DFG. The execution of the algorithm is handled by a scheduling algorithm. Both approaches are
motivated by the availability of provably good approximation algorithms to solvethe underlying
theoretical problems (permutation routing [48, 42, 55, 40] or DAG off-line and on-line scheduling
[29, 49, 13, 36, 47, 14, 8, 6, 30]).
The last section focuses on on-line scheduling algorithms which are of main interest in computer
algebra. We firstly recall upper and lower bounds on the competitive-ratio without taking into ac-
count scheduling and communication overheads. As a corollary, we then exhibit a list-scheduling
algorithm which achieves optimal simulation of any efficient PRAM algorithm, taking into account
those overheads. Finally, we overview some programming languages or librariesbased on those
approaches, focusing on the one suited to computer algebra algorithms. We describe aneffective
implementation of the theoretical language ATH introduced in chapter 1, ATHAPASCAN, which
achieves provably performances.

2.1 Asynchronous distributed architectures

2.1.1 Realistic models of distributed architectures

There is an apparent convergence in the field of distributed architectures which are similar to a
network of workstations. A parallel machine consists in a set of independent processors, each with
considerable local memory, linked by an interconnection network. Fundamental differences with
the PRAM model are the following (compare 2.1 to 1.1 in 1):

� asynchrony: each processor works independently with its own local memory; there are no
global synchronization.

� contention: the network is a resource with bounded access.

Like the local PRAM introduced in chapter 1, two levels of access may then be distinguished: local
and remote access (parallel machines are often called NUMA for non-uniformmemory access1).

1Note that this non-uniformity appears also at the processorlevel between cache and RAM access.
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Figure 2.1: General structure of a distributed architecture.Differences with the PRAM presented
in chapter 1 are the absence of a global sequencer and contention for access to the network.
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Costs of remote access are mainly characterized by two factors:

� bandwidth: the rate at which each processor can access memory;

� latency: the time between making a remote access request and receiving the reply. Latency
accounts for resource allocation (solving contention on network) and duration of communi-
cation (related to physical distance).

The network bandwidth that is available on recent parallel computers (� 1 GB/s on SGI Power
Challenge, Cray T3E, SUN HPC) and even on local networks (typically 1 Gb/s using Mirynet
connection or DEC Memory Channel) is becoming large enough compared to the bandwidth to
local memory; thus it appears less and less as a bottleneck. However, latency is a more serious
problem since it is bounded by physical limits.

Several variations of the PRAM model have been proposed in order to take into account those
practical constraints [15]: memory contention [40, 54, 42, 45], asynchrony [27], memory hierarchy
[3, 34], latency and bandwidth [47, 1]. Considering that point-to-point communication is abasic
primitive, the modelLogPproposed in [16] characterizes a distributed architecture by the following
parameters (fig. 2.2):

� : latency: an upper bound on the delay incurred in communicating an unit size data (i.e. a small
number of words) from its source to its destination; an extension to longer messageshas also
been developed [2].

�
: overhead: the time a processor is engaged in the transmission or reception of a message;

� : gap: minimum time interval between consecutive message transmissions or receptions.
The reciprocal of� corresponds to the available communication bandwidth per processor; it
is denoted� in [47].

� : the number ofprocessors.

This model has been successfully used on different architectures to predict the execution time
of some parallel algorithms [16, 20]. As a consequence, classical balanced tree schemes used on
the PRAM to perform iterated sum or broadcast appear as non optimal [41].

As a conclusion, the portability of a parallel program cannot be achieved if the characteristics
of the target architecture are not taken into account. Notingly, the communicationparameters, that
are partly modeled byLogP, have significant influence on the performances.

2.1.2 Basic programming tools

Reliable message-passing communication is the lowest-level feature required for programming a
distributed architecture. It allows both to exchange data between processors (the basic functionality
of the PRAM shared-memory) and to express synchronization (the functionality ensured by the
sequencer of the PRAM).

Since 10 years, several message basic interfaces have been built on top of the low level ones
provided on any specific architectures in order to allow portable programming. Most famous
ones are PVM [24] and MPI [53]. MPI has been standardized [18] and is nowadays available
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Figure 2.2: Communication cost parameters in the LogP model.

on any distributed architecture or network of workstations. Basic featuresof MPI are point-to-
point and (blocking) collective communications, communication contexts (communicators), user-
defined data-types. Other extensions concern remote memory access, parallelinput and output
(MPI-F), active messages and dynamic process control.

In order to hide the communication latency by arithmetic computations, two tools may be
used: asynchronous communications and threads. Threads are lightweight processes whichre-
quire a small overhead for context switching. They are handled directly in the source program:
a standard interface, POSIX, has been defined [10]. Threads have firstly been defined for con-
current programming and efficient use of SMPs (Shared Memory Processor) on a single node.
Since threads access concurrently the same memory space, synchronization toolsare provided for
atomicity, such as locks and semaphores (sometimes monitors).

Threads are well suited to hide latency on a distributed architecture: when a thread waits for
the result of a communication, it may be preempted and a ready one scheduled. Thus, several
portable programming interfaces have been built to couple a message-passing library (usually not
thread-safe) and a thread library (available on a single node), providing an easy way to the user for
lightweight remote procedure calls or active messages [21, 46, 9].

2.1.3 Shared virtual memory

On many distributed architectures, remote memory access are possible: they provide a virtual
shared memory analogous to the one of the PRAM. On such machines, specific hardwareallows
to load transparently a local or remote data in the cache of a processor. In orderto hide the latency
of remote access, prefetching and multi-threading is used.

The simulations of the PRAM shared memory on a distributed architecture use hash functions
(randomly chosen from a universal class) to map shared memory cells onto theones of the ar-
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chitecture (i.e. memory modules) [48, 42]. The delay of a simulation is the timerequired for a
single access. It is related to the evaluation of the hash function, the memory contention (when
several access to a same module occur), and the routing time if the network isnot complete. In
[48], a simulation with delay� � � 	 
 
 � of an EREW PRAM on a butterfly network is given. In
[40], randomized simulations of EREW and CRCW PRAMs on a distributed architecture with a
complete interconnection network (contention is not taken into account) are presented with delay
� � � 	 
 � 	 
 
 � 	 


� 
 � . Note that, concerning the CRCW PRAM, this simulation is at a factor� 	 

� 


from optimal.
In order to obtain optimal simulations, such delays are to be hidden by arithmeticcomputa-

tions. The key idea is parallel slackness [42, 55, 40]: it consists in simulating aPRAM with �
processors on a distributed architecture with fewer processors
 � � . The simulation is optimal
(time-processor optimal) if the delay for an access is proportional to� � 
 . For instance, the previous
mentioned simulation [40] leads to time-processor optimal simulation of an EREW PRAM with
� � 
 � 	 
 � 	 
 
 � 	 


� 
 processors on a distributed architecture with less than
 processors. Note that
parallel slackness is also involved when using asynchronous communications and threads to hide
latency.

On the contrary of communications, remote access to shared memory do not basically allow to
synchronize computations. In the PRAM, such a synchronization mechanism is provided bythe
global sequencer. On distributed architectures, intrinsically asynchronous, synchronization tools
classically used are communications, locks and semaphores.

2.2 How to schedule a DFG

Being given an algorithm, the problem considered here is to schedule the DFG related to the
execution on input data on a distributed architecture. The goal is to obtain an optimal schedule
related to the DFG.

2.2.1 Scheduling cost of a DFG

Computing such an optimal schedule is a difficult problem. Even if communication costs are
ignored and the DFG fixed (i.e. no dynamic task creation) with tasks of known duration, computing
an optimal schedule is� � -complete and deciding whether the length of the optimal schedule is a
given integer

�
is co-� � -complete [23]. However, on machines with
 identical processors, there

are several polynomial algorithms with bounded competitive ratio, the most famousone being list-
scheduling [29]. Moreover, even on non-uniform machines, approximation algorithms are known
[52, 30].

Computing a schedule implies an overhead in the execution time; this schedulingoverhead
is governed by the time required to compute the schedule itself (i.e. the cost ofthe scheduling
algorithm) and to realize this schedule (i.e. the mapping of tasks, preemption, migration). The
scheduling overhead is included in the execution time
 � � � � of the algorithm with input� on the
target machine.

Definition 5 (Notation) Being given a scheduling algorithm� , the execution time of an algorithm
with input � on a machine with
 identical processors using the schedule delivered by� is denoted
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 � � �� � � � .
The minimum execution time over all scheduling algorithms� is denoted
 �� � � �

When there is no confusion about� , 
 � � �� � � � is denoted by
 � � � � .
The cost of computing a schedule is directly related to the size of the DFG, i.e. the number

of tasks and dependencies it contains. Note that those costs are different from the arithmetic and
communication works considered in the previous chapter which take into account the number
of operations performed in each task and the number of communications related to each data
dependency (transition).

Definition 6 Let DFG(� ) be the macro data-flow graph corresponding to the execution of a par-
allel algorithm on an unbounded number of processors. We define the following measures:

� � � � � � is the number of task nodes in DFG� � � � ;
� � � � � � is the number of transition nodes in DFG� � � � ;
� � � � � � is the maximal degree of a task node in� � � � � � ; the degree is the number of input

and output edges on a task node (to or from a transition node).

The scheduling cost
� � of DFG(� ) is:

� � � � � � � � � � � 	 � � � � � � � � � � � �
Note that other measures may be considered in the analysis of a scheduling algorithm. For instance,
other parameters considered in [7] are the maximum number of edges between any pair of nodes
and the width of� � � � � � � , i.e. the maximum number of tasks that may be executed concurrently.

The finer the DFG, the larger its scheduling cost is and thus the more expensive the computation
of its schedule will be. Similarly to granularity, the regularity� is defined as the ratio of the
arithmetic work to the size of the DFG.

Definition 7 The regularity� � � � is defined by:

� � � � � � � � � �
� � � � � � � � � � � 


A PRAM algorithm (or equivalently its related DFGs) if said ofpolynomial regularityiff:

� � � � � � � �
�
� � with � � � 


Notation. In the following, we will consider the execution of a given algorithm on a given

processors machine with an arbitrary input� of size � . Thus, all notations are implicitly related
to � and � . For instance,� � will denote � � � � � , the number of task nodes in the macro data-flow
graph related to the execution on an unbounded number of processors with� in input.



2.2. HOW TO SCHEDULE A DFG 41

2.2.2 Off-line and on-line scheduling

The DFG corresponding to the execution may be partially determined at compile time by data flow
analysis of the code of the algorithm, or may be discovered during the execution (depending on the
value of computed data) and completely known only after the end of the execution. Depending on
this knowledge of the DFG, the scheduling can be then computed off-line or on-line.

Static allocation of tasks to processors.

When the DFG corresponding to the execution can be analyzed at compile-time, itis possible to
find a good schedule by hand, may be using static scheduling tools. The result of the scheduling
is to assign each task of the DFG to one processor (or more if replication is required). On a
given processor, tasks are sequentially ordered2 in order to respect precedences; data dependencies
between them are emulated by access to shared data in the local memory. When tasks are placed
on different processors, data-dependencies (i.e. access to data and precedence relations) may be
emulated in two different ways:

� By communication. The data corresponding to a write-read dependency has then to be ex-
plicitly sent from the writing task to the reading one. This operation correspondsto a phys-
ical global copy of the data; locally unreferenced data have to be deleted (localgarbage-
collection).
An important point is that the completion of receiving instructions implicitly implements the
precedence relation (synchronization).

� By shared-memory access. Communications that implement remote access are then implicit.
However, the precedence relation between non local tasks has to be describedusing global
synchronization tools.

As a result, before execution, each processor gets its own program. Usually,this program is the
same for all the processors but is parameterized by the pid of the executing processor in order to
implement different behaviors. PYRROS uses this approach and a specific scheduling algorithm
which performs a clustering of tasks [26, 25].

Dynamic allocation of tasks to processors.

In computer algebra, elementary tasks are often of unknown cost. For instance, costs of arithmetic
operations (on rationals, polynomials or matrices) are usually unknown at compile time since their
are related to characteristics of the values computed at execution time (size of the data, degree of
a polynomial, sparsity of a matrix). Depending on such values, parallelism (i.e. creation of a task)
may be generated during the execution. In such a case, an on-line scheduling algorithm is used.

Most of on-line scheduling algorithms are based on the following greedy scheme called list-
scheduling[4, 11]:

� When a processor creates a new task (fork instruction of the PRAM language ATH), it
stores it in a list of tasks.

2Multi-threading may be used to describe a partial executionorder.
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Note that, there may existready tasks, i.e. whose precedence relations are satisfied, and
non-ready tasks, i.e. whose one of the precedent tasks is not completed.

� When a processor becomesidle (i.e it has no ready task to execute), it gets a ready task in
the list if any.

Algorithms vary depending on the way the list is managed and processors put and get tasks in it.
The program that implements the algorithm expresses afunctional parallelism: tasks generally

correspond to procedure or function calls. Non-completed tasks or data are calledfuture. An im-
portant point concerns the management of data, parameters of the task: they can be systematically
copied in a stack corresponding to the function call or passed by a reference to data in the shared
memory. Precedence relations between tasks may correspond either to data dependencies or to
task precedences.

Scheduling operations

The previous section does not specify which instructions a scheduling can perform, except classical
computations and the possibility of executing a basic task – an elementary node inthe DFG – on
a processor. Migration instructions allow to suspend a task during its execution in order to map it,
maybe later, on another processor [52, 4]:

� migration restricted to restart:when a task is moved to another processor, its execution
restarts from its beginning;

� migration: when a task is migrated to another processor, its execution restarts fromits last
instruction performed.

A scheduling algorithm withno-preemptionmakes no use of those operations: it has no control
on a task once it has assigned it to a processor, just getting information when thetask is finished.
Migration restricted to restart, denoted in [52] asno-preemption with restarts, is useful on machines
whose processors are not identical.

2.2.3 Which scheduling algorithms in computer algebra ?

An important point is that on-line and off-line scheduling algorithms have theoretical foundations
[29, 22, 35, 11, 30]. There exist provably good approximation algorithms for both with bounded
competitive ratio. For both, specific algorithms are developed to increase performances for certain
classes of graphs (for instance trees or SP11 graphs – fork-join – ).

Of course, performances of off-line algorithms are better when the DFG is knownand the
machine fixed. However, since on-line algorithms make no hypothesis on the execution(or few for
the determination of tasks precedences), they can be used for any class of applications and thus are
of general interest.

Thus, both techniques are used in computer algebra. For instance, block-scatteringmatrix
mapping, which can be considered as an hand-made off-line algorithm, leads to near-optimal per-
formances for linear algebra problems like dense matrix multiplication or inversion (cf chapter 1)
over a small finite field (e.g. GF(2)) on a distributed architecture with identical processors.
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However, due to their generality and their close relation with functional parallelism [31, 51],
on-line scheduling algorithms are of specific interest for a parallel computer algebra system. In the
following we thus focus of those algorithms.

2.3 On-line scheduling algorithms

2.3.1 Foundations of on-line scheduling

Theoretical foundation of on-line scheduling algorithms is due to Graham [29]. The following
theorem appears has an arbitrary grain version of Brent’s principle presented in chapter 1. We
recall its proof which is the basis of most of further results.

Theorem 9 [29] If scheduling overhead (i.e. the cost of computing the schedule and managing
the list of tasks) and communication costs are not considered, any list-scheduling algorithm has
competitive ratio� � �

�� 	 , i.e.


 � � 
 � �
�

 � 
 ��

.

A list-scheduling algorithm is such that, at any time, at least one processoris executing a task.
Then, if at a given time a processor is idle then there exists at least one processor which executes a
task. Let� � � be one of the tasks completed at date
 � and let� � � be the date when execution of� � �

has been started. Two cases arise:

1. either no processor was idle before� � � .

2. either there was at least one processor idle at a certain date before� � � . Let
�

be the latest
date before� � � when a processor was idle. At

�
, � � � was not ready (else it would have been

started on an idle processor). Thus, there exists a task� � � such that� � � was being executed at
�

and � � � � � � � . Let � � � be the date when execution of� � � has been started.

Recursively applying this scheme until case 1 occurs, we build a sequence of tasks � � � � 
 
 
 �
� � � � � � � such that, at any time where a processor is idle, there exist

� � � � � such that� � � is being
executed on one processor.

Similarly to chapter 1, let
 be the minimal arithmetic time on an unbounded number of pro-
cessors and� � be the total number of operations. The total idle time is defined by� � � 
 
 � � � � .
For

� � � � � , let
� � be the duration of task� � � . We have:� � � � 
 � � � � � � � � � which leads to:


 
 � � � � � � 
 � � �
�

� � �
� � 


Besides, since tasks� � � ,
� � � � � are on a critical path:� � � � � � � 
 . This leads to:


 � � � �



� 
 � �
�

 � 
 (2.2)
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We also have
 � 
 �� . Moreover, since� � operations are to be executed in any schedule,� � �
 
 �� . Replacing in 2.2, we obtain:
 � � � � �
�� 	 
 �� . �

As a corollary, we obtain the following constructive version of the simulation of a PRAM with
an unbounded number of processors on one with
 . Note that tasks is the DFG are of arbitrary
durations; the only restriction which is respected in the DFG representation is that once a task is
ready, it can be executed sequentially with no interruption due to synchronization.

Theorem 10 Let � be an ATH PRAM program that run in (arithmetic) parallel time
 and work
� � on a given PRAM with an unbounded number of processors. Then� can be executed by an
on-line list scheduling to run in (arithmetic) parallel time
 � :

Max

� �
� �

 � 	 
 � � 
 � � �

� �



� 
 � �
�

 � 
 � (2.3)

The proof is direct from 2.2. �
Theorem 9 is stated in a restricted version [4]. In fact the bounds 2.2 holds even if the prece-

dence relation� considered by the list scheduling algorithm is weaker than the one� �
considered

for defining the optimal schedule. The proof is direct since we will also have� � � � � 
 
 
 � � � � � � �

� � � . Clearly, the same remark holds if duration of tasks is increased.
This implies that neither adding precedence constraints such as synchronization barriers to obtain
a well structured DFG nor inserting artificially null operations in order to have all tasks of the same
length help any on-line algorithm.

Remark. This theorem generalizes Brent’s principle (theorem 1 in chapter 1) to arbitrary DFGs,
i.e. any ATH program where tasks are generated dynamically with arbitrary shared-data depen-
dencies and are of unknown durations.

2.3.2 Lower bounds for competitive ratio

A natural question is then to determine if it is possible to have a better competitive ratio than� � �
�� 	 , either on the same model or by considering larger classes of scheduling algorithms.

This problem has been studied in [52], in which the following proposition is proved.

Theorem 11 [52] On the 
 -PRAM, the competitive ratio is lower bounded by� � �
�� 	 for any

scheduling algorithm of the following classes:

1. Deterministic with no preemption,

2. Deterministic with migration;

and is lower bounded by� � �
�� � 	 for any randomized scheduling with no preemption.

We only sketch the proof for the first case. The complete proof for this theorem is given in [52].
The adversary builds the following DFG instance� due to Graham [29].� contains

� � 
 � 
 � � �
independent tasks. One task� � is of length
 , while other tasks�  , � � � � 
 � 
 � � � are of length
1.
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The optimal schedule is of length
 . It executes the task� � on a given processor, and the

 � 
 � � � unit tasks�  on the
 � �

remaining processors.
The length of any schedule of� is equal to
 � � , where� is the time when the task� � starts

its execution. Since the tasks durations are unknown for the scheduling algorithm, the adversary
strategy will thus consist in making� as large as possible.
The tasks that are processed first are then the
 � 
 � � � unit time tasks�  , that are executed in
 � �
time units with no idle time. Then, at time� � 
 � �

, the task� � starts its execution. The length of
the obtained schedule is then� 
 � �

, which provides the desired lower bound. � .
As a consequence, neither preemption nor randomization can improve consequently perfor-

mances compared to list-scheduling.
In order to increase the competitive ratio, it is then required to use additional informations on

the DFG such as its shape or duration of its tasks.
For instance, we consider the case where all tasks are independent and sorted according to their

durations; note that only the ordering is known but not durations. In this case, the on-lineLPT list-
scheduling algorithm that assigns the task of maximal duration when a processor becomes idle has
competitive-ratio [29][12]:

Min

� 
 �
�

�
�

� 
 � 	 
 � � �
� �


 � �

 � � (2.4)

Note that if no information is given on the durations tasks, then the fact that theyare independent
is of no help to decrease the competitive ratio� � �

�� 	 (cf the adversary considered in the proof of
theorem 11).

Remark. List scheduling algorithms are involved as a basic level in on-line approximation algo-
rithms used for other kind of machines such as [52, 30]:

� uniform machines: processors speeds are constant and differ each one from a constantun-
known factor;

� non-uniform machines: there are no relation between processors speeds; the duration of a
task varies depending on the processor which executes it.

In this case, at least migration restricted to restart is requiredin order to guarantee a competitive
ratio [52].

2.3.3 Communications and scheduling overheads

Previous theorems do not take into account neither the cost of tasks allocation (i.e.scheduling
overhead) neither communications required for access in shared memory.

Several authors have considered the theoretical influence of those overheads on list scheduling
algorithms in order to provide provably optimal on-line scheduling algorithms. In [13], Cole and
Vishkin give an algorithm to schedule� independent tasks optimally on a PRAM with

�� � � � proces-
sors; this algorithm is used to implement the first optimal algorithm for list-ranking [37, 39]. In [6],
Blelloch, Gibbons and Matias study the scheduling of nested fine grain computations, implemented
in the language NESL [5]. Blumofe and Leiserson give an optimal list-scheduling algorithm for
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strict multi-threaded computations3 [8, 7], based on randomized work-stealing; this algorithm is
in the kernel of the Cilk language [38]. Any of those scheduling algorithms restricts to a shape of
DFG and do not take into account contention problems.

In this section, we give a near optimal scheduling algorithm for any DFG shape but with restric-
tions on the arithmetic and communication costs. We prove that, if input size islarge enough, effi-
cient and coarse-granularity PRAM algorithms4 can near-optimally be scheduled on a distributed
architecture.

We assume that the target machine is a distributed architecture with
 identical processors. In
order to take into account communication costs and contention, we refer to the LogP model (cf
section 2.1.1). The duration between the sending and the reception of a small message (i.e. one
word) is bounded by� � � � � � � �

� .
Furthermore, we assume that a shared memory is simulated on the architecture with the help

of hashing functions (see section 2.1.3); the delay occurring for any access in theshared memory
is bounded by� . Note that� is related to the number of processors if no slackness is used.

Like in chapter 1, let� � and � � denote respectively the communication delay and work in-
volved by the algorithm.

Theorem 12 Let � be an ATH PRAM program that has parallel arithmetic cost� 
 	 � � � , commu-
nication cost� � � 	 � � � and scheduling cost� � � 	 � � � . Then� can be executed to run in parallel
time 
 � (including scheduling and communication overheads):


 � � � � � � � �

 � � � 
 � �

�

 � � � � 
 � � � � � � � � � � � (2.5)

The proof is based on an adaptation of the scheme used in theorem 9.
We consider here an implementation of a list scheduling on
 � �

processors, indexed
 � 	 
 
 
 
 � � � .
The last processor,
 � , handles the list of tasks and assigns tasks to other processors.

For the sake of simplicity, we restrict the proof to the case where any shared variable is written
only once and then read only once; once read access have been completed, the space related to the
shared data is garbaged. This corresponds to the case of an EREW program with single-assignment
variables.

When a processor
 � completes the execution of a task, it sends a message to
 � and waits for
receiving a new ready task to perform from
 � .
When a processor
 � creates a new task (fork instruction) it asynchronously sends to
 � a message
of size bounded by� � that defines all data dependencies of the new task (i.e. the shared data that
it will read before its execution or write after its completion).

Processor
 � manages a list� of ready tasks and a list� of idle processors. For this purpose,
it uses two arrays: one,

�
, stores the task nodes created and not completed; the other,

�
, the

descriptors of the allocated shared variables. Any descriptor in
�

points to the task that requires
the corresponding shared data in reading. Pointers from

�
to

�
are updated at task creation and

task completion. When a task in
�

is no more pointed to by any element in
�

, it is put in � . The
cost of this arithmetic computation on
 � is proportional to� � but independent from
 and� : we
neglect it compared to� 
 � � � � � � � � .

3There is always a dependency between a thread and one of its ancestor and access to shared data are not considered.
4i.e. with polynomial speed-up, constant inefficiency and� � 	 
 � � � �� 	 
 � with � � � (cf chapter 1).
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When 
 � receives a message of task completion, it first updates
�

and
�

, putting new ready
tasks if any in� . It puts the processor in� . Then, while there are ready tasks in� and idle
processors in� , it gets a task from� and a processor from� , removes them from the lists and
asynchronously sends a message assigning the task to the processor; the length of the message is
at most� � . For the whole execution, the computation time on
 � needed for the management of
those lists is proportional to� � and independent from
 , � � and� : we also neglect it compared to
� 
 � � � � � � � � .

Note that due to contention, a processor which is idle may wait at most� 
 � � � � � � after
 � has
assigned a new task to it and before it receives it. Conversely, when a processor completes a task,
processor� � receives the corresponding message at most� 
 � � � � � � tops after.

Moreover, let
� � be the length of the task� � , � � � � � � ; let � � be the number of – unit

size – shared data handled by� � (i.e. read or written during its execution). From the point of
view of 
 � , a processor
 � is saididle when it is in the list� . Thus, the processor executing� � is
considered as active (i.e.not idle) when it is not in the list� , i.e. from the moment
 � has sent� �
to it and until
 � receives the corresponding task completion message: this duration is bounded by� � � � � � � � � � � 
 � � � � .
Let � � be the total idle time seen from
 � on processors
 � 	 
 
 
 	 
 � � � . Let 
 � be the length of the
schedule; we have:

� 
 � � � 
 � � � � � � ��
� � � � � � � � � � � � � � � 
 � � � � � (2.6)

We now follow the scheme of theorem 9. Let� � � be the last task completion message received by

 � at date
 � and let� � � be the date when
 � has assigned� � � . Two cases arise:

1. either no processor was idle for
 � before� � � .

2. or there was at least one processor idle for
 � at a certain date before� � � . Let
�

be the latest
date before� � � when a processor was idle. At

�
, � � � was not ready (else it would have been

assigned on an idle processor). Thus, there exists a task� � � , � � � � � � � , such that� � � has been
assigned by
 � before

�
and whose completion message has been received by
 � after

�
. Let

� � � be the date when
 � has assigned� � � .
Recursively applying this scheme until case 1 occurs, we build a sequence of tasks � � � � 
 
 
 �
� � � � � � � such that, at any time when a processor is idle, there exists

� � � � � such that
 � has
assigned� � � to a processor and has not received the corresponding completion message yet. We
thus have:� � � � 
 � � � � � � � � � � �

� � � � �
� � � � � 
 � � � � � . Besides, since tasks� � � ,

� � � � � are
on a critical path:� � � � � � � � 
 and� � � � � � � � � � which leads to:

� � � � 
 � � � � 
 � � � � � � � � � � � 
 � � � � � (2.7)

where
 denotes the minimal arithmetic time on an unbounded number of processors.
Let � � � � � �� � � � � be the arithmetic work and� � � � � �� � � � � be the communication work.

Replacing 2.7 in 2.6 leads to:

� 
 � � � 
 � � � 
 � � � � 
 � � � � � � � � � � � � � � � � � � � 
 � � � �

which concludes the proof. �
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As a corollary we consider a coarse-granularity efficient PRAM algorithm with polynomial
regularity and bounded degree. For the corresponding DFG, this implies that for an input� of
large enough size:

� polynomial speed-up:
 
 (note that
 is fixed) is neglected compared to� � ;
� polynomial granularity: since
 and � are assumed constant, taking a sufficient large size

instance leads to neglect
 � � � and � � � compared to� � ;
� polynomial regularity:� � � � � � (note that� and� � are bounded) is also neglected..

This leads to the following result.

Theorem 13 Let � be an efficient ATH PRAM program that has polynomial granularity, polyno-
mial regularity and and bounded degree (� � � � � � � ).
Then, for any� � � , execution time of� on a distributed architecture with
 processors is asymp-
totically bounded by:


 � � � � � � � � � � � �

 


This time includes communication and scheduling overheads.

To obtain an near-optimal scheduling algorithm, we use slackness; we consider theexecution of
the previous scheduling algorithm on a machine with� identical processors,� � 
 . Taking into
account the above remarks, execution time including communication and scheduling overheads is
bounded by:


 � � � � � � � � � � � �
� � � 


We can now emulate this machine on the one with
 processors; corresponding execution time is


 � � � � � � �



� 
 � � � � � � � � � � 
 � �

�
� � � �


 

Choosing� enough larger than
 and considering large size enough input data concludes the proof.
�

Another way to obtain near-optimal simulation consists in using a distributedlist-scheduling
strategy. A classical example israndomized work-stealing: when a processor becomes idle, it
selects uniformly at random a processor to steal a task. When a processor creates a task, it keeps
it locally. Such a strategy is theoretically studied in [7]. Asymptoticbounds are given in the
framework of strict multi-threaded computations. Other variants export tasks when exceeding a
certain number of task creations.
Such list scheduling strategies are very popular in parallel functional languages such as Multilisp
[32] or Prolog [17].

In the last section, we turn to an effective implementation of the ATH language which allows
the building of the DFG and thus the effective use of the above provably optimal on-line scheduling
algorithm.
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2.3.4 Athapascan: a simulation of the ATH PRAM language

ATHAPASCAN [43] is a parallel procedural language, inspired by Jade [50], that allows the con-
struction of the DFG of an application during the execution. It thus makes possible theuse of
provably optimal on-line scheduling algorithms. We give in this section an overview of the main
features of the language.

Similar to the ATH language introduced in chapter 1, ATHAPASCAN supports CUMULATIVE-
CRCW PRAM algorithms. The building of the DFG is implicit; thefork operation (called
new task in ATHAPASCAN) may take in argument an optional scheduling strategy, default
being a distributed list-scheduling algorithm. Taking benefit of some knowledge on thegraph,
this allows to choose a well-suited scheduling algorithm such as block-scattering for dense matrix
computations or DSC for DAG with known durations [25].

2.3.5 The ATHAPASCAN programming model

The ATHAPASCAN language is strict and para-functionnal. It is implemented by a C++ library; it
uses inheritance and templates to provide a friendly and easy-to-use interface.

In ATHAPASCAN, parallelism is expressed by asynchronous procedure calls, which correspond
to the building oftasks. A task describes the execution of a specific procedure (which is defined by
formal parameters and a block of instructions) with effective parameters. Two parameter-passing
modes are possible: the by value mode copies the effective parameter into the local memory of the
task and the by reference mode shares the data among different tasks.

References to shared data are typed according to their access modes. Four modes are defined
to access shared data:read(a1_shared_r), write (a1_shared_w), read/write
(a1_shared_r_w) andaccumulation(a1_shared_cw). The three first modes are standard
and are used in other parallel languages [38, 50]. Accumulation is realized fromthe initial value
of the object by incrementation; this incrementation is defined by a binary functionf (default is
the C++ operator+=) which is assumed to beassociativeandcommutative.
Thus, ATHAPASCAN allows the implementation of CUMULATIVE-CRCW PRAM algorithms.

The semantics of ATHAPASCAN 5 is such that each reading of a shared datum gets the value of
the last update (writing) in the sequential order of task executions (depth-first ordering). To make
such an order easy to compute, ATHAPASCAN does not allow side effects on shared variables. In
the current implementation of ATHAPASCAN, this semantics is implemented in the following way:
a task becomesexecutablewhen all the effective parameters that it requires in read (or read/write)
mode have been updated by the predecessor tasks (relative to the sequential order oftask creations).

2.3.6 Execution model of ATHAPASCAN

The control of the execution is based on the building of a macro data flow graph. This DFG is
represented by a direct acyclic hyper-graph, which is distributed among the processors. Vertices
correspond to tasks and edges to data dependencies related to shared objects: hyper-edges are
used to describe concurrent writings and concurrent readings on shared objects. Thisgraph can

5ATHAPASCAN [43] allows other access to shared objects: postponed (suffix p) access allow the expression of a
larger degree of parallelism and arrays of shared objects.
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be labeled with information attributes (arithmetic cost for tasks anddata sizefor shared object
dependencies). This graph is used to implement both the semantics and the schedulingof tasks.
Different scheduling algorithms (denoted asschedulers) are available and user-specific ones may
be added. The role of the scheduler is restricted to informing the system where andwhen tasks have
to be executed, taking into account some information available from the graph. Thisfunctionality
makes possible the implementation of different classical provably good scheduling algorithms (list
scheduling, ETF [11], DSC [26], work-stealing [38] for example).

The following rules define the way an execution is handled:

� The first executable task is thea1 main() function.

� During the execution of a task:

– when a task is created (call to thea1_new_task directive), the new task is inserted
into the graph;

– when a task terminates, shared data that it accessed in write or read/write mode are
updated. The task is then removed from the graph and the scheduler is informed of new
ready tasks (i.e. all shared objects accessed in read or read/write mode are available).

� The scheduler analyzes the graph to make task mapping and starting decisions. The system
performs the scheduling decision. When all shared data required by a task in read/read-write
mode have been received at the affected node, the task is started on the processor it has been
assigned.

2.3.7 An example of ATHAPASCAN program

The figure 2.3 presents an ATHAPASCAN source code for the triangular resolution of
� � � �

;
the algorithm is presented in the abstract language ATH in chapter 1 (fig. 1.6). Note that in ATHA-
PASCAN, all acess modes (read, write or read/write) are explicitly given in order to ensure that
the sequential order of execution can be determined directly from task creation (a1 new task
instruction).

2.4 Conclusion

In this chapter, the on-line scheduling of a parallel PRAM program on a distributedarchitecture
with a bounded number of processors has been analyzed. List-scheduling strategies, frequently
arising in parallel language implementations, have theoretical foundations. Anoptimal simulation
of a PRAM program with polynomial speed-up, polynomial regularity and coarse-granularity is
given; costs of communications are considered under the model LogP and a shared-memory is
emulated using hash functions.

Due to its experimental good performances [57, 56], most of languages implementing dynamic
parallelism use heuristics based on list-scheduling. They essentially differ on the shape of the DFG,
depending on the programming model they implement. Thus, the performance of list scheduling
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struct Update : public a1_task_elem {
Update( int size ) {
set_cost(size*size*size);

}
// Performs X += -1/A*Y
void operator() ( a1_shared_cw<matrix<float> > X,

a1_shared_r<matrix<float> > A,
a1_shared_r<matrix<float> > Y) {

X.cumul( - A.read().inverse() * Y.read() );
}

}

struct FinalDivision : public a1_task_elem {
FinalDivision( int size ) {
set_cost(size*size*size);

}
// Performs X = 1/A*X
void operator() ( a1_shared_rw<matrix<float> > X,

a1_shared_r<matrix<float> > A) {
X.write( A.read().inverse() * X.read() );

}
}

struct TriangularSolve : public a1_task {
TriangularSolve( int nb_elem ) {
set_cost(nb_elem*nb_elem/2);

}
// Performs triangular resolution A*X=B
// A is coded such that A[n*i+j] ::= A[i][j]
void operator() (int n,

a1_array_of_shared_rp<matrix<float> > A,
a1_array_of_shared_cw<<matrix<float> > X,
a1_array_of_shared_rp<matrix<float> > B) {

for(int i=0; i<n; i++) {
X[i].cumul( B[i].read() );
a1_new_task( FinalDivision(), X[i], A[n*i+i] );
for(int j=i+1; j<n; j++)
a1_new_task(Update(), X[j], A[n*i+j], B[j]);

}
}

}

Figure 2.3: Triangular resolution of
� � � �
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may vary depending on this model. For instance, if synchronizations are authorized inthe lan-
guage (waiting for some future value for instance), the scheduling has to use migration; if not, no
guarantee can be given on the competitive ratio.

We focus in this conclusion on languages that use a provably efficient on-line schedulingalgo-
rithm. HPF 2 introduced groups of independent tasks of unknown durations via function calls. A
BSP [54] program execution consists in a sequence of super-steps, each set of independent tasks.
All shared memory access performed at a step are effective at the nextone. Dynamic load balanc-
ing is possible [54] but requires task migration in the considered implementation [28].

Functional languages have been using list-scheduling for a long time. For a survey on par-
allelism in functional languages, see [33], we just mention here some characteristic languages.
Sisal[44] is a data-flow based language which defines a fine grain DFG; however, programming
macro-tasks in order to obtain a coarse-granularity algorithm is not directlypossible. NESL [5]
provides a nested parallel model: graphs correspond to recursive� -ary sets of independent tasks
with no data-dependencies but synchronization at the join point. Access are emulated on a virtual
shared memory. Cilk [7, 38] is inspired from Multilisp and implements a modelof strict functional
computation in a C-like language. Tasks are mapped on the functions; all data are accessed in the
stack. Functions can be migrated at a synchronization point, explicitly defined in the program.
Migrations are reduced to a copy of the stack. ATHAPASCAN [19, 43] is inspired from Jade [50]; it
is a C++ library that implements a programming model similar to the language ATH presented in
the previous chapter. Data-dependencies are defined by access to a shared data. Tasks correspond
to procedure calls; parameters can be passed by value or by reference to a shared-data. This last
mode defines the precedence. When a task is ready, it can be executed till completion with no
synchronization.
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[46] R. Namyst and J.-F. Méhaut. Pm� parallel multithreaded machine: a multithreaded envi-
ronment on top of pvm. InProceedings of EuroPVM’95, pages 179–184. HERMES (ISBN
2-86601-497-9), 1995.

[47] C. H. Papadimitriou and M. Yannakakis. Towards an architecture-independentanalysis of
parallel algorithms.SIAM Journal on Computing, 19(2):322–328, 1990.

[48] A. G. Ranade. How to emulate shared memory. InProceedings 28th Annual Symposium on
Foundations of Computer Science, pages 185–192. IEEE, 1987.

[49] V. Rayward-Smith. UET scheduling with unit interprocessor communication delays.Discrete
Applied Mathematics, 18:55–71, 1987.

[50] M. Rinard.The design, implementation and evaluation of Jade : a portable, implicitly paral-
lel programming language. PhD thesis, Stanford University, september 1994.

[51] W. Schreiner. A Para-Functional Programming Interface for a ParallelComputer Algebra
Package.Journal of Symbolic Computation, 21:593–614, 1996.

[52] D. B. Shmoys, J. Wein, and P. Williamson. Scheduling parallel machines on-line. SIAM
Journal on Computing, 24(6):1313–1331, 1995.

[53] M. Snir, S. W. Otto, S. Hess-Lederman, D. Walker, and J. J. Dongarra.MPI: The Com-
plete Reference. MIT Press, Cambridge, Mass., 1996. Available electronically; see
http://www.netlib.org/utk/papers/mpi-book.html.

[54] L. G. Valiant. A Bridging Model For Parallel Computation.Communications of the ACM,
33(8):103–111, 1990.

[55] L. G. Valiant. General purpose parallel architectures. In J. van Leuwen, editor,Algorithms
and Complexity, pages 944–971. Elsevier, 1990.

[56] A. S. Wagner and S. T. Chanson. Performance Models for the Processor Farm Paradigm.
IEEE Transactions on Parallel and Distributed Systems, 8(5):475–489, 1997.

[57] M. Willebeek-Le-Mair and P. Reeves. Strategies for dynamic load-balancing on higly parallel
computers.IEEE Transactions on Parallel and Distributed Systems, 4(9):979–993, 1993.



Contents

1 Parallel efficient algorithms 3
1.1 PRAM, DFG and cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Increasing granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.3 Redundancy and cascading divide&conquer . . . . . . . . . . . . . . . . . . . . . 18
1.4 Randomization to decrease time or preserve work. . . . . . . . . . . . . . . . .. 23
1.5 Parallel time complexity and NC Classification . . . . . . . . . . . . . .. . . . . 26
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Programming models and scheduling 33
2.1 Asynchronous distributed architectures . . . . . . . . . . . . . . . . . . . . . . . .35
2.2 How to schedule a DFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 On-line scheduling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

57


