
PC Clusters for Virtual RealityBruno Ra�n∗and Luiano Soares †ID-IMAG, CNRS/INPG/INRIA/UJFGrenoble - Frane
ABSTRACT

In the late 90’s the emergence of high performance 3D commodity
graphics cards opened the way to use PC clusters for high perfor-
mance Virtual Reality (VR) applications. Today PC clusters are
broadly used to drive multi projector immersive environments.

In this paper, we survey the different approaches that have been
developed to use PC clusters for VR applications. We review the
most common software tools that enable to take advantage of the
power of clusters. We also discuss some new trends.

CR Categories: I.3.2 [Graphics Systems]: Distributed/network
graphics; I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—Virtual reality; I.6.8 [Types of Simulation]:
Animation—Distributed; D.1.3 [Concurrent Programming];

Keywords: Virtual Reality; PC Clusters

1 INTRODUCTION

PC clusters became popular in the mid 90’s for batch processing of
hight performance applications. The rendering farms are a possible
example of batch processing. Today, PC clusters are very common
in the top 500 supercomputer ranking [1]. Their success is related
to:

• Their low cost, because they are mainly built of commodity
components produced for a mass market ;

• Their modularity that enables to built a cluster adapted to the
user’s need regarding components, size or performance ;

• Their compliance with standards, that favors software and
hardware interoperability ;

• The availability of a large range of open source software solu-
tions that enables to customize, if required, a given software
layer.

In the late 90’s the emergence of high performance 3D commodity
graphics cards opened the way to use PC clusters for high perfor-
mance Virtual Reality (VR) applications. It was first motivated by
the need to have multiple video outputs to drive multi projector im-
mersive environments. One PC was not able to support multiple
video outputs, via one or even several graphics cards, for high per-
formance 3D graphics. The clustering approach was not new, as it
was used in the early 90’s to drive the first Cave with a cluster of
SGI workstations [26]. Since these early uses, PC cluster technol-
ogy and software approaches have deeply evolved, giving rise to
different solutions with different advantages and drawbacks regard-
ing performances, portability, ease of use, etc.

∗e-mail:Bruno.Raffin@imag.fr
†e-mail:Luciano.Soares@imag.fr

In the following, we survey the different approaches that have been
developed to use PC clusters for virtual reality applications. We
first focus on parallel rendering, i.e. how to take advantage of
the graphics power of a PC cluster to drive a multi projector en-
vironment. The solutions range from a duplication of the applica-
tion on each node with the appropriate synchronizations and data
communications to keep the different copies coherent, to graphics
oriented parallelizations based on sort-first, sort-middle or sort-last
paradigms [44]. We also discuss low level synchronization issues,
i.e. swap-lock and gen-lock, in conjunction with stereo rendering
constraints.

We put in perspective these different approaches with the evolution
of the PC and network components. We also study the trends in
video projector technologies as it influences the tasks PCs have to
perform, like image blending. But PC cluster benefits go beyond
parallel rendering. Since having several computer nodes enables to
distribute tasks not directly related to rendering, taking advantage
of extra computing or I/O capabilities. One issue is then to coor-
dinate and distribute the different tasks on the cluster. We survey
existing approaches from parallel scene graphs to sequential and
parallel task coupling. An overview of the most advanced appli-
cations regarding their ability to take advantage of the potential of
large PC clusters is also presented.

PC clusters basics are reviewed in section 2. Section 3 presents the
image lock constraints that a cluster should comply with when driv-
ing a multi projector environment. Section 4 discuss the different
levels of parallelism that may be present into a VR application. Sec-
tion 5 reviews some of the most common software tools supporting
clusters, while section 6 presents some hardware compositing de-
vices. Display technology issues are discussed in section 7 before
to conclude.

2 BASICS

2.1 Hardware

A PC cluster is a set of interconnected PCs usually gathered in a
single room and dedicated to process high performance parallel ap-
plications. Its architecture can range from low-end single CPU PCs
connected through a Ethernet or Giga-Ethernet network to high-end
multi CPU PCs connected through some high performance network
like Myrinet or Infiniband.

In the recent years, the PCI-Express bus is probably the most impor-
tant hardware evolution for PC clusters. It enables to significantly
increase the data transfer bandwidth for two important components:

• The bandwidth of high performance networks like Myrinet
was first limited by the PCI and next PCI-X busses rather
than by their own technology. The availability of PCI-Express
opened the way to very high bandwidth. For instance the
Myri-10G cards from Myrinet reach a point-to-point band-
width of 1.2 GBytes/s.

• The bandwidth for transferring memory to the graphics card
also takes advantage of the PCI-Express bus. It has a higher



performance than the AGP bus in both directions. AGP 1X
has a speed of 264 Mb/s, the last AGP version, AGP 8X has
a speed of 2 Gb/s. PCI-Express speed depends on the number
of lanes. Usually for graphics cards a x16 slot having a speed
of 4Gb/s is used.

The 64 bits processor architectures (AMD opteron, Intel Itanium
or 64 bits Xeon) enable to address beyond 4 GBytes of memory,
the limit imposed by the 32 bit architectures. This is useful for
memory intensive applications. Also, the 64 bits architectures are
usually showing higher performance than their 32 bit counterparts.
However experiencing a real application performance increase may
not be straightforward. Part of the code may need to be reworked
(especially with the Intel Itanium processor).

Graphics cards become more versatile as it is possible to program
part of the graphics pipe-line through shaders to achieve high-
quality and high performance final rendering results. As PCs usu-
ally provide several PCI-Express slots, it is now possible to install
several graphics cards, while only one AGP slot was available. Also
notice that most commodity graphics cards are now providing 2 dig-
ital video outputs.

2.2 Software

One difficulty with clusters is to install and maintain a coherent sys-
tem on all computer nodes. A classical approach is to rely on a disk
cloning mechanism. Then from time to time, when incoherences
appear between machines, because one user has changed a configu-
ration on a set of machines and forgot to propagate the change on all
machines for instance, the node’s disks are cloned from a reference
computer.

Linux is the main operating system for clusters. Several Linux clus-
ter distributions, like Rocks [2], provides tools to ease the installa-
tion and maintenance of clusters. They usually provide fast cloning
mechanisms and some packages for classical cluster tools like the
message passing library MPI or the cluster performance monitoring
tool Ganglia [42].

Though these tools ease cluster management, the user still has to
see a cluster as a set of PCs, each one running its on OS. On-going
efforts are focused on developing single image operating systems
for clusters, like Kerrighed [3]. The goal is to offer the view of a
unique SMP machine on top of a cluster of standard PCs.

2.3 Clusters versus Dedicated Supercomputers

The difference between a PC cluster and a dedicated supercomputer
is getting thinner (at least for small to medium size configurations).
They are using the same CPUs and GPUs, high performance net-
works that show about the same performance. They are running
the same operating system (Linux). The main difference comes
from the vendor ability to deliver turn-key solutions with a strong
hardware/software integration, validated configurations and a qual-
ity user support.

This was not always the case. For instance, Silicon Graphics (SGI)
computers were very common to drive virtual reality facilities in the
90’s. At that time these computers had graphics cards [45, 46] pow-
erful enough to display high quality 3D content in real-time. They
achieved parallel rendering through special busses (Triangle bus
and after Vertex bus), not available on commodity graphic cards.
The Onyx computers had a distributed memory with specific hard-
ware to implement a cache coherency protocol on top of which was

built a virtual shared memory [7]. The SGI’s operating system,
IRIX, is a single image OS.

Another important project in the field of parallel rendering and clus-
tering is the PixelFlow [27]. It was developed to support parallel
rendering in a complete dedicated hardware. It has an array of
renders that compute a full image with a fraction of global prim-
itives needed. At the end a high-performance image-compositing
network combines the images from the array nodes in real-time.
PixelFlow could be coupled to a parallel supercomputer for an
immediate-mode rendering. It also worked in a retained-mode, the
geometries being stored inside the PixelFlow hardware. For im-
age compositing PixelFlow used binary trees. One important as-
pect about PixelFlow is its support for deferred shading in the com-
positing, enabling high-quality graphics without increasing image-
composition bandwidth or redundancy.

3 IMAGE-LOCK

PC clusters are first used in VR to drive multi-projector environ-
ments. The first issue is then to ensure that the image streams dis-
played by the different projectors are coherent, even though they
have been computed on different nodes: the images displayed with
the different projectors should appear as a single high resolution im-
age. This image-lock constraint can be decomposed into three syn-
chronization levels, gen-lock, frame-lock and data-lock, presented
in the following.

3.1 Gen-lock

Gen-lock ensures all video signals generated by the cluster are syn-
chronized. Synchronization can occur at a pixel, line or frame level.

A frame level gen-lock is mandatory for active stereo (see sec-
tion 7.2). If gen-lock is not properly ensured, the user may see
from the same eye both, a right and a left eye image displayed by
two different projectors. The quality of stereo is then affected.

Systems that do not use active stereo usually do not require gen-
lock to obtain a good quality image.

3.2 Frame-lock

Frame-lock, also called swap-lock, ensures the images computed
on each PC node are released at the same time, i.e. the buffer swaps
are synchronized. Failing to ensure a proper frame-lock results in
discrepancies, where images that are displayed at the same time
correspond to different rendering steps.

3.3 Data-lock

The data-lock goal is to guarantee that the data used to compute the
images for the different projectors are coherent. For instance, all
images related to the same time frame must be computed from 3D
objects that are at the same position or have the same color.

Data-lock is a complex issue that can be tackled at different levels
of the application. This is discussed in section 4.



3.4 Implementations

3.4.1 Hardware

Commodity graphics cards usually do not support hardware gen-
lock and frame-lock. Some high-end models do provide such fea-
tures. The NVIDIA Quadro FX 3000G [8] and 3DLabs [9] im-
plement these synchronizations relying on an additional daughter
boards through a RJ-45 or DB9 chain. 3DLabs also enables to
maintain a minimum swap period between the frames, allowing the
application as a whole to maintain an acceptable frame-rate.

Springer et. al. [59] propose to modify commodity graphics cards
to control the gen-lock. It is achieved by getting the gen-lock signal
from a pin on the master node board, disabling each graphics card
slave node gen-lock and feeding them with the gen-lock signal from
the master node.

3.4.2 Software

A synchronization barrier, executed on a classical Fast-Ethernet
network just before the buffer swap, is sufficient to ensure a proper
frame-lock [14, 23, 56, 29].

Gen-lock, as it concerns video signal generation, is close to the
hardware and then much more difficult to ensure with a software
only approach. However some software approaches that do not re-
quire any hardware modification of the graphics card have been
developed to implement a frame level gen-lock and enable active
stereo on PC clusters.

Rather than to gain total control on signal generation, which would
make the software deeply dependent on the graphics card specifi-
cation, SoftGenLock [12] applies continuous small modifications
to converge and maintain gen-locked video signals. The gen-lock
signal is propagated along the different machines using the parallel
port, a low latency device present on all PCs. It results in a soft-
ware that only requires access to few specific registers on a graph-
ics card: it can be ported with minimal effort on potentially any
graphics card.

An other implementation, based on SoftGenLock [12] core code,
has been developed at HLRS [64]. It supports the Linux Kernel
2.6.

4 PARALLELISM FOR VR: A TAXONOMY

We can distinguish 4 main components more or less intricate in a
VR application:

• Inputs: Inputs include static data stored into files as well as
dynamics data captured by various sensors, like a tracker, a
wall-clock time or random number generators.

• Simulation: A VR application can involve several simulations
ranging from solid object collision detection algorithms to
fluid simulations.

• Animation: The properties of the objects present into the
scene are updated according to inputs and simulation results.

• Rendering: For users feedback, an output is computed and
rendered on the appropriate devices. The most common out-
puts are images, sounds and forces.

The goal when using a cluster is to take advantage of the extra re-
sources available to alleviate performance bottlenecks. To achieve
this goal it is necessary to split processing amongst the different
cluster nodes. There are basically two different approaches:

• Data parallelism where several instances of the same task are
executed concurrently but on different datasets.

• Task parallelism where different tasks are executed concur-
rently.

Parallelism implies data communications and synchronizations to
ensure a proper task coordination. In particular, data redistribu-
tion (or sorting) steps are required to make available to the target
tasks data computed at source tasks. Depending on the nature and
amount of data to be redistributed the cost can vary significantly.
For instance, input events retrieved by a position tracker are limited
to a few bytes, while graphics primitives can be significantly larger.

We discuss in the following the main approaches used for the differ-
ent components of a VR application and the required redistribution
steps.

4.1 Inputs

Task parallelism is the most common approach. Because input de-
vices are usually independent, they can be distributed on different
nodes [6]. For instance a tracker is executed on one node, while a
wand is executed on a different one. This also enables to better use
the connectors that are available on the different PCs.

Data parallelism is used in some cases for computation and data
intensive input devices like multi-camera environments [66, 11].

4.2 Simulations

Task parallelism can be used to execute several simulations con-
currently. Large simulations may be internally parallelized. For
instance data parallelism is a classical approach for parallelizing
fluid simulations. The space where the fluid can evolve is split into
regular cells that are then cyclically distributed by blocks [15].

4.3 Animation

The data are distributed onto different nodes (data-parallelism),
each node taking care of updating its data [54]. As some data may
be replicated on several nodes, to save on communications, care
must be taken to manage coherency between the different copies
when a data is modified.

4.4 Rendering

Data parallelism is the main approach for rendering. Let us focus
on graphics rendering. The standard taxonomy for parallel render-
ing distinguishes three broad classes, depending where parallelism
occurs in the graphics pipeline [44]:

• Sort-first: Each task is assigned a sub-section (tile) of the en-
tire image to render. Then each task processes independently
the graphics primitives that project into its tile up to obtain the
final image.

This approach is very classical on clusters. Data distribution
can occur at the input layer only, all subsequent tasks work-
ing locally for its tile. Because this scheme only requires to



carry lightweight data over the network (input events), it is
widely used for VR applications. However an important part
of the data and computations (mainly simulations and anima-
tions) are repeated on each task, limiting the benefits of us-
ing a cluster to multi-projector rendering and input event cap-
ture parallelization. In the following we call this approach the
replication approach. The other classical scheme is to have
the application executed on a single node up to the genera-
tion of graphics primitives. Then primitives are distributed
to different nodes, each one in charge of computing a tile.
Thought this enables to avoid most of the replications of the
previous approach, the performance are impaired by the cost
of distributing the graphics primitives, which amount is pro-
portional to the complexity of the scene.

• Sort-middle: Each task is assigned a set of graphics primitives
that it processes up to the rasterization. Then, data are sorted
according to the tile they belong to before rasterization is per-
formed. Because commodity graphics cards integrate both ge-
ometry processing and rasterization without giving users the
ability to retrieve data before rasterization, this approach is
seldom used on clusters. A sort middle approach can be used
on clusters when geometric transformations are performed on
CPU [63].

• Sort-last: The geometry dataset is split and sent to different
tasks. In a final step, the images computed by each task are
redistributed for compositing. Image compositing can be per-
formed by dedicated hardware reading the images from the
video output [60], or through software solutions reading back
the images in the frame buffer of graphics cards and using the
cluster network to move the data [24]. The complexity is then
proportional to the image resolution rather than to the scene.
It is also easier to achieve load-balancing as there is no local-
ity constraints on graphics primitives when they are initially
distributed to the different tasks. This solution has been used
mainly for scientific visualization where datasets tend to be
very large [37].

5 SOFTWARE TOOLS FOR CLUSTERS

In this section we review some software tools for VR supporting PC
clusters. Most of them are open source. This list is not exhaustive,
but its covers the most common and advanced uses of parallelism
into VR applications. Each tool is positioned according to the par-
allelism it enables. A complementary classification can be found
in [61].

5.1 CaveLib

The CAVELib [49] was developed at the Electronic Visualization
Lab to drive the first Cave [26]. Initial versions ran on a a cluster of
SGI machines, using a replication approach. Some fixed data, such
as a navigation matrix and input device values, were shared through
the cluster. Further data sharing could be implemented by transfer-
ring blocks of memory between nodes. Nowadays it supports PC
clusters following a similar replication approach.

5.2 VR Juggler

VR Juggler [22] is a software framework for developing portable
VR applications. PC cluster support was first provided by Net Jug-
gler [14], a library based on MPI for message exchange. VR Jug-
gler II relies on a client/server paradigm where inputs are executed

on servers while clients take care of parallel rendering [21]. Both
approaches uses a replication approach.

5.3 Syzygy

Syzygy is a software library dedicated to VR applications running
on PC clusters [57]. Syzygy supports networked input devices and
sound rendering. Syzygy includes two application frameworks both
based on a master/slave paradigm. The first one relies on a classical
duplication paradigm, while the second proposes to distribute the
data from the master at the scene graph level (or animation level
following our classification). Syzygy provides a special protocol to
transport the scene graph primitives. The replication approach is
usually used when using a scene graph is not appropriate, like for
volume rendering.

The entire cluster configuration information is stored in a net-
worked accessible database managed though a distributed opera-
tional system called Phleet. It enables a dynamics application re-
configuration, to recover from a slave crash for instance.

5.4 DIVERSE

DIVERSE [35] is a modular collection of complementary software
packages designed to facilitate the creation of device independent
virtual environments. DgiPf is the DIVERSE graphics interface to
OpenGL Performer. A program using DgiPf can run on platforms
ranging from fully immersive systems such as CAVEs to generic
desktop workstations without modification. On clusters DIVERSE
relies on a replication paradigm.

5.5 Jinx

Jinx [58] is a fully distributed virtual environment browser, which
has a special support for commodity PC clusters and immersive vi-
sualization devices. It is used to develop virtual reality applications
based on the X3D format. It uses a replication approach to provide
cluster support.

5.6 OpenSG

OpenSG [52, 54] is a portable scene graph system. It allows mul-
tiple asynchronous threads to independently manipulate the scene
graph without interfering each other. As scene graph data can get
very big, a distinction of structural and content data is introduced,
and a method to replicate the latter only if necessary. OpenSG also
runs on PC Clusters and it is implemented as an extension of the
multi-threaded model. Changes in the environment are propagated
when they are applied to another node. OpenSG has a Multi Dis-
play Window mode, used to render one virtual window on a num-
ber of cluster servers, making it possible the use of OpenSG in a
CAVE configuration. OpenSG can also be used using a replication
approach when used with other tools like VR Juggler.

5.7 Chromiun

Chromium [33], the successor of WireGL [32], proposes a stream
processing framework for OpenGL graphics primitives. A network
of Stream Processing Units (SPU) enables to apply different trans-
formations to the primitive stream. Chromium is mainly used for



sort-first and sort-last parallel rendering. SPUs implement various
optimization to reduce the amount of data to send over the network.

Chromium enables to executes an unmodified OpenGL application
by intercepting the graphics primitives and broadcasting then to
rendering SPUs, each one in charge of its own image tile.

Commercial solutions based on a similar approach are available to-
day, from TechViz or IBM for instance.

5.8 OpenGL Multipipe SDK

OpenGL Multipipe SDK [20] was developed by SGI and provides
an uniform API to manage scalable graphics applications access
across several graphics subsystems, also providing a customizable
image compositing interface, which facilitates the development and
deployment of parallel OpenGL based applications. It is able to
choose and adapt the decomposition strategy for a given problem
domain and graphics environment at run time.

5.9 Basho

Hinkenjann et. al. [30] implemented a solution running over
AVANGO [62] and OpenGL/Performer [53] called Basho [40]. It
pursues a retained-mode approach for distribution of geometry data
with a minimal network load. It consists of a front-end for scene
graph distribution and load balancing, and a back-end that performs
rendering and compositing. The image combiner works in cascade.
For load balance, it uses statistical information from the rendering
nodes, adapting the balance as necessary. It also supports different
kinds of renders from the 3D engine of graphics cards to ray tracing
algorithms.

5.10 Covise

Covise [19] relies on a data-flow model for coupling components
that can be distributed on the different nodes of a cluster. It also
supports collaborative work and immersive environments using a
replication approach. It enables to built advanced VR applications
like collaborative volume rendering [65].

5.11 OpenMask

OpenMask [41, 5] is a multi-threaded and distributed middleware
library for animation and simulation. It enables to define tasks that
are distributed on a cluster and communicate through point-to-point
messages and signals. Task update frequency is fixed and controlled
by the OpenMask scheduler. Parallel rendering is provided by ex-
ternal tools like OpenSG.

5.12 FlowVR and FlowVR Render

FlowVR [4, 13] is a middleware library dedicated to parallel VR
applications. FlowVR relies on an extended data-flow model. An
application is composed of modules exchanging data through a
FlowVR network. From the FlowVR point of view, modules are
not aware of the existence of other modules. A module only ex-
changes data with the FlowVR daemon that runs on the same node.
The set of daemons running on the PC cluster are in charge of im-
plementing the FlowVR network that connects modules. The dae-
mons take care of moving data between modules using the most

efficient method. Daemons can also load plug-gins for implement-
ing advanced message handling operations, like filtering, sampling,
frustum culling, broadcasts, etc. This approach enables to develop
a pool of modules that can next be combined in different applica-
tions, without having to recompile the modules. Modules can be
multi-threaded or parallel applications relying on other paralleliza-
tion tools like MPI [28], FlowVR providing the necessary features
to implement a parallel code coupling.

FlowVR Render [17] is a library built on top of FlowVR . It im-
plements a sort-first retained-mode parallel rendering. Instead of
relying on OpenGL commands, it defines a shader based protocol
using independent batches of polygons as primitives. In opposite to
OpenGL based sort-first approaches like Chromium, FlowVR Ren-
der does not support unmodified OpenGL applications, but provides
a more flexible and efficient framework for parallel rendering.

FlowVR and FlowVR Render enable to built complex distributed
applications combining different parallelizations at the input, sim-
ulation, animation and rendering levels [18, 16].

6 HARDWARE COMPOSITING DEVICES

If rendering is the performance bottleneck and that software solu-
tions for parallel rendering do not provide the expected results, it
is still possible to take advantage of hardware compositing devices.
These devices are not commodity components but most of them can
be installed on commodity PC clusters.

6.1 Cluster Level Compositing

A common approach consists in designing additional boards that
take as input signal the video signal of standard graphics cards [43,
51, 60, 48]. The data are then combined in real-time to provide
as output one or several video signals. A daughter board can be
installed on each PC box to retrieve the video signals computed
on each box. Data are exchanged between boards through a dedi-
cated network. Boards can be chained or use a switch like the Sepia
boards that rely on an Infiniband network. An other approach con-
sists in having a external compositing device.

These devices usually propose different compositing modes like
sort-last compositing, tile compositing, eye compositing to built an
active stereo signal from left and right eye images computed con-
currently.

6.2 PC Level Compositing: SLI and CrossFire

Back in 1996, Voodoo proposed to have two graphic cards installed
in the same PC to share graphical processing for one display. Each
card rendered half of the image scan lines that where interleaved
when generating the video signal.

Nowadays, NVidia [47] and ATI [25] developed similar solutions,
but with better load balancing algorithms and different operational
modes. Both solutions support Split Frame Rendering (SFR), Al-
ternative Frame Rendering (AFR) and Anti-aliasing. In SFR mode
one card computes the upper half of the image and the other the
lower half. In AFR mode one card computes all odd frames, the
other even ones. The Anti-aliasing mode splits the anti-aliasing
workload between the two graphics cards. ATI also supports a Su-
pertiling mode where rendering tiles are defined and distributed dy-
namically to the GPUs to ensure a better load balancing. This mode
is only available for DirectX applications for the moment.



7 DISPLAY TECHNOLOGY

The first immersive environments were using large CRT projectors.
While PC clusters were emerging as a relevant alternative to ded-
icated supercomputers, it also appeared that commodity projectors
based on LCD or DLP technologies could be used too [36].

7.1 Projectors

Different projection technologies are available today. Usually they
fit in four main categories:

• CRT projectors utilize three tubes, one for each color (RGB).
The three colors combine and converge into a light beam that
draws the image sequentially pixel per pixel. CRTs do not
have a fixed number of pixels. As the number of pixels to
draw increases, the refresh rate decreases. One problem re-
garding CRT projectors is that they require periodic calibra-
tions. Today CRT technology tends to be abandoned in favor
of other ones.

• LCD projectors contain three separate LCD glass panels, one
for each color (RGB). As the light passes through the LCD
panels, their opacity is controlled to modulate the amount of
color pixels receive. LCD is one of the main technology used
for commodity projectors. They require little maintenance.

• DLP projectors are based on an optical semiconductor called a
DMD chip, which was invented in 1987 by Texas Instruments.
The DMD chip is an array of micro-mirrors (one per pixel)
that tilt to control the pixel brightness. Color is provided ei-
ther by associating 3 DMD chips, one per color (RGB), or
using one DMD and a color wheel. Commodity DLP projec-
tors use one DMD, while high end ones uses 3 DMDs. DLP
projectors require little maintenance.

• LCOS projectors rely on a new technology that uses LCD fil-
ters with a mirror under it. This technology is today used
for high-end projectors, like the SRX Sony projector [10] that
reaches a resolution of 4096 x 2160 pixels.

7.2 Stereo

Stereo is a fundamental feature for the sense of immersion. Usually
stereo technologies can be classified into in three categories:

• Active stereo. Left and right eye images are displayed alter-
natively. Swap occurs during the vertical blanking, i.e. when
no pixel is generated before the next video retrace starts. The
user wears glasses with shutters opening alternatively to let
him see the right eye images with the right eye only and vice-
versa. Gen-lock is mandatory to ensure all projectors display
the left or right eye image synchronously. The video refresh
rate must be high enough (usually about 120 Hz) to ensure the
user does not perceive flickering. Active stereo is available
with specific CRT and 3 chip DLP projectors. Single chip
DLP projectors supporting active stereo may be soon avail-
able [31]. In all cases, quality active stereo is only supported
by projectors that have been adapted for that use.

• Passive stereo. Left and right eye images are displayed con-
currently by two different projectors. Passive stereo can be
obtained with almost any projector. Frame-lock is usually
sufficient. No specific hardware is required on the cluster.
We can distinguish two different approaches to separate both
images:

– Linear and circular polarization. The left and right
eye images are polarized differently, the user wearing
glasses with polarizing filters to block the image of the
opposite eye. Light can be linearly or circularly po-
larized. Filters for linear polarization are cheaper than
the ones for circular polarization, but image separation
is lost when the user tilts his head. Both techniques
require special screens that maintain the polarization.
Such screens are usually high gain screens, while low
gain screens are preferable to smooth hot spot effects
that are particularly noticeable when tilling multiple
projectors.

– Infitec. The spectral colors are split into 6 ranges, two
for each primary color. Each eye is associated to one
range for each color. Specific filters on the projectors
and the glasses are used to separate the right and left eye
images. Infitec does not impose any constrain on screen
materials. However a color shift occurs that requires to
be corrected using hardware or software techniques.

• Auto-stereo technologies are becoming more common. They
do not require users to wear glasses. Today no projection
technology supports auto-stereo. Though some attempts have
been made to build display walls for auto-stereo displays [55],
this approach is not yet used for immersive environments.

7.3 Image Calibration

When using a large number of projectors, the challenge is to ensure
a high quality image calibration, i.e. a correct geometric projector
alignment as well as a photometric uniformity.

Promising approaches propose automatic calibration techniques.
These approaches use a camera to take pictures of predefined pat-
terns. From these pictures are extracted information on corrections
to apply on images displayed by each projector [50, 38, 39, 34].
Corrections are them applied online by graphics cards at each pro-
jector. Though quality results are obtained for geometric calibra-
tion, photometric uniformity is more difficult to obtain, partly be-
cause camera captors are not very precise in measuring color dis-
crepancies. An alternative consists in computing color calibration
from values obtained by a spectroradiometer.

8 CONCLUSION

PC clusters are today the main solution to provide the computing
and I/O power required by advanced VR applications and facili-
ties. PC clusters can range from single CPU PCs connected through
a standard network, using video game graphics cards to high-end
multi CPU PCs connected through a dedicated high performance
network and equipped with professional graphics cards.

Software tools have to be adapted and developed to these architec-
tures. The difficulty is to develop software solutions that enable to
take advantage of the performance offered by clusters, while keep-
ing the complexity of application development, deployment and
execution as low as possible. Today such solutions are available
for distributed rendering, and others are emerging to provide ex-
tra computing capabilities for processing input data from sensor
networks, or for multi modal applications involving 3D graphics,
spacialized sound, haptics systems, multiple simulations, etc.

Still, the size of clusters used for VR is moderate (a few tens of
nodes), while much larger machines exists. We may see in the
future more applications using such larger machines. It will have



to face some issues regarding algorithm parallelization, algorithm
coupling and software engineering to handle the complexity of the
applications. Advantage can be taken from the various develop-
ments that have been performed for high performance or distributed
computing. But it is important to stress that VR applications tend
to be more heterogeneous than classical high performance applica-
tions (coupling different codes for sound, graphics, haptics, physi-
cal based simulations, etc.) and with a strong constraint on perfor-
mance (latencies and update frequencies).

Beside clusters, parallelism will also become more present as new
processor architectures emerge. It will be common to have a single
box machine with multiple CPUs, GPUs and FPGAs. For instance,
today it is possible to have a PC with 2 GPUs and 8 dual-core CPUs.
Soon the Cell processor that includes 8 cores will be available. The
extra computing power available could greatly influence the devel-
opment of the next generation of VR applications.

REFERENCES

[1] Top 500 Supercomputers, www.top500.org.

[2] Rocks Cluster Distribution, www.rocksclusters.org.

[3] Kerrighed, www.kerrighed.org.

[4] FlowVR. http://flowvr.sf.net.

[5] OpenMASK. http://www.irisa.fr/siames/OpenMASK.

[6] VR Juggler. http://www.vrjuggler.org.

[7] Origin Servers. Technical report, Silicon Graphics, April 1997.

[8] Nvidia quadro fx 3000g solutions for advanced visualization. Techni-

cal brief, NVIDIA Corporation, 2003.

[9] New wildcat realizm graphics technology. White paper, 3DLabs,

2004.

[10] SR Projector, Operating Instructions, 2005.

[11] J. Allard, E. Boyer, J.-S. Franco, C. Ménier, and B. Raffin. Marker-

less Real Time 3D Modeling for Virtual Reality. In Proceedings of the

Immersive Projection Technology Workshop, Ames, Iowa, May 2004.

[12] J. Allard, V. Gouranton, G. Lamarque, E. Melin, and B. Raffin. Soft-

genlock: Active Stereo and Genlock for PC Cluster. In Proceedings

of the Joint IPT/EGVE’03 Workshop, Zurich, Switzerland, May 2003.

[13] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,

and S. Robert. FlowVR: a Middleware for Large Scale Virtual Reality

Applications. In Proceedings of Euro-par 2004, Pisa, Italia, August

2004.

[14] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin. Net

Juggler: Running VR Juggler with Multiple Displays on a Commod-

ity Component Cluster. In IEEE VR, pages 275–276, Orlando, USA,

March 2002.

[15] J. Allard, V. Gouranton, E. Melin, and B. Raffin. Parallelizing Pre-

rendering Computations on a Net Juggler PC Cluster. In Immersive

Projection Technology Symposium, Orlando, USA, March 2002.

[16] J. Allard, C. Ménier, E. Boyer, and B. Raffin. Running large vr ap-

plications on a pc cluster: the flowvr experience. In Proceedings of

EGVE/IPT 05, Denmark, October 2005.

[17] J. Allard and B. Raffin. A shader-based parallel rendering framework.

In IEEE Visualization Conference, Minneapolis, USA, October 2005.

[18] J. Allard and B. Raffin. Distributed physical based simulations for

large vr applications. In IEEE Virtaul Reality Conference, USA,

March 2006.

[19] A.Wierse, U.Lang, and R. Rühle. Architectures of Distributed Visual-

ization Systems and their Enhancements. In Eurographics Workshop

on Visualization in Scientific Computing, Abingdon, 1993.

[20] P. Bhaniramka, P. C. D. Robert, and S. Eilemann. Opengl multip-

ipe sdk: A toolkit for scalable parallel rendering. In Proceedings of

IEEE Visualization 2005. IEEE, October 2005. Proceedings of IEEE

Visualization 2005.

[21] A. Bierbaum, A. Bierbaum, and C. Cruz-Neira. Clusterjuggler: A

modular architecture for immersive clustering. In VR-Cluster’03-

Workshop on Commodity Clusters for Virtual Reality, IEEE Virtual

Reality Conference 2003, Los Angeles, March 2003.

[22] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-

Neira. VR Juggler: A Virtual Platform for Virtual Reality Application

Development. In IEEE VR 2001, Yokohama, Japan, March 2001.

[23] M. Bues, R. Blach, S. Stegmaier, U. Häfner, H. Hoffmann, and

F. Haselberger. Towards a Scalable High Performance Application

Platform for Immersive Virtual Environements. In Immersive Pro-

jection Technology and Virtual Environements 2001, pages 165–174,

Stuttgart, Germany, May 2001. Springer.

[24] X. Cavin, C. Mion, and A. Filbois. Cots cluster-based sort-last render-

ing: Performance evaluation and pipelined implementation. In IEEE

Visualization Conference, Minneapolis, USA, October 2005.

[25] A. Crossfire. http://www.ati.com/technology/crossfire/.

[26] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.

Hart. The Cave Audio VIsual Experience Automatic Virtual Envi-

ronement. Communication of the ACM, 35(6):64–72, 1992.

[27] J. Eyles, S. Molnar, and J. Poulton. PixelFlow: High-Speed Rendering

Using Image Composition. In Proceedings of ACM SIGGRAPH 92,

pages 231–240, Chicago, USA, July 1992.

[28] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Paral-

lel Programming with the Message-Passing Interface. Scientific and

Engeneering Computation Series. The MIT Press, 1994.

[29] M. P. Guimarães, P. A. Bressan, and M. K. Zuffo. Frame lock syn-

chronization for multiprojection immersive environments based on pc

graphics clusters. In Proocedings of the 5th SBC Symposium on Vir-

tual Reality, 2002.

[30] A. Hinkenjann, M. Bues, S. Schupp, and T. Olry. Mixed-mode parallel

real-time rendering on commodity hardware. In Proceedings of 5th

Symposium on Virtual Reality, Fortaleza, Brazil, 2002.

[31] A. Hopp. Using a single spatial light modulator for stereo images of

high color quality and resolution . In Proceedings of EGVE/IPT 05,

Denmark, October 2005.

[32] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Han-

rahan. WireGL: A Scalable Graphics System for Clusters. In Proceed-

ings of ACM SIGGRAPH 2001, 2001.

[33] G. Humphreys, M. Houston, R. Ng, S. Ahern, R. Frank, P. Kirchner,

and J. T. Klosowski. Chromium: A Stream Processing Framework for

Interactive Graphics on Clusters of Workstations. In Proceedings of

ACM SIGGRAPH 02, pages 693–702, 2002.

[34] C. Jaynes, B. Seales, K. Calvert, Z. Fei, and J. Griffioen. The Meta-

verse - A Collection of Inexpensive, Self-configuring, Immersive En-

vironments. In 7th International Workshop on Immersive Projection

Technology/Eurographics Workshop on virtual Environments, Zurich,

Switzerland, May 2003.

[35] J. Kelso, L. E. Arsenault, S. G. Satterfield, and R. D. Kriz. Diverse:

A framework for building extensible and reconfigurable device inde-

pendent virtual environments. In Proceedings of IEEE Virtual Reality

2002 Conference, 2002.

[36] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,

A. Finkelstein, T. Funkhouser, A. Klein, Z. Liu, E. Praun, R. Samanta,

B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng. Early Experi-

ences and Challenges in Building and Using A Scalable Display Wall

System. IEEE Computer Graphics and Application, 20(4):671–680,

2000.

[37] K. Liang, P. Monger, and H. Couchman. Interactive Parallel Visual-

ization of Large Particle Datasets. In Proceedings of the Eurographics

Parallel Graphics and Visualization Symposium, pages 23–30, Greno-

ble, France, June 2004.

[38] A. Majumder, Z. He, H. Towles, and G. Welch. Achieving color uni-

formity across multi-projector displays. In Proceedings of the 11th

IEEE Visualization, page 17, October 2000.

[39] A. Majumder and R. Stevens. Color Non-Uniformity in Projection

Based Displays : Analysis and Solutions. Trasactions of Visualization

and Computer Graphics, 2003.

[40] F. Mannuß and A. Hinkenjann. Towards better quality in virtual envi-

ronments. In Proceedings of Eurographics Workshop on Virtual Envi-

ronments, 2005.

[41] D. Margery, B. Arnaldi, A. Chauffaut, S. Donikian, and T. Duval.

Openmask: {Multi-Threaded | Modular} animation and simulation

{Kernel | Kit }: a general introduction. In Simon Richir, Paul Richard,

and Bernard Taravel, editors, VRIC 2002 Proceedings, pages 101–

http://flowvr.sf.net


110. ISTIA Innovation, June 2002.

[42] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed

monitoring system: Design, implementation, and experienc. In Paral-

lel Computing, volume 30, July 2004.

[43] L. Moll, M. Shand, and A. Heirich. Sepia: Scalable 3d compositing

using pci pamette. In Proceeding of the Seventh Annual IEEE Sym-

posium on Field-Programmable Custom Computing Machines, page

146, April 1999.

[44] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classifi-

cation of Parallel Rendering. IEEE Computer Graphics and Applica-

tions, 14(4):23–32, July 1994.

[45] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. Re-

alityengine graphics. In SIGGRAPH ’93: Proceedings of the 20th

annual conference on Computer graphics and interactive techniques,

pages 109–116, 1993.

[46] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. In-

finitereality: a real-time graphics system. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics and

interactive techniques, pages 293–302, New York, NY, USA, 1997.

ACM Press/Addison-Wesley Publishing Co.

[47] S. Nvidia. http://www.slizone.com/.

[48] G. Otrage. Orad’s dvg: Solutions for scalable graphics clusters, Aug

2004. Graphics Hardware Conference.

[49] D. Pape, C. Cruz-Neira, and M. Czernuszenko. CAVE User’s Guide.

Electronic Visualization Laboratory, University of Illinois at Chicago,

1997.

[50] R. Raskar and J. van Baar. Low cost projector mosaic. In Proceedings

of the Asian Conference on Computer Vision 2002, Jan 2002.

[51] F. Razo. SGI InfinitePerformance: Scalable Graphics Compositor

Owner’s Guide, 2002.

[52] D. Reiners. Opensg: A scene graph system for flexible and eficient

reltime rendering for virtual and augmented reality applications, 2002.

[53] J. Rohlf and J. Helman. Iris performer: a high performance multipro-

cessing toolkit for real-time 3d graphics. In Proceedings of the 21st

annual conference on Computer graphics and interactive techniques,

pages 381–394, 1994.

[54] M. Roth, G. Voss, and D. Reiners. Multi-threading and clustering for

scene graph systems. Computers & Graphics, 28(1):63–66, 2004.

[55] D. J. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, and T. A. De-

Fanti. The varriertm autostereoscopic virtual reality display. ACM

Trans. Graph., 24(3):894–903, 2005.

[56] B. Schaeffer. Networking Management Framewoks for Cluster-Based

Graphics. http://www.isl.uiuc.edu/ClusteredVR/ClusteredVR.htm,

2002.

[57] B. Schaeffer and C. Goudeseune. Syzygy: Native PC Cluster VR. In

IEEE VR Conference, 2003.

[58] L. P. Soares and M. K. Zuffo. Jinx: an x3d browser for vr immer-

sive simulation based on clusters of commodity computers. In Pro-

ceedings of the ninth international conference on 3D Web technology,

Monterey, California, USA, April 2004.

[59] J. Springer, A. Simon, and J. Plate. Supporting commodity clusters

using avango’s generic scene graph distribution. In VR-Cluster’03-

Workshop on Commodity Clusters for Virtual Reality, IEEE Virtual

Reality Conference 2003, Los Angeles, March 2003.

[60] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy,

C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan. Lightning-2: A

High-Performance Display Subsystem for PC Clusters. In Proceed-

ings of ACM SIGGRAPH 01, 2001.

[61] A. Streit, R. Christie, and A. Boud. Understanding next-generation

vr: classifying commodity clusters for immersive virtual reality. In

GRAPHITE ’04: Proceedings of the 2nd international conference

on Computer graphics and interactive techniques in Australasia and

South East Asia, pages 222–229, New York, NY, USA, 2004. ACM

Press.

[62] H. Tramberend. Avocado: A distributed virtual reality framework. In

Proceedings of the IEEE Virtual Reality, page 14, 1999.

[63] J. L. Williams and R. E. Hiromoto. Sort-middle multi-projector

immediate-mode rendering in chromium. In IEEE Visualization Con-

ference, Minneapolis, USA, October 2005.

[64] U. Wössner and M. Aumüller. Software-based genlock for active

stereo nvidia cards.

[65] U. Wössner, J. Schulze, S. Walz, and U. Lang. Evaluation of a Collab-

orative Volume Rendering Application in a Distributed Virtual Envi-

ronment. In Eighth Eurographics Workshop on Virtual Environments,

2002.

[66] S. Würmlin, E. Lamboray, O. Staadt, and M. Gross. 3D Video

Recorder: A System for Recording and Playing Free-Viewpoint

Video. Computer Graphics Forum, 22(2):181–193, 2003.


	Introduction
	Basics
	Hardware
	Software
	Clusters versus Dedicated Supercomputers

	Image-Lock
	Gen-lock
	Frame-lock
	Data-lock
	Implementations
	Hardware
	Software


	Parallelism for VR: a Taxonomy
	Inputs
	Simulations
	Animation
	Rendering

	Software Tools for Clusters
	CaveLib
	VR Juggler
	Syzygy
	DIVERSE
	Jinx
	OpenSG
	Chromiun
	OpenGL Multipipe SDK
	Basho
	Covise
	OpenMask
	FlowVR and FlowVR Render

	Hardware Compositing Devices
	Cluster Level Compositing
	PC Level Compositing: SLI and CrossFire

	Display Technology
	Projectors
	Stereo
	Image Calibration

	Conclusion

