
Marker-less Real Time 3D Modeling for Virtual Reality

Jérémie Allard Edmond Boyer Jean-Sébastien Franco Clément Ménier Bruno Raffin
firstname.lastname@inrialpes.fr

Laboratoire Gravir, Laboratoire ID
INRIA Rhône-Alpes

655 avenue de l’Europe, 38334 Saint Ismier, France

Abstract

Today, immersive environments mainly use a few 3D posi-
tions given by trackers to align the real and virtual worlds.
In this paper we present an alternative approach using com-
modity components to achieve real time marker-less 3D
modeling in virtual reality environments. The goal is to
compute in real time a 3D shape of the objects and users
present in the interaction space without having to equip
them with markers. Having full 3D shapes opens new pos-
sibilities for full-body interactions and a tight virtual/real
world integration. Data acquisition is performed through
cameras surrounding the interaction space. A visual hull
reconstruction algorithm is parallelized on a PC cluster to
compute in real time the 3D shapes of the scene observed.
Experimental results using 4 cameras and 20 processors
lead to a precise 3D human model built in real time.

1 Introduction

The sense of immersion provided by interactive virtual re-
ality environments relies on the ability to retrieve 3D posi-
tions of user(s) in the interaction space. Such information
is used to align real and virtual worlds. For instance, in
cave like environments [9], stereoscopic images are com-
puted from the user’s viewpoint and require therefore the
user’s head position.

Today’s tracking technology mainly focuses on giving
the 3D positions of a few points in real time and with high
precision. These points are identified with active or passive
markers fixed on the user’s body. Different technologies
are used like electromagnetic waves, infrared, accelerome-
ters, cameras or even GPS. These solutions provide differ-
ent trade-offs regarding price, action range, precision, relia-
bility, wearability and compatibility with other equipments.
Such technology allows to track tens of points; it is com-
monly used in motion capture environments where the user
is equipped with several markers giving the position of key
parts of the user’s body, like arms, forearms, head, legs,
feet, etc. But such systems usually require to wear invasive

equipments (and a tight body suit). In immersive environ-
ments, most of the time, only a few points are tracked, the
user’s head and an interaction device, a wand for example.
Tracking only a few points shorten calibration procedures
and ease passing the equipment from one user to the other.

In this paper we consider a non-invasive and marker-less
technology based on a multi camera environment for 3D
modeling. The idea is to use commodity cameras focused
on the interaction space. Any new object introduced in the
interaction space appears to several cameras. Knowing the
positions of the cameras and combining the information ac-
quired by each of them, it is possible to compute approxi-
mations of the observed objects’ 3D shape. This approach
being marker-less, it is easy to introduce or remove any ob-
jects or users in the scene. Each camera’s pixel carrying a
color information, it is also possible to extract texture data.

The 3D shape approximations that can be computed de-
pend on the primitive that is considered in the 2D images.
We use thesilhouettesthat are easy to extract from images
in real time. The associated 3D model that can be com-
puted, when several silhouettes of the same scene are avail-
able, is called thevisual hull. It is the approximation of the
scene objects’ shape defined as the maximal volume con-
sistent with all the silhouettes in the input views [16]. 3D
models provided by visual hulls enable collision detection
between the real objects and virtual world objects. These
3D models can also be rendered in the virtual world. This
enables to render lifelike objects of the scene in a distant
VR environment for instance.

In this paper we address the problems of the 3D model-
ing quality that depends on the number of cameras as well as
on the algorithm chosen. In particular, we focus on an algo-
rithm known for the quality of the 3D model obtained [10].
We also address performance and scalability issues. High
quality reconstruction of a human can require10 or more
cameras. Multiple PCs are then necessary for video acqui-
sition. Requirements for computation power are also im-
portant to reach real time processing. For interactive appli-
cations, it is essential to ensure a low latency and to match
the frame rate of the cameras. We present parallelization

1

techniques on a PC cluster that enable real time executions.
We also detail how the visual hull modeling is coupled with
a multi-projector environment driven by a PC cluster using
Net Juggler [3].

Multi-camera based systems also raise the problem of
their practical integration into immersive environments.
Cameras can mask some parts of the display surfaces and
can be disturbed by the projected images. We do not
yet address this issue as we experiment our system with
a semi-immersive environment, a display wall. However,
other research groups have experimented solutions on work-
bench [17] or cave like system [12].

After an outline of the global approach in section2, we
detail the visual hull 3D modeling algorithm tested in sec-
tion 3. In section4, we detail the implementation with the
parallelization techniques used. Section5 presents some
experimental results.

2 Outline

Our goal is to provide a marker-less 3D modeling approach
suitable for interactive applications in multi-projector envi-
ronments. We target environments based on a PC cluster,
multiple cameras for video acquisition and multiple projec-
tors for rendering. PC clusters are cost effective, modular,
scalable, and support a large range of devices. Digital cam-
eras are today commodity components available from low
cost webcams to high-end 3-CCD cameras. Images pro-
vided by webcams proved of insufficient quality (low res-
olution and refresh rate, important optic distortions) that
made them unsuitable for our purpose. Mid-range Firewire
cameras are used in our case.

Cameras are set to surround the scene. The number of
cameras required depends on the size of the scene and the
complexity of the objects to model. Beyond a certain num-
ber of cameras, the quality of the 3D model obtained does
not improve or can even decrease due to numerical impre-
cision. More details about this issue are given in section5.
The cameras have to be carefully calibrated, i.e. their rela-
tive locations and orientations as well as their intrinsic char-
acteristics must be determined. This process of camera cal-
ibration is today well understood and several algorithms ex-
ist. We use the OpenCV library from Intel for that pur-
pose [14].

From the 2D video streams provided by the cameras to
the 3D model, several steps are required. First of all, each
2D image obtained from a camera must be analyzed to ex-
tract regions of interest. We assume that the scene is com-
posed of a static background that can be learned in advance
and foreground objects (a person typically). Regions of
interest -the foreground- are thus extracted using a stan-
dard background subtraction process [23]. These regions

are then vectorized, i.e. theirs delimiting contours are com-
puted. We do not keep texture information but only geomet-
ric information -the silhouettes- about these regions since
we focus on a geometric model, thevisual hull. Such mod-
els are sufficient for a large range of computations like col-
lision detection or virtual shadow computation for instance.
Texturing the obtained model surface is an on-going work.
Foreground extraction and silhouette segmentation are per-
formed locally on each PC connected to a camera.

The visual hull computation then takes place. Basically,
a visual hull is computed from the intersection of the view-
ing cones. A viewing cone is associated to a camera and
corresponds to the volume that projects into the silhouette.
The final result is a polyhedron model. More details about
the algorithm used are given in section3. Computing the
visual hull is time consuming. To reach a real time exe-
cution, the 3D modeling workload is distributed on differ-
ent processors. Once computed, the obtained 3D mesh is
asynchronously sent to the rendering PCs. Multi-projector
rendering is handled by the VR Juggler and Net Juggler as-
sociation [3, 2, 6]. Net Juggler provides cluster support for
VR Juggler 1.0. Details about the parallel implementation
are given in section4.

3 3D Modeling Using Cameras

3.1 Overview

As previously mentioned, we elected to model scene ob-
jects by reconstructing their shape from silhouettes gathered
by multiple cameras. The interest in using silhouettes for
modeling is that they are easily extracted from known static
backgrounds in the images. Using silhouettes, we have
access to an approximation of the shape of scene objects
called thevisual hull. It is the maximal solid shape con-
sistent with the silhouettes, i.e. it projects onto silhouettes
in all images. Geometrically, the visual hull is the inter-
section of theviewing cones, the generalized cones whose
apex are the cameras’ projective centers and whose cross-
sections coincide with the scene silhouettes.

Silhouettes were first considered by Baumgart [5] who
proposed to compute polyhedral shape approximations by
intersecting silhouettes or viewing cones. The term visual
hull was later coined by Laurentini [16] to describe the max-
imal volume compatible with a set of silhouettes. Following
Baumgart’s work, a number of modeling approaches based
on silhouettes have been proposed. They can be roughly
separated into two categories: volume based approaches
and surface based approaches.

The first category includes methods that approximate vi-
sual hulls by collections of voxels, i.e. cells from regular
space discretizations, which are such that they project onto
silhouettes in any images. Efficient approaches [22, 20, 7]

2

have been presented to compute such voxel-based represen-
tations. See [21] for a review on volume based modeling
approaches. Real time and parallel implementations have
also been proposed [15, 4]. All these approaches are based
on regular voxel grids and can handle objects with com-
plex topologies. However, the space discretizations used
are computationally expensive and lead to approximations
only which lack precision.

When considering piecewise-linear image contours for
silhouettes, the visual hull becomes a regular polyhedron.
The second category of approaches estimates elements of
this polyhedron by intersecting viewing cones. This in-
cludes several works which focus on individual points re-
constructed using local second order surface approxima-
tions, see [8] for a review. Approaches have also been pro-
posed to compute individual strips [19] of the visual hull.
The approach we use in this paper belongs to this cate-
gory and computes the complete visual hull polyhedron as
a whole with an optimal number of operations [10]. Details
are given in the next section.

Some of the approaches in the above categories make
use of a graphic card for computations [18, 13]. Using
graphic card hardware highly accelerates computations but
such systems still rely on a single PC for computations, lim-
iting scalability of the acquisition process to few cameras.
Moreover, results from graphic cards are 2D rendered im-
ages and significant additional efforts are required to pro-
vide explicit 3D models, as frequently needed in virtual re-
ality applications. The strategy we employ to achieve real
time is therefore to distribute 3D modeling computations
over a cluster of PCs as detailed in section4.

3.2 The Modeling Method

Figure 1: Real time reconstruction of a real person with 4
cameras.

As mentioned above, several methods are available to
reconstruct the visual hull of scene objects. We choose to

use surface-based methods, that is we aim to recover the
scene objects’ shape as a triangle-mesh surface.

Triple point

Discrete cone intersection

Viewing Cone

Visual Hull
Viewing edge

Figure 2:Visual hull of a sphere with 3 views.

Recall that the visual hull, with a finite number of view-
points, is the result of a generalized cone intersection (fig-
ure2). It is important to realize that all surface information
of the visual hull is implicitly contained in the contours of
silhouettes in the images. This is because silhouettes back-
project toviewing conesin space, and that the visual hull
surface consists of cone intersection primitives. Namely,
each image’s silhouette contour will contribute to the visual
hull surface in the form of astrip, that is the cone surface
fragment lying inside all other viewing cones.

Computing such geometry components is made easier
by discretizing the silhouette contours in images, that is
by building a polygonal representation of these contours.
Such a representation induces a set of polyhedral viewing
cones, and therefore a polyhedral visual hull. All the ge-
ometry of the contours, and therefore of the viewing cones,
implicitely reduces to the knowledge of the contour poly-
gon’s vertices and their positions. As such, each contour
vertex contributes to the visual hull’s explicit representa-
tion, i.e. its triangle-mesh surface. The contribution for a
single contour vertex lies along this vertex’sviewing line,
the line which backprojects from this vertex into space with
respect to the viewpoint in which it is defined. Such a con-
tribution is the part of this viewing line that belongs to the
visual hull: it is the part of the viewing line which is inside
all viewing cones in space (see figure3). Or equivalently,
it is the segments along this viewing line which project in-
side the silhouettes in all other images. These segments are
calledviewing edges, as they happen to be edges of the final
visual polyhedron, as visible in figures1 and2.

The viewing edges are a set of segments on the visual
hull surface. They form an incomplete representation of the
visual hull and work remains to be done to retrieve the sur-
face information, the triangle mesh description of the visual
hull. In this paper, we choose to use an efficient method
[10] to compute the cone intersection exactly.

In order to achieve this goal this method aims at incre-
mentally recovering the missing geometry. As seen previ-

3

Figure 3: Viewing edges (in bold) along the viewing line of a
contour vertex, using 2 silhouettes.

ously, the viewing edges give us an initial subset of the vi-
sual hull geometry. However, this does not account for all
edges and points of the visual hull polyhedron (see figure2).
Typically, triple points, points of the surface which are the
locus of three viewing cone intersections, project on each
image’s silhouette contour, at an arbitrary point. In general,
this projection point does not coincide with any vertex of
the 2D silhouette contour polygon. For this reason, these
triple points are not computed as part of the initial viewing
edge vertex set.

For a complete visual hull, one must therefore com-
pute not only the missing triple points, but also the miss-
ing edges connecting triple points to the already computed
viewing edges. Due to the discrete nature of the visual hull
in our context, it is possible to incrementally recover these
edges and triple points. Information about previously cre-
ated edges is collected to infer the position and direction of
neighbouring edges. This enables the algorithm to incre-
mentally follow and reconstruct the missing geometry.

Once the complete mesh is recovered, faces of the visual
hull polyhedron surface are extracted, by walking through
the complete oriented mesh while always taking left turns
at each vertex, so as to identify each face’s 2D contours.

To summarize, this method achieves the reconstruction
task in three steps. The first step computes viewing edges.
Since this only partially accounts for all surface geometry,
the second step’s goal is to incrementally compute the miss-
ing surface points and edges, as described above. The third
step identifies faces in the mesh and builds the triangle set.

See [10] for a detailed description of the modeling
method.

4 Parallel Implementation

In this section we detail the approach used to distribute the
work load on different processors to reach a real time exe-
cution. We distinguish 3 main parts: video acquisition and
processing, 3D modeling and multi-projector rendering.

4.1 Video Acquisition and Processing

Cameras are distributed on different PCs to ensure that ac-
quisition can be performed at the highest frame rate and res-
olution. Each of these PCs locally executes the background
subtraction as well as the silhouette vectorization. We call
a frame each new set of data obtained from the different
cameras at a given time. Once the silhouettes are computed,
each one is sent to the PCs in charge of the first step of the
3D Modeling.

4.2 3D Modeling Parallelization

3D Modeling is divided in a 3 stage pipe-line distributed on
the processors of the cluster. To balance the work load of the
different pipe-line stages, heavily loaded stages have a pool
of processors, calledprocessing units, that cyclically pro-
cess new incoming frames. A multi processing unit pipe-
line can significantly improve the processing frame rate.
However, the latency is negatively affected. The pipe-line
introduces extra communication time that increases the la-
tency, thus affecting the system reactivity. To improve la-
tency, one can reduce the time required by an individual
stage to process a single frame. This can be done by par-
allelizing the work done on a single frame among several
hosts of a single processing unit.

The first modeling step consists in the computation of a
set of numerous partial but independent results. That is,
each viewing line’s contributions – the silhouettes – can
be computed regardless of all others, assuming the silhou-
ette information from all images is available. Viewing edge
computation can hence be obtained by partitioning all view-
ing lines from all images inp sets and distributing each
batch to one ofp hosts for processing. One must be careful
in balancing the workload between hosts, in order to reduce
the time spent waiting for the slowest host. Building sets of
identical cardinality proved to be efficient. This step ends
by gathering the union of all partial results on the hosts that
require it for the next pipe-line stage. Speed-ups, obtained
dividing the sequential execution time by the parallel execu-
tion time, of the order of 8 with 10 hosts are thus obtained.

The second step’s parallelization consists in partitioning
space intop different regions usingp − 1 parallel planes,
thus subdividing space inp “slices”. Slice width is adjusted
by attributing a constant number of viewing edge vertices
per slice for workload balancing. Each host is assigned a
sliceRi and follows recovered edges withinRi, until one
edge crosses the border toward another regionRj . The
host then stops processing this edge, thereby delegating the
remaining computation related to this edge to the host in
charge ofRj . Partial meshes are then gathered and care-
fully merged across slice borders. Speed-ups of 6 with 10
hosts are thus reached.

For the third step, the surface extraction, parallelization

4

is quite simple. The complete mesh is first broadcasted top
hosts, then the hosts independently compute a subset of the
face information. The step ends by gathering the results on
a single host to build the final 3D mesh. This leads to very
good speed-ups of the order of 7 for 10 hosts.

4.3 Multi-Projector Rendering

The multi-projector rendering is handled by the VR Jug-
gler and Net Juggler association [3, 2, 6]. Net Juggler pro-
vides cluster support for VR Juggler 1.0. A copy of the VR
Juggler application is executed on each PC driving a video
projector. To keep the different copies consistent, Net Jug-
gler intercepts all incoming events and broadcasts them to
all copies. It also implements a swaplock to ensure a syn-
chronized frame buffer swap. Though this parallelization
leads to data and computation replication, it leads to a good
performance as the amount of data sent over the network is
limited.

Once a new 3D mesh model is computed, it must be sent
to each rendering node. The volume of data being quite
small, we use a simple TCP point to point channel. As the
visualization process should not be limited by the speed of
the reconstruction, we use an asynchronous approach. At
each rendering iteration the rendering PCs read any new re-
sult available without waiting for it if none has arrived yet.
This architecture proved to be very simple and quite effec-
tive.

5 Experimental Results

In this section, we detail experimental results obtained on
the GrImage platform. We first tested the 3D model quality,
latency and frame rate with 4 cameras. Next, tests with
synthetic data show that sustained performance is obtained
with a large number of view points (virtual cameras).

Our implementation uses the standard MPI message
passing library [11] for communications. All presented re-
sults are based on sets of 10 experiments.

5.1 The GrImage Platform

Our tests are performed on the GrImage platform located
at the INRIA Rhône-Alpes. GrImage gathers 4 Sony Cam-
eras DFW-VL500 each one connected to a Pentium 4 PC,
11 dual-Xeon 2.6 GHz PCs connected by a gigabit Ethernet
network, and a display wall of 8 projectors. Four PCs are
dedicated to rendering, each one driving 2 projectors with
a NVIDIA GeForce FX 5600 graphics board. The cam-
eras provide 640x480 images. They were set to capture the
scene in front of the display. The cameras were not syn-
chronized to keep a 30 Hz frame rate. Genlocking the cam-

eras decreases the frame rate to 15 Hz. The lack of genlock
can lead to silhouette inconsistencies. As the user does not
generally move too fast, we chose to favor a higher frame
rate to test the real time abilities of our system. The test
application consists in rendering the raw 3D model on the
multi-projector display. It allows to evaluate the quality of
the results and the latency.

5.2 Four Camera Setup

Figure4 shows the display wall of GrImage platform with
in front the user being shot by 4 cameras. On the display
we can distinguish the 3D model obtained and also shown
in figure5(a). A user consists produces about 150 contour
vertices per image. The 3D model is obtained at a frame rate
of about 30 fps with an average latency of about 300 ms. For
more complex scenes, with several users for example, the
frame rate drops to 15 fps. This limitation should disappear
using more PCs.

Figure 4:Real time modeling and visualization in the GrIm-
age platform.

With only 4 cameras, we obtain a good quality 3D
model. For instance, figure5(b) shows that from the 4 cam-
eras views the 3D modeling algorithm can build hand fin-
gers. Note that this result is obtained when the user from
figure4 raises a hand. Camera position and tuning are not
modified.

Videos1 give some insights of the real time abilities of
the system.

1http://www-id.imag.fr/~allardj/ipt04

5

http://www-id.imag.fr/~ allardj/ipt04�

(a) (b)

Figure 5:(a) Close-up on the 3D model of figure4 (b) Detail
of a 3D model: its precision is sufficient to detect fingers.

5.3 Scalability for a Large Number of View-
points

At the moment, 4 cameras are available in our experimental
setup. To test the scalability of our 3D modeling method we
used a synthetic model (see figure6(a)) with a complexity
close to a real person (about 130 contour vertices per im-
age). This model is used to compute images from as many
viewpoints as required. Next, our parallel 3D modeling al-
gorithm is executed on this frame. It enables to focus on
latency as keeping a real time frame rate is just a matter
of multiplying the number of processing units (assuming
the network switch performance scales with the number of
PCs). We used the same numberp of processors for each
step. Due to the limited number of processors available, we
reuse the same hosts for each pipe-line stage since it does
not significantly influence latency.

5.3.1 3D Modeling Quality

The precision of the 3D modeling depends on the number
of cameras. Figure6 shows the impact of the number of
viewpoints on the 3D model quality. In this case, using 25
viewpoints clearly enhance the precision of the modeling
compare to using only 6 views. However increasing the
number of viewpoints does not always lead to higher preci-
sion, due to the increased sensitivity to camera calibration
and pixel discretization noise.

5.3.2 Latency

Experimental results (see figure7) show that parallelization
enables to divide the latency by almost an order of magni-
tude for25 cameras. To reach real time processing with12
cameras (100 ms in latency and 30 frames per second), we
would assign one processing unit per pipe-line stage, each
one having 5 processors (a total of 15 PCs). Notice that la-

(a) (b)

(c) (d)

Figure 6: 3D Modeling of a synthetic person: (a) original
model; (b),(c) and (d) 3D model obtained with respectively
6, 25 and 64 cameras.

tency is here measured from the beginning of the viewing-
edge step to the completion of the 3D mesh computation.

6 Future Work

The algorithm presented only provides a geometric model.
For applications requiring to display the 3D model, collab-
orative work for instance, this model is usually too poor
to easily be able to identify a person or an object. We are
currently working on extracting color information from the
different cameras to dynamically compute a texture and ap-
ply it to the geometrical model. Preliminary results are en-
couraging (see figure8). Adding a texture, even with some
important defects, greatly improve the likeness of the com-
puted model with the original one.

The parallel 3D modeling algorithm presented here was
programmed using the MPI library [11]. MPI is well
adapted to implement large scientific parallel applications,
but MPI communication calls are deeply embedded into the
code, making it difficult to change a communication pat-
tern or to modify one part of the algorithm. We are cur-
rently porting our code on top of FlowVR [1], a middleware
dedicated to distributed interactive applications. FlowVR
clearly separates the code of each distributed component
from the communications. It enables to completely re-

6

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16

la
te

nc
y

(m
s)

number of processors

12 cameras
25 cameras
64 cameras

Figure 7: Log plot latencies for the synthetic person (see
figure6(a)).

Figure 8:Texturing the 3D model: preliminary results with
4 cameras.

design the communication patterns without modification to
the component code. This eases code reuse and code cou-
pling.

Experiments with more cameras are planned as GrImage
should be upgraded to 20 cameras, 30 PCs and 16 projec-
tors. We are also considering executing the visual hull algo-
rithm on an Itanium 2 cluster, keeping the video acquisition
and rendering stages on GrImage.

7 Conclusion

In this paper we presented a commodity component based
approach for marker-less 3D modeling in virtual reality en-
vironments. Digital cameras surround the interaction space
where the objects and humans to model are introduced. A
visual hull modeling algorithm is parallelized on a PC clus-
ter to compute in real time 3D shapes of the observed scene.
Experimental results using 4 cameras and 20 processors

lead to a precise 3D human model built at a sustained 30
Hz frame rate and with an average latency close to 300 ms.
It shows that visual hull modeling is a suitable technology
to provide a global 3D shape for virtual reality while marker
based tracking rather provides a few points usually with a
low latency and high precision.

References
[1] FlowVR. http://flowvr.sf.net .

[2] Net Juggler.http://netjuggler.sf.net .

[3] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raf-
fin. Net Juggler: Running VR Juggler with Multiple Dis-
plays on a Commodity Component Cluster. InIEEE VR,
pages 275–276, Orlando, USA, March 2002.

[4] D. Arita and R.-I. Taniguchi. RPV-II: A Stream-Based Real-
Time Parallel Vision System and Its Application to Real-
Time Volume Reconstruction. InComputer Vision Systems,
Second International Workshop, ICVS, Vancouver (Canada),
2001.

[5] B.G. Baumgart. A polyhedron representation for computer
vision. InAFIPS National Computer Conference, 1975.

[6] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. InIEEE VR 2001, Yoko-
hama, Japan, March 2001.

[7] G. Cheung, T. Kanade, J.-Y. Bouguet, and M. Holler. A real
time system for robust 3d voxel reconstruction of human mo-
tions. InProceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, Hilton Head Island, (USA),
volume 2, pages 714 – 720, June 2000.

[8] R. Cipolla and P.J. Giblin.Visual Motion of Curves and Sur-
faces. Cambridge University Press, 1999.

[9] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon,
and J. C. Hart. The Cave Audio VIsual Experience Auto-
matic Virtual Environement.Communication of the ACM,
35(6):64–72, 1992.

[10] J.S. Franco and E. Boyer. Exact Polyhedral Visual Hulls. In
Proceedings of the 14th British Machine Vision Conference,
Norwich, (UK), 2003.

[11] W. Gropp, E. Lusk, and A. Skjellum.Using MPI: Portable
Parallel Programming with the Message-Passing Interface.
Scientific and Engeneering Computation Series. The MIT
Press, 1994.

[12] M. Gross, S. Wuermlin, M. Naef, E. Lamboray, C. Spagno,
A. Kunz, E. Koller-Meier, T. Svoboda, L. Van Gool,
K. Strehlke S. Lang, A. Vande Moere, and O. Staadt. Blue-c:
A spatially immersive display and 3d video portal for telep-
resence. InACM SIGGRAPH 2003, San Diego, 2003.

[13] J.-M. Hazenfratz, M. Lapierre, J.-D. Gascuel, and E. Boyer.
Real Time Capture, Reconstruction and Insertion into Vir-
tual World of Human Actors. InVision, Video and Graphics
Conference, 2003.

7

http://flowvr.sf.net�
http://netjuggler.sf.net�

[14] Intel. Open Source Computer Vision Library.
http://www.intel.com/research/mrl/research/opencv/.

[15] Y. Kameda, T. Taoda, and M. Minoh. High Speed 3D Recon-
struction by Spatio Temporal Division of Video Image Pro-
cessing. IEICE Transactions on Informations and Systems,
(7):1422–1428, 2000.

[16] A. Laurentini. The Visual Hull Concept for Silhouette-
Based Image Understanding.IEEE Transactions on PAMI,
16(2):150–162, February 1994.

[17] B. Leibe, D. Minnen, J. Weeks, and T. Starner. Integration of
wireless gesture tracking, object tracking, and reconstruction
in the responsive workbench. In B. Schiele and G. Sagerer,
editors, ICVS 2001, volume 2095 ofLNCS, pages 73–92,
2001.

[18] M. Li, M. Magnor, and H.-P. Seidel. Improved hardware-
accelerated visual hull rendering. InVision, Modeling and
Visualization Workshop, Munich, (Germany), 2003.

[19] W. Matusik, C. Buehler, and L. McMillan. Polyhedral Visual
Hulls for Real-Time Rendering. InEurographics Workshop
on Rendering, 2001.

[20] W. Niem. Automatic Modelling of 3D Natural Objects from
Multiple Views. In European Workshop on Combined Real
and Synthetic Image Processing for Broadcast and Video
Production, Hamburg, Germany, 1994.

[21] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafe.
A Survey of Methods for Volumetric Scene Reconstruction
from Photographs. InInternational Workshop on Volume
Graphics, 2001.

[22] R. Szeliski. Rapid Octree Construction from Image Se-
quences.Computer Vision, Graphics and Image Processing,
58(1):23–32, 1993.

[23] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
Wallflower: Principles and Practice of Background Mainte-
nance. InProceedings of the 7th International Conference on
Computer Vision, Kerkyra, (Greece), pages 255–261, 1999.

8

