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Abstract. Reordering instructions and data layout can bring significant
performance improvement for memory bounded applications. Paralleliz-
ing such applications requires a careful design of the algorithm in order
to keep the locality of the sequential execution. In this paper, we aim
at finding a good parallelization of memory bounded applications on
multicore that preserves the advantage of a shared cache. We focus on
sequential applications with iteration through a sequence of memory
references. Our solution relies on an adaptive parallel algorithm with a
dynamic sliding window that constrains cores sharing the same cache to
process data close in memory. This parallel algorithm induces the same
number of cache misses as the sequential algorithm at the expense of
an increased number of synchronizations. Experiments with a memory
bounded application confirm that core collaboration for shared cache ac-
cess can bring significant performance improvements despite the incurred
synchronization costs. On quad cores Nehalem processor, our algorithms
are 10% to 30% faster than algorithms not optimized for shared cache
thanks to a reduced number of last level cache misses.

1 Introduction

Many applications in scientific computing are memory bounded. Favoring the
locality of access patterns through data and computation reordering can bring
significant performance benefits. When designing parallel algorithms, one must
be extra careful not to lose the locality of the sequential application, which is
the key for good performance.

In most last generation multicores, the last level of cache is shared among
all cores of the chip. For instance the Intel Nehalem, the AMD Phenom and
Opteron (only for the quadcores and hexacores) and the IBM Power7 all have a
shared L3 cache. Recent GPU architectures also adopt this cache design: the L1

cache of a NVIDIA Fermi streaming multiprocessor is shared among 32 cores.
In this paper, we focus on one specific aspect of the parallelization of memory

bounded applications: how to adapt the scheduling to take advantage of the shared
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caches of multicore processors. The goal is to propose a scheduling algorithm that
improves performance by reducing cache misses, compared to parallel algorithms
that do not take into account the shared cache amongst several cores. We propose
to have cores working on independent but close (regarding the memory layout)
data sets that can all fit in the shared cache. If a core needs a data that is not in
its data set, there is a good chance it will find it in the data set loaded in the
cache by one of its neighbors, thus saving cache misses. The algorithm behaves
as if each core would benefit from a full-size private cache, at the price of a few
extra synchronizations required to ensure a proper collaboration between cores.

This paper focuses on algorithms that take an input sequence to produce an
output sequence of results. Such algorithms encompass many of the C++ Standard
Template Library (STL) functions like for each or transform. Moreover, many
parallel libraries such as Intel TBB or the GNU STL parallel mode provide parallel
implementations of the STL. Thus providing shared cache aware parallelizations
of these algorithms can improve performance of many applications running on
multicores.

We provide a cache constraint that parallel algorithms should respect to
induce no more cache misses than the sequential algorithms. We present two new
algorithms respecting this cache constraint and two implementations, one based
on PThread and the other one based on work-stealing allowing efficient dynamic
load balancing. We also implement those new algorithms with the parallel library
TBB and the GNU parallel STL and compare them with our implementations
on the for each function.

The paper is organized as follows. In section 2, we present the cache constraint
and the associated algorithms. In section 3, we detail the implementation of
these two algorithms using the work-stealing based framework Kaapi. Finally,
we introduce the application we use to benchmark our algorithms in section 4
and the experimental data in section 5 before the conclusions.

2 Scheduling for Efficient Shared Cache Usage

2.1 Review of Work-Stealing and Parallel Depth First Schedules

Work Stealing (WS) is a scheduling algorithm that is very efficient both in theory
and in practice. It has been implemented in many languages and parallel libraries
including Cilk [1] and TBB [2]. In WS, each processor manages its own list of
tasks. When a processor becomes idle, it becomes a thief, randomly chooses
another processor, the victim, and try to steal some work. For an efficient load
balancing, the thief should choose a task that represents a big amount of work
far in memory from the work of the victim. This reduces the number of steal
operations and thus synchronization costs. Unfortunately, stealing such tasks may
not be optimal if one takes into account the shared cache of recent multicores.

Contrary to WS, the Parallel Depth First (PDF) schedule of [3] tries to
optimize shared cache usage. This schedule is based on the sequential order
of execution, which is supposed to be cache-efficient. When several tasks are
available, a processor will preferably execute the earliest task in the sequential
order. The authors showed that a PDF schedule induces no more cache misses



than the sequential execution when the parallel execution uses a slightly bigger
cache. However, computing and maintaining such a schedule is costly in practice.

Informally, one could think of the PDF scheduler as a WS scheduler where
the thieves would choose the closest task in the victim list inducing lots of steal
operations. This is not as simple as all processors, not only a victim and its thief,
should work on data close in memory. In addition to the steal close operation,
another mechanism is needed to prevent processors to deviate from each other
after the steal operation. The cache constraint we present in the next section
serves exactly this purpose. The processing order we proposed is a trade-off
between WS and PDF. Processors work on data just close enough in memory to
fit in the shared cache. This way the parallel application should not make more
cache misses than the sequential application. The number of synchronizations
is better than PDF but not as good as WS. However, as the number of cache
misses is reduced, the overall performance should be improved over WS.

2.2 Window Algorithms for Sequence Processing

We consider algorithms that take an input sequence i1, i2, . . . , in (different input
elements can share some data) and a function op to be applied on all elements
of the input producing an output sequence o1, o2, . . . , on′ . Notice that treating
one element may produce a different number of elements in the output sequence.
Most STL algorithms are variations over this model. The sequential algorithm
processes the sequence in order from i1 to in. We assume that the sequential
algorithm already performs well with respect to temporal locality of data accesses.
Data processed closely in the sequential execution are also close in memory. We
focus on the case where all elements of the sequence can be processed in parallel.

We introduce two parallel algorithms to process such a sequence in parallel.
These two algorithms are parameterized by m, the maximum distance between
the threads. In the first one, denoted static-window , the sequence is first divided
into n/m chunks of m contiguous elements. Then, each chunk is processed in
parallel by the p processors sharing the same cache. Several strategies can be
used to parallelize the processing of each chunk. The m elements could be
statically partitioned into p groups of m/p elements, one per processor, or a
work-stealing scheme can be used to dynamically balance the load. The second
parallel algorithm, denoted sliding-window , is a relaxed version of the static-
window algorithm. At the beginning of the algorithm, the first m elements of
the sequence are ready and can be processed in any order. Each time the first
element ik not yet processed in the sequence is treated by a processor, it enables
the element ik+m at the end of a window of size m. These two algorithms will
be compared with an algorithm denoted no-window that do not respect the
cache constraint. All the elements of the sequence can be processed in any order.
This algorithm induces more cache misses than the sequential algorithm and the
window algorithms, but it requires fewer synchronizations.

2.3 Cache Performance of Window Algorithms

The re-use distance captures the temporal locality of a program [4]. Let consider
a series of memory references (xk)k≥0. When a reference xk access an element



for the first time, the re-use distance of xk is infinite. If the element has been
previously accessed, xk′ = xk with k′ > k, the re-use distance of xk′ is equal to
the number of distinct elements accessed between these two references xk and
xk′ . Let hd denote the number of memory references with a re-use distance d.
The number of cache misses of a fully associative LRU cache of size C is equal
to Mseq =

∑∞
d=C+1 hd. We can extend this definition to sequence processing

algorithms: if processing ik and ik′ uses similar data, the re-use distance is k′− k.

We consider now p processors sharing the same cache that process the se-
quence in parallel in distant places like the no-window algorithm. As we assumed
the sequence has good temporal locality, elements far-away in the sequence use
distinct data. In this case, the re-use distance is multiplied by p as to each access
of one processor corresponds p − 1 accesses of the others to distinct elements.
Thus, the number of cache misses is Mno-win =

∑∞
d=C+1 hd/p ≈

∑∞
d=C/p+1 hd.

The no-window algorithm induces as many cache misses as the sequential al-
gorithm with a cache p times smaller. We now restrain the processors to work
on elements at distance less than m like in the window algorithms. Let r(m)
be the maximum number of distinct memory references when processing m− 1
consecutive elements of the input sequence. In the worst case, when processing
element ik, all elements ik+1, . . . , ik+m−1 have already been processed accessing
at most r(m) additional distinct elements compared to the sequential order. Thus
the re-use distance is increased by at most r(m). The number of cache misses

is Mwindow ≤
∑∞

d=C+1 hd−r(m) = Mseq +
∑C

d=C+1−r(m) hd. As we assumed the

sequence has good temporal locality, r(m) is small compared to m and hd is small

for large d. Therefore
∑C

d=C+1−r(m) hd is small and the window algorithms induce
approximately the same number of cache misses as the sequential algorithm.

2.4 PThread Parallelization of Window Algorithms

We present here the implementation of the no-window and static-window algo-
rithms using PThreads. The PThread implementation allows a fine grain control
on synchronizations with very little overhead.

For the no-window algorithm, the sequence is statically divided into p groups.
Each group is assigned to one thread bound to one processor and all threads
synchronize at the end of the computation. For the static-window algorithm, the
sequence is first divided into chunks of size m. Then each chunk is statically
divided into p groups and all threads synchronize at the end of each chunk before
starting to compute the next one. Each synchronization is implemented with a
pthread_barrier. Threads wait at the barrier and are released when all of them
have reached the barrier. Although we expect the threads in the static-window
algorithm to spend more time waiting for other threads to finish their work, the
reduction of cache misses should compensate this extra synchronization cost.
The sliding-window algorithm has not been implemented in PThread because it
would require a very complex code. We present in the next section a work-stealing
framework allowing to easily implement all these algorithms.



typedef struct {
InputIterator ibeg;
InputIterator iend;
OutputIterator obeg;
size_t osize;
} Work_t ;

void dowork(...) {
complete_work:

while (iend != ibeg) {
kaapi_stealpoint(..., &splitter);
for(i=0; i<grain; ++i, ++ibeg)

op(ibeg, obeg, &osize);
kaapi_preemptpoint(..., &reducer);
}
if ( kaapi_preempt_next_thief(...) )

goto complete_work ;
} // no more work -> become a thief

void reducer(Work_t *victim, Work_t *thief) {
memmove( victim->obeg, thief->obeg,

thief->osize );
victim->osize += thief->osize;
victim->ibeg = thief->ibeg;
victim->iend = thief->iend;
} // victim -> dowork / thief -> try to steal

void splitter( Work_t *victim, int count,
kaapi_request_t* request ) {

int i = 0;
size_t size = victim->iend - victim->ibeg;
size_t bloc = size / (1+count);
InputIterator local_end = victim->iend;
Work_t *thief;

if (size < gain)
return;

while (count >0) {
if (kaapi_request_ok(&request[i])) {

thief->iend = local_end;
thief->ibeg = local_end - bloc;
thief->obeg = intermediate_buffer;
thief->osize = 0;
local_end -= bloc;
kaapi_request_reply_ok(thief,

&request[i]);
--count;
}
++i;
}
victim->iend = local_end;
} // victim and thieves -> dowork

Fig. 1. C implementation of the adaptive no-window algorithm using the Kaapi API.

3 Work-Stealing Window Algorithms with Kaapi
In this section, we present the low level API of Kaapi [5] and detail the imple-
mentation of the windows algorithms.

3.1 Kaapi Overview
Kaapi is a programming framework for parallel computing using work-stealing.
At the initialization of a Kaapi program, the middleware creates and binds one
thread on each processor of the machine. All non-idle threads process work by
executing a sequential algorithm (dowork in fig. 1). All idle threads, the thieves,
send work requests to randomly selected victims. To allow other threads to
steal part of its work, a non-idle thread must regularly check if it received work
requests using the function kaapi_stealpoint. At the reception of count work
requests, a splitter is called and divides the work into count+1 well-balanced
pieces, one for each of the thieves and one for the victim.

When a previously stolen thread runs out of work, it can decide to preempt
its thieves with the kaapi_preempt_next_thief call. For each thief, the victim
merges part of the work processed by the thief using the reducer function and
takes back the remaining work. The preemption can reduce the overhead of storing
elements of the output sequence in an intermediate buffer when the final place of
an output element is not known in advance. To allow preemption, each thread
regularly checks for preemption requests using the function kaapi_preemptpoint.

To amortize the calls to the Kaapi library, each thread should process several
units of work between these calls. This number is called the grain of the algorithm.
In particular, a victim thread do not answer positively to a work request when it
has less than grain units of work.

Compared to classical WS implementations, tasks (Work_t) are only created
when a steal occurs which reduces the overhead of the parallel algorithm compared



to the sequential one [6]. Moreover, the steal requests are treated by the victim
and not by the thieves themselves. Although the victim has to stop working
to process these requests, synchronization costs are reduced. Indeed, instead of
using high-level synchronization functions (mutexes, etc.) or even costly atomic
assembly instructions (compare and swap, etc.), the thieves and the victim can
communicate by using standard memory writes followed by memory barriers, so
no memory bus locking is required. Additionally, the splitter function knows
the number count of thieves that are trying to steal work to the same victim.
Therefore, it permits a better balance of the workload. This feature is unique to
Kaapi when compared to other tools having a work-stealing scheduler.

3.2 Work-Stealing Algorithm for Standard (no-window) Processing

It is straightforward to implement the no-window algorithm using Kaapi. The
work owned by a thread is described in a structure by four variables: ibeg and
iend represents the range of elements to process in the input sequence, obeg is
an iterator on the output sequence and osize is the number of elements written
on the output. At the beginning of the computation, a unique thread possesses
the whole work: ibeg=0 and iend=n. Each thread processes its assigned elements
in a loop. Code of Fig. 1 shows the main points of the actual implementation.

3.3 Work-Stealing Window Algorithms

The static-window algorithm is very similar to the no-window algorithm of the
previous section. The first thread owning the total work has a specific status,
it is the master of the window. Only the master thread has knowledge of the
remaining work outside the m-size window. When all elements of a window have
been processed, the master enables the processing of the new window by updating
its input iterators ibeg = iend and iend += m. This way, when idle threads
request work to the master thread, the stolen work is close in the input sequence.
Moreover, all threads always work on elements at distance at most m.

The sliding-window algorithm is a little bit more complex. In addition to
the previous iterators, the master also maintains ilast an iterator on the first
element after the stolen work in the input sequence (see Fig. 2). When the master
does not receive any work request, then iend == ilast == ibeg+m. When the
master receives work requests, it can choose to give work on both sides of the
stolen work. Distributing work in the interval [ibeg,iend] corresponds to the
previous algorithm. The master thread can also choose to distribute work close
to the end of the window, in the interval [ilast,ibeg+m]. We implemented
several variants of the splitter. The local_splitter gives in priority work
in the interval [ibeg,iend]. It favors processing elements at the beginning
to fast-forward the window thus enabling new elements to be processed. The
distant_splitter gives in priority work in the interval [ilast,ibeg+m]. By
distributing work at the end of the window, it should reduce the number of
preemptions. The last one, balanced_splitter try to give well-balanced amount
of work to all thieves by dividing the union of both intervals into equal size
pieces. No piece of work can contains elements on both sides of the window as
the resulting work would not be an interval.
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Fig. 2. Decomposition of the input sequence in the sliding-window algorithm.

4 Marching Tetrahedra for Isosurface Extraction

Isosurface extraction is one on the most classical filters of scientific visualization. It
provides a way to understand the structure of a scalar field in a three dimensional
mesh by visualizing surfaces of same scalar value. The marching tetrahedrons
(MT) is an efficient algorithm for isosurface extraction [7]. For one cell of a mesh,
the MT algorithm reads the point coordinates and scalar values and computes
a linear approximation of the isosurface going through this cell. Applied on all
mesh cells sequentially, it leads to a cost linear in the number of cells.

We now look at cache misses induced by MT. The mesh data structure usually
consists of two multidimensional arrays: an array storing point attributes (e.g.
coordinates, scalar values, etc.) and an array storing for each cell its points
and attributes (e.g. type of the cell, scalar values, etc.). Points are accessed by
following a reference from the cell array, e.g. reading coordinates of a point. As
cells close in the cell array often use common points or points with close indices,
processing cells in the same order as the sequential algorithm induces fewer cache
misses when accessing the point array due to an improved temporal locality.

When implementing the window algorithms, the window size m should be
chosen such that a sub-part of m cells of the mesh fits in the shared cache. Each
point is coded on four doubles and each tetrahedron with four references (64bit
integers) to points. On average, meshes have six times more tetrahedrons than
points. So, for an 8MB cache, we approximately have m = 225, 000. The same
reasoning could apply to other mesh processing applications.

5 Experiments

We present experiments using the MT algorithm for isosurface extraction. We
first calibrate the grain for the work-stealing implementation and the window
size m for the window algorithms. Then, we compare the Kaapi framework
with other parallel libraries on a central part of the MT algorithm which can be
written as a for each. Finally we compare the no-window , static-window and
sliding-window algorithms implementing the whole MT.

All the measures reported are averaged over 20 runs and are very stable. The
numbers of cache misses are obtained with PAPI [8]. Only last level cache misses
are reported as the lower level cache misses are the same for all algorithms. Two
different multicores are used, a quadcore Intel Xeon Nehalem E5540 at 2.4Ghz
with a shared 8MB L3 cache and a dualcore AMD Opteron 875 at 2.2Ghz with
two 1MB L2 private caches. If the window algorithms reduce the number of cache
misses on the Nehalem but not on the Opteron, one can conclude that this is
due to the shared cache.
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Fig. 3. (Left) Number of L3 cache misses for the PThread implementation of the
static-window algorithm for various window sizes compared to the sequential
algorithm and the no-window algorithm. (Right) Parallel time for the Kaapi
implementation of the static-window algorithm with various grain sizes. (Both)
All parallel algorithms use the 4 cores of the Nehalem processor.

5.1 Calibrating the Window Algorithms

Fig. 3(left) shows the number of L3 cache misses for the static-window algorithm
compared to the sequential algorithm and the no-window algorithm. The static-
window algorithm is very close to the sequential algorithm for window sizes less
than 220. It does not exactly match the sequential performance due to additional
reduce operations for managing the output sequence in parallel. With bigger
windows, L3 misses increase and tend to the no-window algorithm. For the
remaining experiments, we set m = 219.

Fig. 3(right) shows the parallel time of the static-window algorithm with the
Kaapi implementation for various grain sizes. Performance does not vary much,
less than 10% on the tested grains. For small grains, the overhead of the Kaapi
library becomes significant. For bigger grains, the load balancing is less efficient.
For the remaining experiments, we choose a grain size of 128. We can notice that
the Kaapi library allows very fine grain parallelism: processing 128 elements
takes approximately 3µs on the Nehalem processor.

5.2 Comparison of Parallel Libraries on for each

Table 1 compares Kaapi with the GNU parallel library (from gcc 4.3) (denoted
GNU) and Intel TBB (v2.1) on a for each used to implement a central sub-part
of the MT algorithm. The GNU parallel library uses the best scheduler (parallel
balanced). TBB uses the auto partitioner with a grain size of 128. TBB is faster
than GNU on Nehalem and it is the other way around on Opteron. Kaapi shows
the best performance on both processors. This can be explained by the cost of
the synchronization primitives used: POSIX locks for GNU, compare and swap
for TBB and atomic writes followed by memory barriers for Kaapi.



Time (ms) Nehalem Opteron

Algorithms #Cores STL GNU TBB Kaapi STL GNU TBB Kaapi

no-window
1 3,987 4,095 3,975 4,013 9,352 9,154 10,514 9,400
4 1,158 1,106 1,069 2,514 2,680 2,431

static-window
1 3,990 4,098 3,981 4,016 9,353 9,208 10,271 9,411
4 1,033 966 937 2,613 2,776 2,598

Table 1. Performance of the no-window and static-window algorithms on a for each

with various parallel libraries. GNU is the GNU parallel library. Time are in ms.

5.3 Performance of the Window Algorithms

We now compare the performance of the window algorithms. Table 1 shows
that the static-window algorithm improves over the no-window algorithm for all
libraries on the Nehalem processor. However, on the Opteron with only private
caches, performances are in favor of the no-window algorithm. This was expected
as the Opteron has only private caches and the no-window algorithm has less
synchronizations. We can conclude that the difference observed on Nehalem is
indeed due to the shared cache.

Fig. 4(left) presents speedup of all algorithms and ratio of cache misses
compared to the sequential algorithm. The no-window versions induces 50% more
cache misses whereas the window versions only 13% more. The window versions
are all faster compared to the no-window versions. Work stealing implementations
with Kaapi improves over the static partitioning of the PThread implementations.
The sliding-window (with the best splitter: balanced_splitter) shows the best
performance.

Fig. 4(right) focus on the comparison of the sliding-window and static-window
algorithms. Due to additional parallelism, the number of steal operations are
greatly reduced in the sliding-window algorithm (up to 2.5 time less for bigger
windows) leading to an additional gain around 5%.

6 Related works

Previous experimental approaches have shown the interest of efficient cache
sharing usage, on a recent benchmark in [9] and on data mining applications
in [10]. In this paper, we go beyond those specific approaches by providing general
algorithms for independent tasks parallelism which respect the sequential locality.

Many parallel schemes have been proposed to achieve good load balancing for
isosurface extraction [11]. However, none of these techniques take into account the
number of cache misses and the shared cache of multicore processors. Optimization
of sequential locality for mesh applications has been studied through mesh layout
optimization in [12].

7 Conclusions

This paper focuses on exploiting the shared cache of last generation multicores. We
presented new algorithms to parallelize STL-like sequence processing. Experiments
on several parallel libraries confirm that these techniques increase performance
from 10% to 30% thanks to a reduced number of last level cache misses.
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