
Eurographics Symposium on Parallel Graphics and Visualization (2009)

J. Comba, K. Debattista, and D. Weiskopf (Editors)

Interactive Physical Simulation on Multicore Architectures

Everton Hermann1, Bruno Raffin1 and François Faure2

1Inria Grenoble Rhône-Alpes, France
2 Grenoble Universities, France

Abstract

In this paper we propose a parallelization of interactive physical simulations. Our approach relies on a task

parallelism where the code is instrumented to mark tasks and shared data between tasks, as well as parallel loops

even if they have dynamic conditions. Prior to running a simulation step, we extract a task dependency graph that

is partitioned to define the task distribution between processors. To limit the overhead of graph partitioning and

favor memory locality, we intend to limit the partitioning changes from one iteration to the other. This approach

has a low impact on physics algorithms as parallelism is mainly extracted from the coordination code. It makes it

non parallel programmer friendly. Results show we can obtain good performance gains.

Categories and Subject Descriptors (according to ACM CCS): Software [D.1.3]: Parallel programming—, Computer

Graphics [I.3.7]: Animation—

1. Introduction

The goal of interactive physics is to simulate the dyna-

mics of virtual objects submitted to mechanics laws at an

interactive refresh rate. It is a challenge for many applica-

tions like video-games, virtual training for manufacturing

processes or surgery. The simulation of complex heteroge-

neous scenes requires combining many models and methods,

leading to computationally intensive applications. For ins-

tance, virtual surgery requires simulating a human body with

articulated rigid objects (bones), deformable objects (flesh)

and fluids (blood) in contact. To conform to interactive-time

constraints, to simulate more complex scenes, and to take

advantage of the new processor architectures, physical si-

mulation software libraries will increasingly have to rely on

parallelism.

Parallelism can be applied to non-colliding objects, which

can be simulated independently [YFR06, Mir00]. However,

when all the objects make a single connected group, as in

surgery scenes, no parallelization is possible at this level,

and a finer grain is necessary. Recently, important speed-

ups have been obtained using the Graphics Processing Unit

(GPU) as co-processor [bul]. However, this requires to ex-

plicitly parallelize the methods at very fine level using spe-

cialized libraries, which is difficult for non-experts.

The development of advanced physical simulations, such

as surgery simulations, requires the collaboration of specia-

lists in various fields such as mechanics of continuous me-

dia, collision detection, numerical methods, geometry, hap-

tics. In practice, most of them are only able to program se-

quentially. These specialists also need to easily experiment

various models and algorithms, combined with each other’s

contributions. In this context, parallelism should have the

following properties :

– Non-invasive : The constructs used to express paral-

lelism, i.e. to define task boundaries and data depen-

dencies, should have a reduced impact on the code. It

makes it friendly to algorithm developers and applica-

tion developers who are usually not experts in parallel

computing.

– Compatible : The parallelization should be generic en-

ough not to impair further lower level parallelizations.

For instance it should be possible to rewrite one speci-

fic algorithm to defer part of the work load on a GPU

while keeping the benefit of the current parallelization.

It makes it complementary with the popular GPU-based

parallelizations.

– Externalized : The scheduling and mapping of tasks on

processors should not be embedded in the physical si-

mulation code. It eases code development, the program-

mer not being concerned about these aspects. It also en-

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

ables to evaluate different scheduling strategies without

code modifications.

Relying on the KAAPI middleware [GBP07], we instrument

the code of a generic simulation library to identify tasks (cor-

responding to methods calls) as well as the data shared bet-

ween tasks. We obtain a mid-to-coarse grain parallelism that

affects the coordination code but not the internal algorithm

codes. Developers can also use these keywords to express

parallelism inside their algorithms.

Prior to running a simulation step, we extract a graph of

tasks representing the data dependencies between the tasks.

Those tasks are then grouped in partitions that are mapped

on the processors. During a simulation step, processors exe-

cute tasks in parallel, suspending their execution if requi-

red to respect data dependencies. We thus avoid the spurious

synchronizations otherwise induced by parallelizations that

do not rely on an explicit identification of shared data. This

is the first specific contribution of this paper. Additionally,

some high-level algorithms such as iterative equation solvers

include loops with dynamics conditions, i.e. loops coordina-

ting the execution of several tasks with a break condition that

may depend on the computations of several tasks. We intro-

duce a construct to enable to extract parallelism from such

loops, which is the second specific contribution of this paper.

Task mapping and scheduling is not embedded into the

code. The KAAPI middleware takes care of this aspect. It

supports different scheduling algorithms that can be modi-

fied if required. Base scheduling algorithms include a static

task partitioning computed from the data dependency graph,

and a dynamic work-stealing [FLR98].

We propose a modified static scheduling algorithm that

limits the graph partitioning overhead and favors memory

locality. The partitioning of the previous simulation step is

reused unless new collisions occurred. In this case, new in-

teraction forces modify the data dependencies. Graph parti-

tioning is them recomputed accordingly, while avoiding mo-

ving previously existing tasks to a different processor.

The rest of this paper is organized as follows. Section 2

provides the necessary background on physical simulation,

and briefly summarizes previous work on parallel implemen-

tations. Section 3 details our parallelization approach. Re-

sults are presented and discussed in Section 4 and a conclu-

sion is finally drawn in Section 5.

2. Background

2.1. Physical Simulation

The physical simulation pipeline is an iterative process

where a sequence of steps is executed to advance the scene

forward in time (Figure 1). The time-dependent variables are

basically the position and velocity of each Degree of Free-

dom (DOF), stored in state vectors. The pipeline includes a

collision detection step, used to dynamically create or de-

lete interactions between objects, based on geometry inter-

Figure 1: Simulation Pipeline

section. Time integration consists in computing a new state

(i.e. position and velocity vectors), starting from the cur-

rent state and integrating the forces in time. Finally, the new

scene state is rendered and displayed or sent to other de-

vices. Usually a synchronization occurs before and after the

time integration step to obtain a consistent scene state.

In this paper, we focus on time integration. The DOF are

updated by solving ordinary differential equations. Most tra-

ditional parallel physical simulation methods focus on opti-

mally partitioning complex objects, such as an atmospheric

model for weather forecast [STF∗02], or interacting media

in multiphysics applications [MCW∗02]. Interactive mecha-

nical simulators can involve objects of different kinds, in-

teracting with each other using forces, as in [AR06]. The

objects are simulated independently, using their own encap-

sulated simulation methods. Interaction forces are periodi-

cally updated based on the current states of the objects. This

approach provides a high flexibility since arbitrary objects

can be combined. But, it is limited to explicit time integra-

tion, where each object evaluates its net force at the current

time to straightforwardly derive its next position and velo-

city. The objects can not anticipate the variations of the inter-

action forces, since these forces depend on several objects.

This is sometimes called weak coupling. Consequently, di-

vergence occurs unless sufficiently small time steps are ap-

plied, which can result in very slow simulations when stiff

interaction forces are applied. Unfortunately, high stiffness

is generally required for contact forces to avoid visible ob-

ject intersections.

This well-known stability problem can be avoided using

strong coupling such as implicit time integration [BW98],

where force variations are anticipated, allowing large time

steps and high performance. However, this requires setting

up and solving an equation system involving the objects and

their interaction forces, which is not possible when the ob-

jects are simulated independently.

Our approach combines flexibility and performance,

using a new efficient approach for the parallelization of

strong coupling between independently implemented ob-

jects. We extend the SOFA framework [ACF∗07] we brie-

fly summarize here. The simulated scene is split into inde-

pendent sets of interacting objects. Each set is composed of

objects along with their interaction forces, and monitored by

an implicit differential equation solver. The object are made

of components, each of them implementing specific opera-

tions related to forces, masses, constraints, geometries and

other parameters of the simulation.

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

A collision detection pipeline creates and removes

contacts based on geometry intersections. It updates the in-

dependent object sets accordingly, so that each one can be

processed independently of the others. Within each set, the

equation solver processes an arbitrary number of abstract

objects and interaction forces, by traversing a data struc-

ture using visitors. Visitors apply specific tasks at each com-

ponent, such as force accumulation or state vector opera-

tions.

We straightforwardly associate the elementary tasks with

the virtual methods overloaded by the components. The ex-

perts in various disciplines who collaborate on the develop-

ment of the library can thus safely ignore parallelism issues

if they respect the framework interface and only access com-

ponents data through this interface. This does not prevent a

fine grain parallelisation at a task level, for deferring com-

putations to a co-processor for instance.

Algorithm 1 Simulation Pipeline with Explicit Time Inte-

gration

1: loop

2: Compute Force

3: Compute Acceleration

4: v+=a*dt

5: x+=v*dt

6: Collision Detection

7: Display

8: end loop

In our first parallelization attempt, each branch of the data

structure was processed in parallel by the visitors the high-

level algorithms fire. Unfortunately, due to the sequential

code of the high-level algorithms (see, e.g., Algorithm 1),

synchronizations happened at the end of each visit to make

sure that the data used by the next visitor is available, as

illustrated in the left of Figure 2, which dramatically de-

creases the speedup. We relied on a data dependency graph

analysis to circumvent this issue as presented in Section 3.1.

Another difficulty is due to the loops with dynamic exit

conditions, which take place in iterative equation solvers.

This control structure was not available in our parallel pro-

gramming environment, preventing access to this paralle-

lism. We therefore introduced a new parallel loop construct

as presented in Section 3.3. Finally, dynamic scene changes

induced by collisions require dynamic scheduling. However,

when no new collision appears and no contact disappears,

the data dependency remains the same and we wish to re-

use the previous scheduling. This point is discussed in Sec-

tion 3.2.

2.2. Parallel Programing Environments

Parallel environments like Cilk [Ran98], Intel

TBB [Rei07] and OpenMP [DM98] have some simila-

rities to the KAAPI execution environment we use. All of

Figure 2: Task graph of the time integration step presented

in algorithm 1. Left : a recursive or data parallel approach

adds a synchronization after each instruction of the algo-

rithm. Right : we avoid the unnecessary synchronizations

performing a data dependency analysis.

them support a loop over independent data and have some

mechanisms to specify the data that are shared between

the different threads. The main difference is in the way

the tasks are executed. In our approach we can exploit the

implicit independence between tasks and avoid synchroni-

zation barriers, like shown on Figure 2. The control of the

outermost loop is not centralized avoiding to have the main

thread as a bottleneck. To obtain a similar result using the

aforementioned programming environment, we would need

to reorganize the code to explicitly express that there is no

data dependency between the tasks associated with different

objects.

A data dependency approach is also employed

by [ZLM07] as a way to extract parallelism from a

single threaded application. Data dependencies are com-

puted at compiling time. Specific processor instructions,

supported by the multicore architecture they propose, enable

to control the execution flow at runtime.

2.3. Parallel Physical Simulation

The basic approach usually used for games is to construct

a dependency graph from the different subsystems present

in the main loop. For instance it can lead to the execution

of the physics engine concurrently with the artificial intelli-

gence [RCE05]. This kind of approach reflects the structure

of an application, and is independent from the scenarios. But

the amount of parallelism extracted is very limited and does

not scale as there is a restricted number of independent tasks.

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

[YFR06] proposes a parallel version of the Open Dyna-

mics Engine (ODE). The main idea is to group colliding ob-

jects in islands and distribute the islands over the available

threads. This approach works well when there are enough in-

dependent islands and especially with rigid objects that are

simple to solve. If we consider colliding soft bodies, as it

is usually the case for medical simulations, this approach

would result in a single thread and would not bring any per-

formance gain.

For soft body simulations, most of the researches are focu-

sed on a fine grain data parallelism [JTS∗07, TPB08]. Some

physical simulators like PhysX [phy] and Bullet [bul] defer

computations to a GPU or SPU co-processor. Such fine grain

parallelization can be very efficient but it requires rewriting

each algorithm.

In our approach we exploit the parallelism at body level.

The independent function from different bodies are compu-

ted in parallel. To detect when two function are independent

we rely on data dependency analysis. This deeper evaluation

exposes more parallelism when compared to the collision

group approach [YFR06]. The body level parallelism relies

on the fact that only a small part of the function that simu-

lates colliding objects share the same data. All the remaining

function acts on data that are internal to each object and can

be computed in parallel. For instance, function that update

the internal state of the object, such as computing the new

positions form the velocity can be executed in parallel on

different objects even if they are colliding.

At a body level we can exploit the parallelism between

different bodies without changing the internals of the physics

algorithms. Each component implementation is considered

as a black box and our runtime environment is in charge of

orchestrating the task execution.

3. Parallel Simulation using Task Graphs

3.1. Graph Generation

The simulation pipeline is organized around a main ex-

ternal loop that makes the simulation advance forward in

time (Figure 1). In this paper we focus on the paralleliza-

tion of the time integration step. This step may implement

its own internal iterative process, especially when relying on

strong coupling such as implicit time integration. We consi-

der a parallelization based on the identification of tasks and

data dependencies from the sequence of steps involved in

one iteration of time integration. The data are vectors repre-

senting the physical states of an object, like positions, velo-

cities and forces. The tasks are operations on those vectors

like accumulating forces, computing positions from veloci-

ties, etc. The data dependencies between tasks and data re-

present graph edges. Figure 2 corresponds to a simplified

graph of one explicit time integration step where two objects

are colliding. In response to the collision an interaction force

is set between both objects.

We produce data flow graphs corresponding to the dif-

ferent operations triggered by the equation solvers, rather

than directly performing these operations. Each visitor fired

by the algorithm produces tasks, and the complete sequence

of operations performed by the algorithm is represented as

an assembled graph that precisely models data dependencies

at component granularity. With a good partitioning of this

graph we can avoid the undesirable synchronizations pre-

viously discussed, and significantly improves performance.

3.2. Graph Partitioning

Once we have a task graph representing the simulation

operations, we can schedule this graph by assigning the tasks

to a set of processors using a partitioning algorithm. In most

of the cases we can deduce the task affinity from the scene

structure. In Figure 2 all the tasks following the force com-

putation modify the data of only one object. In this case the

tasks can automatically be mapped in the same partition ga-

thering all the tasks modifying a given object. The remaining

tasks that are not directly associated to one simulation ob-

ject, like the interaction force, are grouped with other tasks

that access the same group of objects.

If needed, we can also employ a dedicated partitioner like

SCOTCH [PR96] or METIS [KK98], to better optimize the

partitioning. One situation that may need a deeper analysis

of the dependency graph is for extracting parallelism from

the tasks that access the same object. But using such a parti-

tioning we lose the control on the number of partitions, as it

depends on the number of objects in a scene and the distri-

bution of the objects in space at a given time step.

In opposite, gathering in the same partition the tasks that

access the same data (Owner Compute Rule) leads to a par-

titioning that corresponds to the scene structure. It enables to

rebalance the object distribution over the processors without

requiring to repartition the graph. We can move a computa-

tionally expensive object from an overloaded processor to an

idle one only by reassigning the partition related to this ob-

ject. Also we can associate the data to the processors, and the

tasks that access a given set of data will be placed in the right

processor even if the graph is repartitioned, which improves

the locality of the accessed data.

After partitioning the tasks, we create the threads that will

be executed in parallel. When a task needs to access some

data produced by another partition, we add control struc-

tures to signal when the data is ready. In a Writer/Reader

profile like shown in Figure 3(a) a signal task is inserted

after the writer task. This task signals all readers when the

data is ready. A wait task is placed just before the first rea-

der of each partition, to passively wait for the signal. To

support a parallel cumulative write, that occurs for instance

when computing forces (Figure 2), we decompose it into two

phases : accumulation and reduction. At the beginning each

writer accumulates its value to a temporary buffer, so they

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

(a) Write Read Operation (b) Cumulative Write

Figure 3: Control tasks employed to guarantee data access

coherence between different partitions. On a write/read ope-

ration the reader waits for the data to be produced by the

writer. In a cumulative write operation all the writes are

performed in a temporary buffer that will be further accu-

mulated by the Reducer.

can run without concurrency issues (Figure 3(b)). The redu-

cer waits for all writers and sums up the accumulated tem-

porary buffers. The Reducer is considered as the real writer

of the data, as the writers only accumulate to temporary buf-

fers. The result produced by the reducer will be accessed by

all subsequent readers.

Because most of the steps are repeated between iterations,

the graph can be replayed, to save graph partitioning ove-

rheads and to favor data affinity by limiting data movements

between iterations. However each time the graph changes

we need to recompute the data dependency to be sure that

the parallel run will have the same result as the sequential

algorithm.

3.3. Dynamic Loops

As stated on Section 2.1, some integration processes ite-

rate up to comply with a given convergence criterion. To be

able to extract parallelism from such loop, we need to mark

such loops and conditional breaks so they can be identified

in the task graph.

We introduce two special tasks, EndLoop and BeginLoop,

to delimit the loop boundaries. All tasks created between the

BeginLoop and the EndLoop are considered part of the loop

body and are redeployed at each loop iteration. This loop

can be controlled through a condition variable or an itera-

tion counter. The main difference is that a condition variable

is shared by all the loops, while an iteration counter can be

incremented locally by each loop without the need of syn-

chronization. We also introduce a ConditionalBreak task as

a break instruction that can be very convenient to exit the

loop.

The condition is tested each time the BeginLoop, EndLoop

or ConditionalBreak tasks are executed. When reaching a

EndLoop task , all the tasks of the loop body are redeployed

if the loop condition is still valid. Otherwise, we must exit

the loop. The next task to be executed will be the task just

after the EndLoop.

Figure 4: Dynamic loop. Functions e1, e2, g1, g2 change

multiple objects. Left : standard code. Middle : our modified

code. Right : Graph representation of our implementation.

To partition a loop we take the same assignment pattern

that for other tasks as explained on Section 3.2. If a loop is

decomposed onto several partitions, the loop control tasks

are replicated on all the partitions, including the Conditio-

nalBreak tasks. If the break condition is a boolean, it is trea-

ted as a data that is shared between all the loop control struc-

tures. Otherwise, the condition can be evaluated locally for

each partition. In this case, each loop executed by each par-

tition can run freely without the need for extra synchroniza-

tion.

In Figure 4 we show a loop executed onto two partitions.

The task F updates the condition variable at each iteration,

and all the loops that depend on this variable are readers of

this shared data. By considering a condition variable like any

other shared data, we guarantee that the access control is

made automatically by the Writer/Readers mechanism ex-

plained in previous section.

4. Results

We tested our approach with different simulation scena-

rios, going from identical objects that are completely inde-

pendent to heterogeneous scenes of colliding objects. The

tests were performed on one PC equiped with 16 cores (8

dual-core 2.2GHz Opteron processors) with 32GB of RAM.

Each processor has direct access to 4 GB of memory and

uses Hypertransport to access the other processor memory,

leading to non-uniform memory accesses.

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

Figure 5: Speedup using 64 identical bars of size 16x4x4

without collision. T1 = 150ms

As the parallelization of the collision detection step is out

of the scope of this paper, we only consider the performance

of the time integration step. The speedup is computed taking

the sequential execution time T1 as the reference. Task graph

partitioning (that may not occur at each iteration) is always

included in the measured time.

The video associated with this paper shows executions

that include a sequential collision detection and a scene ren-

dering.

4.1. Independent Similar Objects

First test is a scene composed of non colliding identical

objects simulated independently. Each object is a soft bar

that is attached at one end and get deformed due to the gra-

vity force. This test highlights the overhead induced by the

parallelization.

The test runs with 64 bars, each one is composed by 256

particles that are simulated using hexahedral finite elements

(Figure 5). This size of object is large enough not to fit in

cache, and at the same time small enough to avoid having

the memory as a bottleneck.

We compared our approach with a Cilk based paralleliza-

tion relying on work-stealing, and an implementation using

recursive parallelism following the Cilk divide and conque-

ror approach. In both cases there is no parallel dynamic

loop. All the iterative algorithms were expressed using pa-

rallel static loops, forcing all the tasks to resynchronize be-

fore starting a new operation. Neither of them ensures the

affinity between tasks and processor. From one step to the

other, there is no guarantee that a task will execute on the

same processor. For this simple case, work-stealing was ex-

pected to be slower than our approach as the limited amount

of available parallelism was not able to compensate for the

overhead of the dynamic load-balancing.

Our implementation is close to the optimal. We succee-

ded to manage the most important issues that are not treated

Figure 6: Speedup on a heterogeneous scene containing dif-

ferent objects simulated using different mechanical models.

by previous work : unnecessary synchronization barriers and

locality coherence over iteration steps.

4.2. Complex Scene

The parallelization of a scene composed of independent

objects can be obtained using simple approaches, like simu-

lating each object in a different thread or even in a different

process. However when objects are colliding, such method

can only take advantage of a reduced amount of parallelism.

This is for this kind of simulation that our approach shows

its potential.

In Figure 8 we have the initial and final state of a scene

of heterogeneous objects falling under gravity and colliding

(see the video for a full simulation). The different objects

have surface meshes that go from 400 to 2.500 triangles.

The method employed to simulate the object varies : there

are rigid bodies and soft bodies using mass springs, finite

elements or deformable grids models.

During the first steps there is almost no collision between

objects, and as explained on Section 2.1, they can be solved

by separate instances of the solvers. Also, we obtain a high

speedup as there is few tasks that access data from different

objects. However, as we approach the final state, objects get

closer, and at the end they are all part of one single collision

group. It means that they all must share the same iterative

loop and break conditions, as the instance of the solver em-

ployed on all the objects is the same to avoid instabilities

(strong coupling). Because of the collisions, many tasks ac-

cess multiple objects, creating synchronization points.

When collision groups change, the task graph is updated.

The cost of this procedure is proportional to the number of

contacts in the scene. In the scene from Figure 8 the mean

cost of updating the graph is close to 30ms, which is about

the same time required to execute a timestep. This overhead

c© The Eurographics Association 2009.



E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

Figure 7: Speedup using a mass-spring mesh simulation by

domain decomposition.The sequential time for each case is :

125ms (128x128), 500ms (258x258), 2.2s (512x512)

is usually not noticeable (see the video). It is compensated by

the overall performance improvement and is often amortized

over a few timesteps.

The speedup obtained here did not require any effort from

the application developer nor the physics algorithm develo-

per. The physics algorithms can evolve independently from

the parallel code, reducing the lag between the development

of sequential algorithm and the execution of this algorithm

in a parallel architecture.

4.3. Domain Partition

Our approach targets a coarse grain parallelism without

looking to the internal implementation of a given method.

In a scene with few objects or with a huge time consuming

object, it would be harder to obtain good performance gains.

As SOFA enables to have tightly connected objects into a

scene, we can explicitly decompose a large object into smal-

ler connected ones. SOFA guarantees that both physical si-

mulation will be identical. Constraints ensure that two points

from different objects will be considered as a single one du-

ring the simulation. To evaluate this kind of domain decom-

position we used a mass-spring mesh that is cut into smaller

objects like shown in Figure 9(a). With this simple decom-

position, the speedup can be significant (Figure 7). We ob-

tainted better results with smaller objects due to the overhead

introduced by memory accesses on larger scenes. Notice that

like for the previous test, all the objects share the same ite-

rative loop for the convergence phase of the conjugate gra-

dient.

4.4. Medical Simulation

The last test focuses on a more realistic scene simulating a

torso model with all organs. The bones were simulated as ri-

gid bodies, lungs and liver are simulated finite elements, and

the intestine uses springs. We ran this test on a dual Quad In-

tel Xeon architecture, with a total of 8 cores. The sequential

integration time is 50ms, and the parallel time using 8 cores

is 14ms, resulting on a speedup of about 3.5. Note that this

speedup is automatically available to any user, including non

experts in parallelism.

5. Conclusion and Future Work

In this paper we presented a framework for coarse-to-

mid grain parallelism that takes advantage of the paralle-

lism between different objects in a scene. We extract tasks

from the sequential algorithm to generate a dataflow graph.

This graph is then partitioned to be executed in parallel. The

changes on the physical simulator are restricted to the sys-

tem core, and all the physics routines are kept unchanged.

To be able to parallelize more complex simulations, we in-

troduced new control structures to represent loops in a graph.

Those loops can be partitioned and executed on multiple

processors, giving access to extra coarse parallelism in the

scene. Unlike traditional parallel loops, we can create loops

whose number of iteration is dynamic. Additionally, condi-

tional breaks are supported inside the loop body.

This approach was tested on different scenarios going

from similar independent objects to complex scenes. Tests

shows that we can obtain good performance results, achie-

ving in some cases near optimal speedups. In all the scenes

the gain on performance is obtained transparently to the phy-

sics developer.

Future work focuses on using a work-stealing load ba-

lancing approach as a way to integrate our multicore imple-

mentation with co-processor accelerated code. Another work

look at optimizing the task graph updating, to avoid recons-

tructing the whole graph each time it changes.

References

[ACF∗07] ALLARD J., COTIN S., FAURE F., BENSOUSSAN P.-
J., POYER F., DURIEZ C., DELINGETTE H., GRISONI L. :
SOFA - an open source framework for medical simulation. In
Medicine Meets Virtual Reality (MMVR’15) (Long Beach, Cali-
fornia, Etats-Unis, February 2007), pp. 1–6.

[AR06] ALLARD J., RAFFIN B. : Distributed physical based si-
mulations for large vr applications. Virtual Reality Conference,

2006 (March 2006), 89–96.

[bul] Bullet Physics Library. http://www.bulletphysics.com.

[BW98] BARAFF D., WITKIN A. : Large steps in cloth simula-
tion. In SIGGRAPH ’98 : Proceedings of the 25th annual confe-

rence on Computer graphics and interactive techniques (New
York, NY, USA, 1998), ACM, pp. 43–54.

c© The Eurographics Association 2009.

http://www.bulletphysics.com


E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

[DM98] DAGUM L., MENON R. : Openmp : an industry standard
api for shared-memory programming. Computational Science &

Engineering, IEEE 5, 1 (Jan-Mar 1998), 46–55.

[FLR98] FRIGO M., LEISERSON C. E., RANDALL K. H. :
The implementation of the cilk-5 multithreaded language.
SIGPLAN Not. 33, 5 (1998), 212–223. http ://super-
tech.csail.mit.edu/papers/cilk5.pdf.

[GBP07] GAUTIER T., BESSERON X., PIGEON L. : Kaapi : A
thread scheduling runtime system for data flow computations on
cluster of multi-processors. In PASCO ’07 : Proceedings of the

2007 international workshop on Parallel symbolic computation

(New York, NY, USA, 2007), ACM, pp. 15–23.

[JTS∗07] JERABKOVA L., TERBOVEN C., SARHOLZ S., KUH-
LEN T., BISCHOF C. : Exploiting multicore architectures for
physically based simulation of deformable objects in virtual en-
vironments. In Virtuelle und Erweiterte Realität, 4. Workshop

der GI-Fachgruppe VR/AR, Weimar, Germany (2007).

[KK98] KARYPIS G., KUMAR V. : A fast and high quality multi-
level scheme for partitioning irregular graphs. SIAM J. Sci. Com-

put. 20, 1 (1998), 359–392.

[MCW∗02] MCMANUS K., CROSS M., WALSHAW C., CROFT

N., WILLIAMS A. : Parallel performance in multi-physics simu-
lation. In ICCS ’02 : Proceedings of the International Confe-

rence on Computational Science-Part II (London, UK, 2002),
Springer-Verlag, pp. 806–815.

[Mir00] MIRTICH B. : Timewarp rigid body simulation. In Proc.

of ACM SIGGRAPH (2000), pp. 193–200.

[phy] Nvidia PhysX. http://www.nvidia.com/physx.

[PR96] PELLEGRINI F., ROMAN J. : Scotch : A software package
for static mapping by dual recursive bipartitioning of process and
architecture graphs. In HPCN’96 (Bruxelles, 1996), Springer,
pp. 493–498.

[Ran98] RANDALL K. : Cilk : Efficient Multithreaded Compu-

ting. Tech. rep., Cambridge, MA, USA, 1998.

[RCE05] RHALIBI A. E., COSTA S., ENGLAND D. : Game
engineering for a multiprocessor architecture. In DIGRA Conf.

(2005).

[Rei07] REINDERS J. : Intel threading building blocks. O’Reilly
& Associates, Inc., Sebastopol, CA, USA, 2007.

[STF∗02] SHINGU S., TAKAHARA H., FUCHIGAMI H., YA-
MADA M., TSUDA Y., OHFUCHI W., SASAKI Y., KOBAYASHI

K., HAGIWARA T., ICHI HABATA S., YOKOKAWA M., ITOH

H., OTSUKA K. : A 26.58 tflops global atmospheric simulation
with the spectral transform method on the earth simulator. In
Supercomputing ’02 : Proceedings of the 2002 ACM/IEEE confe-

rence on Supercomputing (Los Alamitos, CA, USA, 2002), IEEE
Computer Society Press, pp. 1–19.

[TPB08] THOMASZEWSKI B., PABST S., BLOCHINGER W. :
Special section : Parallel graphics and visualization : Parallel
techniques for physically based simulation on multi-core proces-
sor architectures. Comput. Graph. 32, 1 (2008), 25–40.

[YFR06] YEH T. Y., FALOUTSOS P., REINMAN G. : Enabling
real-time physics simulation in future interactive entertainment.
In Sandbox ’06 : Proceedings of the 2006 ACM SIGGRAPH

symposium on Videogames (New York, NY, USA, 2006), ACM,
pp. 71–81.

[ZLM07] ZHONG H., LIEBERMAN S., MAHLKE S. : Extending
multicore architectures to exploit hybrid parallelism in single-
thread applications. In Proc. 2007 International Symposium on

High Performance Computer Architecture (February 2007).

c© The Eurographics Association 2009.

http://www.nvidia.com/physx


E. Hermann, B. Raffin & F. Faure / Interactive Physical Simulation on Multicore Architectures

(a) Initial State (b) Final State

Figure 8: Scene used for the complex simulation tests. Objects are simulated using different methods, like Finite Elements,

Springs and Regular Grids

(a) Domain decomposition. (b) Medical simulation.

Figure 9: Scenes used on performance tests

c© The Eurographics Association 2009.


