
Joint Virtual Reality Conference of EGVE - ICAT - EuroVR (2009)
M. Hirose, D. Schmalstieg, C. A. Wingrave, and K. Nishimura (Editors)

Short Paper: A Modular Framework for
Distributed VR Interaction Processing

Ingo Assenmacher and Bruno Raffin

INRIA, LIG Laboratory, France

Abstract
Interactions are a key part of Virtual Reality systems and can lead to complex software assembly for multi-modal
and multi-site collaborative environments. This is even harder, when each participant is interacting in the same
virtual world by very different hardware and software capabilities. This paper outlines a software architecture and
interaction processing framework developed to couple different sites in a collaborative set-up using a data-flow
oriented approach. We show how we transform the site-specific capabilities to a common interface. This is used
for application state processing based on a distributed actor and property model.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Parallel processing I.3.4 [Computer Graphics]: Utilities—Software support I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Virtual Reality

1. Motivation

We are currently researching on a collaborative virtual en-
vironment where scientists from three distant sites can work
on an interactive flooding simulation in a virtual terrain at the
same time. Although collaborative environments are subject
of research for more than a decade now, this project environ-
ment imposes interesting requirements: the shared applica-
tion state is modified and reflected by very different input-
and output-systems on each site. For example one site fea-
tures a full body 3-D real-time reconstruction of the human
user in the environment. At the same time, another site uses
a standard desktop environment for interaction. There is no
globally used Virtual Reality (VR) system on each site to
implement the application. Instead existing interfaces and
simulation code developed by each member of the project
are used. The different codes a coupled using a distributed
data-flow network middleware. We use the scenario to re-
search on interface requirements for distributed applications
in the context of cloud-computing for highly interactive ap-
plications.

The coupling of the different codes is implemented by
a message passing architecture. This is a common method
to design distributed applications. However, existing appli-
cations have to be adapted to this paradigm. Especially in
the context of collaborative interaction, this is not a straight-

forward thing to do. We define a software architecture that
gives design guides to the adaptation process. The motiva-
tion is to simplify the incorporation of new user modules
and functionality in the collaborative environment. Existing
VR systems typically offer limited support for distributed
interaction processing, with the exception of remote device
dispatching.

This paper presents a work-in-progress report with focus
on the interaction concept of our framework. Our main goal
is to have a consistent, but adaptable architecture that allows
to exploit parallelism. The contributions of this paper are
summarized as follows.

• We present a design that structures the physical data ag-
gregation and transformation stage on top of a data-flow
paradigm. This way, we are able to adapt to varying site
requirements and capabilities.

• An actor model helps to abstract site specific capabilities
in a common concept. Furthermore it allows to model the
overall application requirements. Actors are defined by a
varying number of properties which can communicate and
change the system state.

We needed to address the interaction design, as the
straightforward “distribute-and-collect” approach does not
fit well to the problem of distributed interaction process-

c© The Eurographics Association 2009.



I. Assenmacher & B. Raffin / Short Paper: A Modular Framework for Distributed VR Interaction Processing

ing. For example, motion trajectories have to be inspected
by size varying partitions over time, while a button press in-
dicates a single event in a wider time-span. The typically
small amount of data to process does not justify additional
overhead introduced by distributed processing and synchro-
nization. However, an isolated component working on inter-
action data can be instantiated multiple times in a distributed
setup. Additionally, the component can be parametrized in-
dependently and compute a different function in parallel
on similar input. These are beneficial properties, so we re-
searched on a generalization of the structuring for the dis-
tributed case.

The remainder of this paper is structured as follows. We
briefly reflect influential related work in section 2. After that,
we outline our method to structure the interaction process-
ing from physical to application level. We conceive this as
a clear interface to map local VR system constraints of ev-
ery site to the requirements of the overall application. A two
step process ensures replicability, namely the definition of a
transformation step followed by the specification of applica-
tion registers. We see the definition of these registers a cru-
cial step in the process of assembling the application. The in-
formation in the registers can be distributed, implementing a
publish-subscribe mechanism. The architecture on the phys-
ical level is described in section 3. On top of that, the main
communication interface between the site applications and
the data-flow network in between them has to be addressed.
Here, we suggest to model all system entities as actors that
have a varying number of properties. The latter make up the
capabilities of each object in the system. For example actors
with varying representations on the individual sites use dif-
ferent visual properties, whereas an object that can not be
seen, does not have a visual property at all. The actor model
is outlined in section 4. We close the paper by a brief ex-
planation of the mapping of our architecture to the FlowVR
middleware for distributed VR applications and give a short
conclusion in section 5.

2. Related Work

A number of distribution strategies for visual reproduction
exist, for example [HHN∗02, AR05]. These allow to decou-
ple rendering from application processing. However, there is
no common ground for doing the same with interaction code.
Usually the only type of distribution pattern is to run the data
acquisition on different nodes in a distributed setup. This is
considered to be a “best practice” approach and several tool-
kits support this traditionally, for example [THS∗01]. Even
when no remote data acquisition is available, most VR tool-
kits allow to decouple the data retrieval on thread level from
the main application [RS01,BJH∗01]. Common to these ap-
proaches is that their support for parallel processing ends at
the point where the acquired data is passed to the interaction
processing loop.

The technique of data-flow programming for interac-

tion modelling is frequently used, for example in [RS01,
FBB∗08]. [JDM99] distinguish explicitly between continu-
ous and discreet interaction paths of the data-flow network.
Few described data-flow approaches discuss the need for ex-
plicit resource mapping or distribution support, for exam-
ple [DJ05]. We chose to implement our approach on top of
FlowVR [AR06]. This enables the transparent mapping of
resources on a per-component level by declarative configu-
ration. The FlowVR run-time environment takes control of
the message passing, and any component can be executed
on any known resource in a distributed set-up. The combi-
nation of different interaction streams may need an adapted
mapping of resources depending on the current system lay-
out. Clearly, a slow network connection should not be used
for sending device data produced with high frequency. Ap-
proaches like [FR00] use application knowledge in order to
provide sampling heuristics to ensure a low latency data ac-
quisition. This is typically implemented by either discarding
data or getting data just-in-time. The interaction modeling
based on explicit registers as we present it here can be found
in some VR tool-kits, for example [KBB∗06]. Usually it is
contained in a simpler form and more interleaved with other
system interfaces than we see it.

3. Physical Processing

We suggest to distinguish between taking decisions about
physical and logical interaction in order to structure the de-
sign process. The physical interaction deals with the acqui-
sition of data that is used for interaction processing and data
source abstraction. We identify three abstract stages that
have to be adapted to the application needs on the physical
level.

• Data acquisition: independent sources of data can be run
asynchronously. A data source should be close to the hard-
ware resource needed for the acquisition to ensure a first
low latency access.

• Data transformation: interaction data coming from the
sources has to be adapted to local requirements or con-
straints of the application.

• Data application: data that is available as output of the
transformation stage has to be applied.

The choice of the distribution on the three stages has a
direct impact on the latency of the system. The acquisition
stage consists of modules which output data messages of
varying types. Naturally, each module on this stage can be
calculated in parallel and be bound to different resources.
Information from different acquisition modules can be re-
lated using a globally comparable clock. The existence of
the latter has to be ensured by the run-time environment.

A collection of acyclic graphs models the transformation
stage. All data from acquisition stage serves as input to this
stage. The graphs are fed to the system in a declarative style
as a set of nodes and edges. Edges thereby represent data-
flow from one node to the other. Nodes contain a variable

c© The Eurographics Association 2009.



I. Assenmacher & B. Raffin / Short Paper: A Modular Framework for Distributed VR Interaction Processing

number of named in- and outports. Any inport can only be
connected with a single edge. The structure supports fan-out
of data from one node to a number of other nodes on every
outport. The data that is passed along edges consists of an
abstract data type (ADT) and timing information. Any port
has a default value after creation, defined by the implemen-
tation of the ADT or given by the user. The above depicted
structure defines a nested function using a graph language.
Functions represented by nodes can be freely combined as
long as the ADT between out- and inport matches. We as-
sume that every node can compute when at least one of its
inports is marked dirty. This behavior is guaranteed by the
default value property of each node. The advantage of the
graph approach is its flexibility to model important strate-
gies typically needed for VR processing.

• Exchange of transformation paths: this is a crucial fea-
ture in the context of the collaborative application. Differ-
ent hardware set-ups have to be mapped to the same vir-
tual environment. For example when sensors are mounted
differently or calibration data is acquired differently, the
transformation has to account for that.

• Aggregation of virtual devices: different sources can be
combined and ’normalized’ by setting up different sub-
graphs and a combination of them. This property allows
“device substitution”. The level of interaction on each site
can this way be adapted to the given system constraints.

• Modularization and re-usability: nodes can themselves
contain graphs. Inner ports of the contained graph are ex-
ported as in- or outports of the composite node.

• Parallel processing of independent trees. Different trees
can be processed in parallel, as long as the nodes work on
sharable resources.

The resulting output of a graph is pushed to a register. The
concept of a register can be seen as an array of ADTs com-
bined with a notification system. Figure 1 depicts the princi-
ple of the processing on the physical stage. Each element of
the register keeps a value of an ADT. Upon each update, it
sends a message to N receivers waiting for a change of the el-
ement. For example the user decides on having a 3-D pointer
metaphor in his application. The origin and the direction of
a pointing ray in world space is needed to implement this
function. In a WIMP environment, this requires the knowl-
edge about additional system state, for example the view-
port size and mouse position. The task of the transformation
layer is to compute this function. Hardware devices, such as
the mouse state, or abstract system information, for exam-
ple the viewport size, act as input to this stage. The resulting
pointing ray is then stored in the register. A number of sub-
systems may need the same pointing information for further
processing. For example in an immersive environment, a vi-
sualization of a pointing ray needs to be updated as well as
the input to a selection algorithm for scene manipulation. In
our model, a “pointing actor” embodies the desired applica-
tion stage. It has a ray as visible output and triggers selection
of scene objects.

register a register b
<onChange>

data flow
data set
message

de
vi

ce

de
vi

ce

st
at

e

de
vi

ce

st
at

e

tr
an

sf
or

m
at

io
n

ne
tw

or
ks

ph
ys

ic
al

da
ta

 s
ou

rc
es

ap
pl

ic
at

io
n

in
te

rf
ac

e

Figure 1: The basic architecture of the physical processing
layer. The transformation stage is user-definable. For our
collaborative scenario, we have multiple instances of this
stage. Each adapts a site’s input and output behavior to the
overall application needs.

In general, the register approach forces the user to specify
the main data sources for the interaction wanted, in name,
structure and semantics. This inverts the process of think-
ing about interaction. In our experience, the shift goes from
“what types of events does the framework provide” to “what
type of information is needed to realize my interaction”.

4. Logical Processing

On a logical level, we describe the virtual world as a collec-
tion of actors. Each actor represents an internal and external
state. The latter consists of a collection of actor properties
which can vary on a per-actor level. These properties build
a hierarchy of representations that communicate with each
other. For example, an actor that can be perceived visually
owns a visual and a spatial property. Traditional approaches
map this to the ability of modifying geometry and transfor-
mation for an object independently in a scene graph. How-
ever, we suggest to model all necessary modalities of a scene
object in that way. Figure 2 shows a non exhaustive set of
actor properties that we have identified for our applications.
Each interdependency results in an exchange of messages
between properties upon a change of their state. For exam-
ple the change of the visual appearance of the actor needs to
update information in the collision detection sub-system as
well as in the graphical rendering. At the same time it may or
may not have impact on the acoustic rendering of the actor.
We see the advantage of the dynamic property mechanism
in the adaptability of the application to the targeted types of
interaction. It is thereby based on a consistent mechanism:
in case a certain aspect has to be addressed by an application

c© The Eurographics Association 2009.



I. Assenmacher & B. Raffin / Short Paper: A Modular Framework for Distributed VR Interaction Processing

mandatory
optional

acoustic

spatial

visualcollision

physics

broad/narrow 
phase information

world/local
reference frame

synthesis

contacts

Figure 2: A relation diagram of actor properties, as we iden-
tified them for our application. The edge labels hint at the
purpose of the communication relation between the proper-
ties.

object, it has to expose a specific property usable for that pur-
pose. For example, an object that has to be recognized by a
collision detection sub-system has to export a collision prop-
erty. That way, the system is offered an interface to access all
information it needs to process the object for the purpose of
collision detection. Each result of a property change can be
computed in parallel, as the interface and the state data is
separated from the main object by design.

5. Implementation and Conclusion

We implemented our above discussed concepts using the
FlowVR middleware. Especially the distributed rendering
approach as described in [AR05] is a key concept to imple-
ment visual properties. Generally, FlowVR allows to model
an application based on modules and hierarchies of mod-
ules, called meta-modules. An actor is implemented as a
meta-module containing its inner state and a collection of
property modules. The actors reside in an actor home, which
is a meta-module as well. In the current implementation of
FlowVR, connections between modules are not mutable af-
ter the network creation. The actor home is a mean to avoid
a complete graph between N actors. For the collaborative
application we are working on, three actor homes naturally
map to each site. An actor home offers a single input port.
A message coming in on that port contains routing informa-
tion that defines the recipient actor. This is implemented on
the stamps concept of FlowVR [AR06]. The message will be
routed inside the actor home to the actor. It will then act ac-
cordingly on the actor’s properties and subsequently change
the system state.

This paper presents an outline of our distributed approach
to create interactive, distributed VR applications. Our dis-
tributable approach allows data source abstraction and vir-
tual device composition, as well as parallel device process-
ing. Two of our current strategies in implementing a collab-
orative application scenario were described. One is the soft-
ware architecture for adapting to site-specific hardware and

software environments. A data-flow oriented transformation
network is used for that purpose. The interface to the appli-
cation stage is modeled by a register approach. The informa-
tion contained in the registers is propagated to a set of actors
and their properties. These actors define the overall applica-
tion semantics. With the tools described, we hope to build an
adaptable, low-latency and efficient prototype that will be of
interest to the VR community.

Acknowledgment

This work was partly funded by Agence Nationale de la Re-
cherche, contract ANR-06-MDCA-003.

References
[AR05] ALLARD J., RAFFIN B.: A Shader-Based Parallel Ren-

dering Framework. In Proceedings of IEEE Visualization ’05
(Minneapolis, USA, October 2005).

[AR06] ALLARD J., RAFFIN B.: Distributed Physical Based Sim-
ulations for Large VR Applications. In Proceedings of IEEE Vir-
tual Reality ’06 (Alexandria, USA, March 2006).

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: VR Juggler: A Virtual Platform
for Virtual Reality Application Development. In Proceedings of
IEEE Virtual Reality ’01 (March 2001), Takemura H., Kiokawa
K., (Eds.), Virtual Reality Society Japan, pp. 89–96.

[DJ05] DELINGIANNIDIS L., JACOB R. J.: Improving Perfor-
mance of Virtual Reality Applications Through Parallel Process-
ing. The Journal of Supercomputing 33 (2005), 155–173.

[FBB∗08] FIGUEROA P., BISCHOF W. F., BOULANGER P.,
HOOVER J. H., TAYLOR R.: InTml: A Dataflow Oriented Devel-
opment System for Virtual Reality Applications. Presence Tele-
operations and Virtual Environments 17, 5 (September 2008),
492–511.

[FR00] FRÖHLICH T., ROTH M.: Integration of multidimensional
interaction devices in real-time computer graphics applications.
In Proceedings of Eurographics (2000), Blackwell Publishers,
U.K.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R., FRANK R.,
AHERN S., KIRCHNER P. D., KLOSOWSKI J. T.: Chromium:
a stream-processing framework for interactive rendering on clus-
ters. ACM Trans. Graph. 21, 3 (2002), 693–702.

[JDM99] JACOB R. J., DELINGIANNIDIS L., MORRISON S.:
A Software Model and Specification Language for Non-WIMP
User Interfaces. ACM Transactions on Computer-Human Inter-
action 6, 1 (March 1999), 1–46.

[KBB∗06] KREYLOS O., BERNARDIN T., BILLEN M. I.,
COWGILL E. S., GOLD R. D., HAMANN B., JADAMEC M.,
KELLOGG L., STAADT O. G., SUMNER D. Y.: Enabling Sci-
entific Workflows in Virtual Reality. In Proceedings of the ACM
SIGGRAPH International Conference on Virtual Reality Contin-
uum and Its Applications (VRCIA’06) (2006).

[RS01] REITMAYR G., SCHMALSTIEG D.: An Open Software
Architecture for Virtual Reality Interaction. In Proceedings of
the ACM Symposium on Virtual Reality Software and Technology
(VRST’01) (New York, NY, USA, 2001), ACM, pp. 47–54.

[THS∗01] TAYLOR R. M., HUDSON T. C., SEEGER A., WEBER
H., JULIANO J., HELSER A. T.: VRPN: A Device-independent,
Network-transparent VR Peripheral System. In Proceedings of
the ACM Symposium on Virtual Reality Software and Technology
(VRST’01) (New York, NY, USA, 2001), ACM, pp. 55–61.

c© The Eurographics Association 2009.


