
Binary Mesh Partitioning for
Cache-Efficient Visualization

Marc Tchiboukdjian, Vincent Danjean, and Bruno Raffin

Abstract—One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-

aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms.

CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed

for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees.

We present in this paper a OOðN logNÞ algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a

coherent traversal of a N-size mesh in dimension d induces less than N=BþOOðN=M1=dÞ cache-misses where B and M are the block

size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming

than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or

better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We

also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

Index Terms—Cache-aware, cache-oblivious, mesh layouts, data locality, unstructured mesh, isosurface extraction.

Ç

1 INTRODUCTION

MANY visualization related processing steps, like isosur-
face extraction, rely on read-only and memory

intensive algorithms. Adequately combining data layout
and access patterns can significantly improve performance.
Since classical processor architectures cache blocks of
adjacent data, storing data accessed consecutively nearby
in memory enables to reduce cache-misses. Enforcing
locality is also relevant for some GPU architectures that
coalesce parallel memory accesses to save clock cycles when
the target data are close in memory. For instance, the Nvidia
G80 and G200 [1] can coalesce concurrent threads data
accesses, while the Intel Larrabee supports vector level
coalesced loads and stores for its VPUs.

For regular data structures, data layouts based on space
filling curves, like the Z curve, are common [2]. They provide
a cache-efficient layout for access patterns showing a strong
spatial locality. For irregular data structures, computing
cache-efficient layouts is significantly more difficult.

We can distinguish two classes of cache-efficient algo-
rithms: Cache-aware (CA) and cache-oblivious (CO) algo-
rithms. CA algorithms are based on the external-memory

(EM) model [3]. The memory hierarchy consists of two levels,
a main memory of size M called cache and an infinite size
secondary memory. The data are transferred between these
two levels in blocks of B consecutive elements. CA algo-
rithms can be very efficient but require the layouts to be
recomputed for each memory architecture. It makes it
difficult to efficiently share the same layout between
heterogeneous processing units mixing CPUs and GPUs for
instance. CO approaches [4] intend to overcome this
limitation by proposing layouts that are independent from
the cache size M and the block size B (Fig. 1). The Z curve is
an example of a CO layout (Fig. 2). For irregular data
structures, the most significant and recent work is probably
the CO mesh layout proposed by Yoon et al. [5] (OpenCCL
algorithm). In comparaison to other layouts, experiments
show speedups ranging from 2 for in-core computations, up
to 20 for out-of-core computations. This algorithm is
experimentally efficient for a wide range of meshes. How-
ever, this algorithm is based on heuristics, without theoretical
performance guarantees, neither on the layout computation
complexity nor on the quality of the resulting layout.

In this paper, we introduce a new CO layout algorithm for

irregular but well shaped meshes with a theoretical

performance guarantee (Fig. 3). It relies on a recursive mesh

partitioning using a specific BSP (Binary Space Partitioning)

algorithm introduced by Miller et al. [6]. This algorithm cuts

the mesh guaranteeing a good tradeoff between minimizing

the number of cut elements and having two partitions of

similar size. When applied recursively, it ensures that

spatially close and strongly connected data tend to be

partitioned deeper in the BSP tree. The CO layout is obtained

by storing the data linearly in memory from the first leaf of

the BSP tree to the last one. The data loaded in a cache block

are thus contiguous leaves of the BSP tree. It is cache

oblivious as to any block and cache size corresponds a BSP

tree depth level ensuring a strong locality and connectivity.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010 815

. M. Tchiboukdjian is with CNRS and CEA/DAM, DIF, ENSIMAG—
Antenne de Montbonnot, Zirst 51, Avenue Jean Kuntzmann, 38330
Montbonnot Saint Martin, France. E-mail: marc.tchiboukdjian@imag.fr.

. V. Danjean is with Grenoble Universités and Laboratoire Informatique de
Grenoble (LIG) (UMR 5217), ENSIMAG—Antenne de Montbonnot, Zirst
51, Avenue Jean Kuntzmann, 38330 Montbonnot Saint Martin, France.
E-mail: vincent.danjean@imag.fr.

. B. Raffin is with INRIA and Laboratoire Informatique de Grenoble (LIG)
(UMR 5217), ENSIMAG—Antenne de Montbonnot, Zirst 51, Avenue
Jean Kuntzmann, 38330 Montbonnot Saint Martin, France.
E-mail: bruno.raffin@imag.fr.

Manuscript received 7 Sept. 2009; revised 13 Dec. 2009; accepted 30 Dec.
2009; published online 11 Jan. 2010.
Recommended for acceptance by H. Pfister.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number
TVCGSI-2009-09-0206.
Digital Object Identifier no. 10.1109/TVCG.2010.19.

1077-2626/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Classical BSP algorithms or space filling curves could
be used in a similar way for building layouts. But these
space partitioning techniques only take into account
geometric information and not connectivity. Performance
is not guaranteed.

Our CO layout algorithm has several benefits. The layout
computation has a OOðN logNÞ complexity. It also guaran-
tees that a coherent traversal of a N-size mesh in dimension
d induces less than N=BþOOðN=M1=dÞ cache-misses where
B and M are the block and cache size. Experiments show
that the layout computation is about two to three times
faster than for the OpenCCL algorithm while requiring
significantly less memory (only 2 percent of the memory
used by OpenCCL on the biggest meshes). At execution,
perfomance is comparable with the OpenCCL algorithm for
classical access patterns. The BSP tree computed for the
layout can also be used as an internal, layout consistent,
acceleration data structure. Experiments reveal that using it
as a min-max tree for accelerating an isosurface extraction
brings significant additional performance improvements
(from 12 percent to 55 percent for in-core computations)
compared to using an external kd-tree not necessarily
consistent with the layout.

We also show that CO layouts can lead to significant
performance improvements on recent NVIDIA GPUs
(speedups ranging from 1.52 to 4.09), even if no cache
mechanism is involved. Because CO algorithms enforce
data locality, they favor coalesced data accesses. To our
knowledge, this is the first time such benefits of CO layouts
on GPUs are highlighted.

Related work is discussed in Section 2. We introduce our
framework and review common mesh access patterns in
Section 3. Overlap graphs, the class of meshes our algorithm
applies to, and the graph separator algorithm are presented
in Section 4. The CO algorithm and its implementation are
described in Section 5. Experimental results are presented in
Section 6 before the conclusions.

2 RELATED WORK

2.1 Cache-Efficient Algorithms

Today, many algorithms have their CA or CO versions [7]
where computations and data are reordered for an efficient
cache use. A widely used technique is blocking or tiling:
elements are mapped in memory and accessed by blocks of
size B to fit in a cache line. For instance, regular search trees
are made CA by grouping B keys in a single node. Such
trees are called B-trees. Another example is matrix multi-
plication. Instead of rows or columns, the ATLAS library [8]
traverses the matrix by blocks such that all involved blocks
for a partial computation fit in the cache.

It is often possible to obtain the same result while being
oblivious to the block size. For example, by carefully storing
a binary tree in memory with the vam Emde Boas layout [7],
a search can match the I/O bound of the CA B-tree. In this
layout, the tree is divided at the middle of its height into a
top tree and several bottom trees. The same layout is
recursively applied to each of these trees, which are then
stored sequentially in memory. The same recursive blocking
technique is applied within the divide and conquer matrix
multiplication. Indeed, this is a CO algorithm [7] with the
same theoretical complexity as its CA counterpart.

Another CO alternative to blocking is the use of space
filling curves. These layouts have been used efficiently for
regular mesh traversals [2] and matrix multiplication
algorithms [9].

CO algorithms for regular structures are not always as
efficient as their CA counterparts. The access pattern to a CO
layout is more complex, leading to a significant overhead
that limits the benefit of a CO approach. For instance, the
CO matrix multiplication is not competitive with the CA
version [10]. We do not face this problem here as an
unstructured mesh has already a complex access pattern.

2.2 Mesh Layouts

The problem of reordering mesh elements for efficient cache
use was first encountered when a vertex cache was

816 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

Fig. 2. Good layouts can significantly reduce the number of block
transfers. (a) 75 percent of the data must be loaded to access the
queried slice (each line corresponds to a cache line), while the CO
layout used on (b) (Z curve) enables to reduce this amount to only
25 percent of the data (each block fits into a cache line).

Fig. 3. Visual illustration of different layouts for the torso mesh.
Successive cells in memory are colored from blue to red. From left to
right, the original, geometric (sorted by x, y, and z-coordinates),
OpenCCL (cache-coherent layout from [5]) and FastCOL (our approach)
layouts. For spatially close tetrahedra, color discrepancy decreases
from the left to right layouts. It denotes an improved memory locality,
less likely to generate cache-misses for spatially coherent access
patterns.

Fig. 1. The cache-oblivious memory model. The data are transferred by
block of B consecutive elements into a cache of size M. Both
parameters are unknown to the algorithm.

introduced in graphic cards. To maximize the efficiency of
the hardware vertex cache, triangles needed to be reordered
before being sent to the graphic card. The algorithm
developed by [11] reorders triangles to form triangle strips.
They assume the cache has a FIFO policy and the cache size
is known to the algorithm. Algorithms not based on strips
that work for all cache sizes have been introduced in [12].
The layout quality has been improved in [13], and the
overdraw rate reduced in [14]. When the geometry and the
topology of the mesh can be modified, the method of [15]
generates a single strip representing all the mesh while
improving the efficiency of back-face culling. In [16], the
authors propose a mesh compression scheme that is also
cache efficient. However, as they target graphic cards, all
these approaches only reorder mesh cells and not points.
They consider the graphics card cache model (no cache line,
independent vertices fetching, etc.) which is very different
from the CPU cache models. Only the temporal locality on
mesh points is taken into account and not the spatial
locality. Moreover, the application must access the mesh in
the exact same order as given by the cell layout (especially
for triangle strips). Finally, work in this area mostly deals
with surface meshes.

Processing sequences [17] reorder the points and the cells
of a mesh, but this approach focuses on streaming computa-
tions. The goal is to minimize the maximum amount of
memory used during the computation. The application
should again follow the mesh layout.

OpenCCL [18] presented in [5] casts the mesh layout
problem as a graph optimization problem. To describe the
access pattern of the application using the mesh, the user
must provide a graph where vertices represent data and
edges link data that are likely to be accessed in sequence at
runtime. A good mesh layout is a permutation of the graph
vertices that results in a more efficient layout of the mesh in
memory. They developed a local metric to decide if a swap
of some vertices improves the layout. They optimize this
measure thanks to a multilevel optimization scheme. In
[19], two global cache-oblivious metrics are introduced to
quantify the quality of a mesh layout. These two metrics
involve edge lengths. If two mesh elements i and j likely to
be accessed sequentially are stored in the layout at position
xi and xj then the edge length lij is jxi � xjj. The first metric
proposed (COMa) is the arithmetic mean of edge lengths
and the second (COMg) is the geometric mean of edge
lengths. While both metrics yield a good correlation with
measured cache misses, COMg seems to perform better. All
previously proposed mesh layout optimization algorithms
[5], [19] are based on heuristics. No bound on the quality of
the layout, i.e., number of cache-misses, is provided. Our
algorithm, called FastCOL, guarantees an upper bound on
the number of cache-misses for the class of meshes it
applies to. This bound is closely related to edge lengths,
like the COMa and COMg metrics introduced in [19].
FastCOL is based on the mesh geometry, a data often
available for the meshes considered in scientific visualiza-
tion. OpenCCL is more general on that aspect as it only
uses the mesh topology and thus can be applied to graphs
not embedded in space.

Aforementioned approaches mainly focus on optimiz-
ing mesh layouts when the application accesses the mesh
without the help of any additional data structure. That is,
the application only traverses the mesh with the help of

the cells and points arrays or with the cell-to-points or
point-to-cells pointers of the mesh. Another approach [20]
optimizes the layout for applications accessing the mesh
through bounding volume hierarchies (BVH) trees. To
generate an efficient layout, they use the OpenCCL
algorithm and provide two kind of links in the access
graph: links representing spatial locality in the mesh and
links representing parent-child locality in the BVH tree.
Our algorithm also handles these two kinds of locality.
During the layout computation, we build a BSP tree that is
used to reorder the mesh. This tree is tailored to efficiently
use our mesh layout. Contrary to the approach in [20]
where the layout algorithm takes a mesh and a BVH tree
as input to produce a layout, we only take the mesh as
input and produce both a layout and a BSP tree consistent
with this layout. This BSP tree can be used as an
acceleration structure, for isosurface extraction for instance.

2.3 Isosurface Extraction

The marching tetrahedra algorithm can be accelerated with
various data structures allowing to efficiently search for the
cells intersected by the isosurface. One such data structure
is the min-max tree [21]. An octree where each node stores
the minimum and maximum values of its subtree permits to
quickly discard parts of the mesh that do not contain any
intersected cell. The search is thus improved from OOðnÞ to
OOðkþ k logn=kÞ where n is the number of cells and k the
size of the isosurface (usually k� n). If the scalar field is
spatially coherent, the performance is actually improved on
the theoretical bound.

An optimal data structure for this problem is the interval
tree storing for each cell c the interval whose extremes are
the minimum and maximum value of the points of c [22].
The query time is improved to OOðlognþ kÞ whatever the
spatial repartition of the scalar field is. The interval tree has
been made I/O-efficient allowing a query with complexity
OOðlogB nþ k=BÞ, where B is the block size. This bound is
optimal [23]. However, this approach is not space-efficient
since the vertex information is duplicated many times. The
two-level indexing scheme based on the meta-cells techni-
que introduced in [24], [25] is both practical and space-
efficient as there is no duplicated information. Spatially
close cells are grouped into meta-cells, which are then used
in the I/O-efficient interval tree.

The approach we developed with the consistent BSP tree
is a CO alternative to the meta-cells technique, but we use
the min-max tree instead of the interval tree, which may not
be as efficient on a scalar field with high spatial variations.

3 FRAMEWORK

3.1 Common Mesh Access Patterns

A mesh data structure usually consists of two multi-
dimensional arrays: an array storing point attributes (e.g.,
coordinates, scalar values, etc.) and an array storing for each
cell its points and attributes (e.g., the nature of the cell,
scalar values, etc.). When the mesh is composed of cells of
different nature (using various number of points), an
additional array allows random access to cells (Fig. 4). As
many visualization filters also need to access neighbors of a
point or a cell (e.g., the gradient filter), additional structures

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 817

storing the connectivity permit efficient access to point and
cell neighbors. Finally, accelerating structures can be used
to efficiently select cells or points verifying a certain
property (e.g., select cells intersecting an isosurface).

A mesh can be traversed using the following strategies:

. layout order traversal: traverse all points or all cells
in the order given by the corresponding array (e.g.,
the marching tetrahedra algorithm);

. connectivity traversal: traverse all points or all cells
using the connectivity information (e.g., the ray
casting algorithm or the VTK connectivity filter);

. data structure traversal: traverse points or cells in
the order given by an external data structure (e.g.,
isosurface extraction with a min-max tree).

While traversing the mesh, several local operations are
commonly used to process a mesh element:

. neighborhood operation: get all points/cells con-
nected to the current point/cell (e.g., the VTK
gradient filter);

. attributes operation: get attributes from points
composing the current cell or get attributes from
cells using the current point (e.g., marching cube).

Multiple local operations can be used at the same time.

3.2 Layout Influence on Cache Performance

The cache performance of visualization filters is greatly
influenced by the underlying mesh data structure and
specifically the indices of points and cells: the mesh layout.
These indices can be modified without affecting the
intrinsic characteristics of the mesh like the geometry or
the topology and without any modification on the visuali-
zation filters. Depending on the access pattern, the layout
can impact the cache performance in various ways.

. Cache performance is optimal with layout order
traversals as they lead to sequential memory accesses.

. A layout improves cache performance of connectiv-
ity traversals and neighborhood operations if the
elements that are connected in the mesh topology are
stored nearby. Spatial locality is increased as two
consecutive cells in the traversal could be in the
same memory block. It also enhances temporal
locality since the current cell in the traversal has a
good probability to still be in cache if its memory
block has been accessed recently.

. A layout improves cache performance of data
structure traversals if the elements that are accessed
consecutively by the data structure are stored
nearby. Two consecutive elements could be in the
same memory block, increasing spatial locality.

. A layout improves cache performances of attributes
operations if points corresponding to a same cell (or
cells using a common point) are stored nearby.
Points may share memory blocks, which increases
spatial locality.

A layout order traversal with attributes operations can be
further optimized if the layout stores nearby the cells that
share common points. The memory blocks containing the
common points have a higher chance to still be in cache,
which enhances temporal locality. The marching tetrahedra
algorithm is an example of such access pattern.

3.3 The Access Graph Model

To optimize a layout for a specific access pattern, we need
to model the data accesses. As in [5], we use a graph G ¼
ðV ;EÞ where vertices are mesh elements (point or cell) and
edges represent consecutive data accesses. However, we
constrain the topology of the access graph to forbid edges
between elements that are ‘far’ from each other, as detailed
in Section 3.5.

We now model a visualization filter as a function f
applied once to each element of the mesh. As we are
interested in the cache performance, we do not consider the
processing part of f . We restrict its memory accesses so that
they are compatible with the access graph: only the
neighbors of the element i in the access graph can be
accessed to compute fðiÞ.

Fig. 5 presents examples of access graphs for the neighbor-
hood and attributes operations. A point neighborhood
operation is represented in Fig. 5a. This kind of local access
scheme is used by the VTK gradient filter. To compute the
gradient value at a point, values of the scalar field at the
neighborhood points are needed, thus edges link neighbor
points in the access graph. Likewise, a point attributes
operation is represented in Fig. 5c. The marching cube
algorithm is an example of such a scheme. Indeed, to compute
the isosurface within a cell, the coordinates and scalar
value for each point composing the cell are needed. Therefore,
edges link each cell to its points in the access graph.

3.4 Access Graph for Layout Order Traversals

Visualization filters do not always rely on intrinsic mesh
characteristics such as topology or geometry when acces-
sing the mesh. They sometimes rely on the layout itself. For
example, the Seed Set isosurface extraction algorithm
processes the mesh with a connectivity traversal. The access
graph does not change when the layout changes, provided

818 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

Fig. 4. The vtkUnstructuredGrid data structure (from the VTK Textbook
[26]). The Points array contains points coordinates and the Cells array
contains the indices of cell points. The Cell Types array contains the
nature of each cell and provides OOð1Þ random access to cells.

that the initial seeds stay the same (Fig. 6a and 6b). On the
contrary, the Marching Cube algorithm processes the mesh
with a layout order traversal, and thus, the access graph
depends on the layout (Fig. 6c and 6d).

The access graph of Fig. 5c properly models the local
operations of the marching cube algorithm. However, to
optimize the global traversal strategy, the edges of the
access graph of Fig. 5b should be added instead of using
the access graphs of Fig. 6c or 6d. First, because the
resulting access graph does not depend on the layout.
Second, because it enables temporal locality optimization:
cells that share common points should be stored nearby.

3.5 Restriction to Overlap Graphs

Access graphs can model a large range of access patterns,
even ones with a weak spatial coherency where edges
connect distant elements. To be able to build efficient CO
layouts with a provable quality, we restrict access graphs to
be overlap graphs. These graphs model spatially coherent
access patterns, i.e., where edges connect spatially close
elements. They are formally defined in the next section.

In contrast to OpenCCL [5], we add geometric informa-
tion to the access graph and use it to constrain its topology.
We add to each vertex the coordinates of the corresponding
element of the mesh and we restrict the graph to be an
overlap graph. This assumption forbids consecutive access

of mesh elements that are too ‘far’ from each other. This
restriction is satisfied by most visualization filters and
allows us to devise an efficient separator-based algorithm
with a theoretical guarantee on the quality of the mesh
layout generated.

Meshes are often composed of elements that are well
shaped in some sense, such as having a bounded aspect
ratio or angles that are not too small or too large. Provided
that the underlying mesh is constrained by such geometric
features, the access graphs for connectivity traversals,
neighborhood, and attributes operations are overlap graphs
[6] (Fig. 5). We have seen in the previous section that the
layout order traversals should be handled differently
depending on the visualization filter as they are based on
the layout.

The only remaining mesh access pattern is data structure
traversal. Unfortunately, access graphs for data structure
traversals may not always be overlap graphs. For instance,
the interval tree used in the isosurface extraction of [22]
does not traverse cells intersected by the isosurface in an
order based on the geometry or topology of the mesh.
However, in this case, the access graph depends on the
value of the isosurface. It is not practical to compute a
layout and reorder the mesh for each isosurface extraction.
We develop an alternative with our consistent BSP tree (cf.
Section 5.6). This tree is tailored to efficiently use our layout
as the induced mesh traversal is a layout order traversal
with good cache performance.

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 819

Fig. 5. Example of access graphs for the neighborhood and attributes
operations defined in Section 3.1. Numbers represent points (a), cells
(b), or points and cells (c, d) indices in the layout. Data accesses are
represented in blue: neighbor points in (a), neighbor cells in (b), points of
each cell in (c), and cells of each point in (d). Dashed circles show that
all these graphs are overlap graphs (cf. Section 4.1). (a) Points
neighborhood, (b) cells neighborhood, (c) points attributes, and (d) cells
attributes.

Fig. 6. Example of access patterns for two isosurface extraction
algorithms: Marching Cube (layout dependent) and Seed Set (layout
independent). Arrows represent the access pattern followed to extract
the isosurface (dashed line). Numbers represent cell indices in the
layout. (a) Seed set (layout 1), (b) Seed set (layout 2), (c) Marching
Cube (layout 1), and (d) Marching Cube (layout 2).

4 OVERLAP GRAPHS PARTITIONING

In this section, we review the work of Miller et al. [6] on
overlap graphs, which we use to restrain the topology of the
access graph.

4.1 Overlap Graphs

We associate to each vertex vi of the access graph the
coordinate pi in IRd of the corresponding mesh element
(point or cell). A graph is �-overlap if:

. It is possible to associate to each vertex vi a ball Bi

centered at pi such that the two balls of any pair
intersect in at most one point (Fig. 7a);

. Edges can connect two vertices only if expanding the
smaller of their two balls by a factor of � make them
intersect (Fig. 7b).

The � factor constrains the topology of the graph to follow
the geometry of the mesh: two elements that are too far away
from each other cannot be edge connected (Fig. 7b).

As detailed in Section 3.5, most access patterns of
visualization filters can be modeled with overlap graphs.
Fig. 5 shows how balls can be added to the neighborhood
and attributes access graphs so that all edges respect the
overlap graph constraint.

4.2 Geometric Separator Algorithm

Given their geometrical properties, overlap graphs can be
partitioned efficiently in two parts of approximately equal
size, while minimizing the number of edges cut.

The following randomized algorithm introduced by
Miller et al. [6] computes in linear time and with a high
probability an optimal geometric separator (Algorithm 1). It
starts by randomly sampling a constant number of points Vs
from the input graph. Next it projects these Vs points onto
the surface of the unit sphere centered at the origin in IRdþ1,
using a stereographic projection. It produces Vp points.
Then it finds a centerpoint c of this random sample Vp in
linear time relative to the sample size. A point is a
centerpoint if every hyperplane passing through it divides
the sample set Vp approximately evenly, at most in a ratio
dþ 1 : 1. With good probability, this centerpoint is a
centerpoint of the projection of the original set of points V
[27]. Finally, we randomly choose a hyperplane ðc;nÞ
passing through this centerpoint. This hyperplane splits
the graph into two partitions, each one consisting of the
points of V that project on the same side of the hyperplane

in IRdþ1. Repeating this process and selecting the separator
cutting the smallest number of edges gives a small separator
with high probability:

Algorithm 1. Geometric separator algorithm

Input: Graph G ¼ ðVertices V , Edges EÞ
Output: A separator �

1: repeat nc times

2: Vs sample of ðdþ 3Þ4 points of V

3: Vp project Vs to the unit sphere in IRdþ1

4: c find a centerpoint of Vp
5: repeat nh times

6: n random normal vector

7: � separator defined by ðc;nÞ
8: compute the number of edges cut by �

9: end

10: end

11: return the best �

The most time consuming part of the algorithm is the
quality evaluation of the separator (Algorithm 1 line 8). The
other operations involve only a small number of points.

The quality of the obtained separator is guaranteed by
the following theorem:

Theorem 1 (Geometric separator [6]). Let G be an n-vertex �-
overlap graph in d dimensions. With high probability, the
previous algorithm (Algorithm 1) partitions the vertices of G
into two setsA andB such that jAj; jBj � dþ1

dþ2n and the number
of edges between A and B is OOð�n1�1=dÞ.

Such a separator is asymptotically optimal for the class of
overlap graphs. Indeed, we cannot find a smaller separator
for a regular d dimensional grid [6].

5 RECURSIVE MESH LAYOUT

Applying the separator algorithm recursively for a given
overlap graph corresponding to the mesh access pattern
enables us to define a CO layout. In this section, we present
the CO layout computation algorithm, prove its perfor-
mance, and discuss some implementation details.

5.1 Mesh Layout Algorithm

The recursive application of the separator gives a BSP tree
where each node is a separator (Fig. 8). Leaves of this tree
correspond to small subparts of the mesh that are stored
consecutively to provide the layout (Algorithm 2).

Algorithm 2. Layout algorithm

1: function COLAYOUT(G,layout,i,j)

2: if sizeðGÞ > 1 then

820 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

Fig. 7. (a) Example of overlap graph for � ¼ 1. There is an edge (solid
blue line) between two points if their corresponding circles are
tangential. (b) Example of a nonoverlap graph for � ¼ 1 but overlap
for � ¼

ffiffiffi
5
p

(K5 complete graph).

Fig. 8. Illustration of the correspondence between mesh regions, BSP
tree branches, and data arrays.

3: FINDSEPARATOR(G,Gleft,Gright)
4: nleft sizeðGleftÞ
5: COLAYOUT(Gleft,layout,i,iþ nleft)
6: COLAYOUT(Gright,layout,iþ nleft,j)
7: end if

8: end function

Given the linear complexity of the geometric separator,
our layout algorithm has a complexity of:

WðNÞ ¼ max
1=2����

W �Nð Þ þW ð1� �ÞNð Þ½ � þOOðNÞ

¼ OO N logNð Þ;

where � ¼ dþ1
dþ2 . The only requirement to obtain the claimed

complexity is to have a point sampler of linear complexity

and an iterator on edges of linear complexity too.

5.2 Layout Quality

The Algorithm 2 generates a BSP tree that can be used to
create a partition of the access graph such that each

subpart fits in cache. When processing the mesh, the edges
of the access graph linking elements in the same subpart
do not generate extra cache misses as the whole subpart

fits in cache. Conversely, edges of the access graph linking
elements in different subparts (cut edges) may generate
extra cache misses. Because the number of such cut edges

is known, we can exhibit an upper bound on the number
of cache misses for the layout (Theorem 3). The number of

cut edges is equal to the total number of edges cut by all
separators down to the largest nodes fitting in cache
(Lemma 2 and Fig. 9).

Lemma 2 (Cut edges). LetG be aN-vertex �-overlap graph in d

dimensions. Let T be the BSP tree obtained by recursively

applying the geometric separator. Let Tm be the tree correspond-

ing to T after removing all nodes that have a father node with

less than m vertices. The leaves of Tm verify sizeðfatherðxÞÞ >
m and sizeðxÞ � m (Fig. 9). The total number of edges cut by all

separators in Tm is bounded by km ¼ OOð Nm1=dÞ.
Proof. We sum the number of edges cut by all separators

from the root of Tm to its leaves. The separator theorem
(Theorem 1) ensures that the number of cut edges is less

than �cr1�1=d for a r-vertex graph (c is a constant). It
provides two subgraphs of size �r and ð1� �Þr with
1=2 � � � dþ1

dþ2 .
The total number of cut edges in a subtree rooted at a

node v 2 Tm representing an r-vertex graph is thus:

KðrÞ � max
1=2���dþ1

dþ2

Kð�rÞ þKðð1� �ÞrÞ½ � þ c�r1�1=d:

The Kð�rÞ and Kðð1� �rÞÞ terms are due to the edges
cut by all the separators in the left and right subtrees. The
c�r1�1=d term corresponds to the edges cut by the
separator of node v. By induction on r, we show that

KðrÞ � c0 r

m1=d
� r1�1=d

� �

taking

c0 � �c

21=d � 1
:

And thus,

km ¼ KðNÞ ¼ OO
N

m1=d

� �
:

ut

We now assume that the mesh is traversed by chunks of
m elements, i.e., each chunk contains m consecutive
elements in the layout that should all be processed (in any
order) before accessing another chunk anywhere in the
layout. The size of a chunk m expresses how much the filter
access pattern respects the layout locality. As spatially close
elements in the mesh tend to be close in the layout, filters
with spatially coherent access patterns use big chunks.

Theorem 3 (Chunk traversal). The CO layout guarantees that
a traversal by chunks of size m �M of an N-size mesh
induces less than N=BþOOðN=m1=dÞ cache misses where B
and M are the block and cache size, respectively.

Proof. Assume first that there is no edge cut in Tm, i.e.,
processing an element in a chunk only accesses elements
in the same chunk. Processing a chunk would not induce
any cache miss beside the m=B compulsory ones to read
the chunk as the entire chunk fits in cache. This sums up
to N=B cache misses for processing all the mesh.
However, processing an element may require data that
are not in the same chunk, causing OOð1Þ extra cache-
misses per edges linking elements in different chunks:
the cut edges. Accessing an element in another chunk
induces one cache miss to read the element and may
generate another one as it can evict a block of the current
chunk that may still be needed. The total number of these
extra cache misses is proportional to the number of cut
edges: OOð N

m1=dÞ. We thus obtain the claimed bound. tu

For the sake of simplicity, we assume in the proof that
the chunks are perfectly aligned with the leaves of Tm. One
can easily show that there are still OOð N

m1=dÞ cut edges when
the chunks are not aligned with the leaves. Consider leaves
of size 2m and add edges within a leaf that link different
chunks. This only modifies the number of cut edges by a
constant factor.

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 821

Fig. 9. A full tree generated by the Algorithm 2. The subtree (solid lines)
represents Tm and the purple arrows the edges cut for this subtree. The
leaves of Tm (green filled) all have less than m vertices. Below, the
green ellipses identify the leaves of Tm in the layout.

Corollary 4 (Layout order traversal). The CO layout
guarantees that a layout order traversal of an N-size mesh
induces less than N=BþOOðN=M1=dÞ cache misses where B
and M are the block and cache size, respectively.

Proof. A layout order traversal is a traversal by chunks of
size M. tu

With our layout, a visualization filter still needs to
traverse the mesh in an order coherent with the layout, but
the assumption is strongly relaxed compared to a layout
order traversal. We believe that we could obtain the same
performance guarantee slackening the traversal by chunks
assumption to rely only on the characteristics of the mesh
itself. We are however not able to prove it yet. Experiments
(cf. Section 6) use visualization filters that traverse the mesh
in the layout order (e.g., gradient, vtkiso, cpuiso, etc.), filters
that traverse the mesh by connectivity (e.g., connectivity,
RC), and filters that traverse the mesh through another data
structure (e.g., CpuTree). All of them yield speed up, which
indicates that in practice the chunk traversal assumption is
usually verified for some m.

At this point, we cannot directly compare this algorithm
with OpenCCL. OpenCCL is based on a meta-heuristic and
no upper bound on the quality of the resulting layout is given.

5.3 Layout Computation

We implemented the geometric separator algorithm in C++.
We first randomly generate all the nhnc separators (Algo-
rithm 1). We then traverse all the cells of the mesh and for
each of them we check that its points are on the same side of
the separator. If not, the cell is cut by the separator and we
increment the cut size by 1. Using cells instead of edges to
select the best separator produces a very close result and
allows us not to compute the edges of the graph, a task that
can be computationally expensive. The bound of Theorem 3
still applies as at most a constant number of edges
correspond to a cell. All separators are checked against a
cell before going to the next one. This allows us to
dereference each cell index only once for the entire
separator computation.

To keep the memory usage low, we do not project all the
points before evaluating a separator but project them on
the fly. This induces duplicate computation as a point is
used in several cells but keep memory overhead close to
zero. That way we do not need to store an entire copy of
the points in memory.

Once we found the best separator, the points of the mesh
are reordered according to this separator. All points laying
to the left of the separator are moved to the left part of the
array and points laying to the right are moved to the right
part of the array. The same partitioning is done on cells.
When a cell is cut by the separator, we choose a side
according to the center of gravity of the cell. We then recurse
on the left and right mesh generated. This algorithm is very
similar to a quicksort and could be efficiently parallelized.

We stop when a submesh has a size lower than 8. We
choose nc ¼ 2 and nh ¼ 30 for the experiments (Algorithm 1).
As the randomized centerpoint algorithm is quite good, we
can keep nc low. During our experiments, we noticed that
even substantial changes of all these parameters did not
impact significantly the quality of the generated layout.

5.4 Choosing the Access Graph

The algorithm described in Section 5 can be applied to any
access pattern as long as the corresponding graph is an
overlap graph (actually the algorithm still works if it is not
the case but the bound on cache-misses does not hold).
However, to generate a new layout for each application is
not practical. For instance to compute a volume rendering
by ray casting of the mesh, one might want to optimize the
mesh layout according to the rays direction. Both our
algorithm and OpenCCL are too slow to generate a layout
before each image generation.

In practice it is better to compute only once a layout that
will be efficient in general. We choose in the implementa-
tion to only consider the graph where vertices are points of
the mesh and edges link two points sharing a cell (Fig. 5a).
Using this access graph produces an efficient layout for
most access patterns as access graphs for connectivity
traversal, neighborhood and attributes operations look alike
(Fig. 5). Following on our volume rendering example, this
layout will be reasonably good for any ray direction. One
ray traversing c cells of the mesh induces c=B1=3 cache-
misses while a layout optimized for this specific direction
may induce only c=B cache-misses (but as bad as one cache-
miss per cell for an orthogonal direction). In this specific
case, packing rays should also improve performance of the
more general layout to c=B.

5.5 Cells Layout

A mesh layout tries to optimize both points and cells
ordering. As points and cells are usually accessed in a
similar way, a consistent ordering for points and cells is
better. For instance in an isosurface extraction, points
composing a cell are often accessed immediately after the
cell itself. Thanks to our geometric approach, the same
geometric separators can be applied for both points and
cells. A separator cutting few edges for the points graph
(Fig. 5a) also cut few edges for the cells graph (Fig. 5b). It is
not possible to do the same with OpenCCL for example as
their separators are combinatorial and not geometric.

Computing points and cells layouts independently often
leads to a larger computation time and a lower runtime
efficiency. For OpenCCL, computing the cell layout is
around three times slower than computing the points layout
on our meshes. A consistent cells layout (min-vertex), can
be deduced from the points layout by sorting the cells using
the minimal index of their points.

Having consistent points and cells layouts can also
improve runtime performance. The min-vertex approach
enforces the consistency. For instance, min-vertex with
OpenCCL leads to a 20 percent runtime performance
increase compared to applying OpenCCL to both points
and cells. The FastCOL layout further enforces this
consistency. On large meshes the consistent layout for
points and cells with the BSP tree is up to 10 percent faster
than the min-vertex layout applied to FastCOL points
layout on isosurface extraction.

5.6 Consistent BSP Tree

The BSP tree defining the partitioning of the mesh can be
used as an acceleration structure that has the advantage of
being consistent with the layout. In this paper, we show how

822 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

it can be used as a min-max tree for isosurface extraction. At
each node of the BSP tree, we store the minimum and
maximum value of the scalar field in the corresponding
region of the mesh. A region that do not contain any cell
intersected by the isosurface can be quickly discarded.

An interesting property of this BSP-tree is that each
region corresponds to a small part of the mesh stored
sequentially in memory (Fig. 8). When traversing the BSP-
tree in prefix order and examining the mesh cells that might
contain a part of the isosurface, mesh cells are accessed
sequentially. The sequence of cells can jump part of the
mesh but it never goes back. This leads to a layout order
traversal of the mesh that induces fewer cache-misses (see
experimental results in Section 6.3).

6 EXPERIMENTS

We compare the performance of the initial, geometric,
OpenCCL, and FastCOL layouts on various meshes and
access patterns. For sake of conciseness, we present only
some representative results. Full results are provided in our
research report [28].

6.1 Architectures, Filters, and Meshes

We took nine different meshes,1 processed to generate
several instances of various sizes. We used tetgen2 to refine
the meshes by adding a volume constraint to each tetra-
hedron.3 For each mesh and each size (100 k, 1 M, 10 M, and
50 M cells) we generated two finer meshes. In the first one, all
tetrahedra have approximatively the same volume. In the
second one, we used a volume constraint proportional to the
inverse of the gradient of the scalar field to mimic an
adaptive mesh refinement. It leads to a set of 50 meshes that
can be divided by their size into four groups: 5 meshes of
about 100 k cells, 10 meshes of about 1 M cells, 17 meshes of
about 10 M cells, and 18 meshes of about 50 M cells.

The experiments were conducted on three different
architectures, two classical CPU architectures with two
cache levels (AMD Opteron875 @ 2.2 Ghz, cache L1 8 KB,
cache L2 1 MB, and Intel Core2 E6750 @ 2.66 Ghz, cache L1
32 KB, cache L2 4 MB), and one GPU architecture (NVIDIA
GTX280 with 1 GB of memory) tested to probe the influence
of the layout on the number of coalesced memory accesses.

Ten filters were tested on each layout, using VTK filters
[26], homemade CPU codes or Cuda (version 1.3) codes for
the GPU tests:

. Gradient. The VTK gradient filter computes the
gradient of the mesh scalar field. Each gradient
value is computed from the local scalar value and
the values of neighbor points. Data are processed in
the order given by the point layout. Using the terms
introduced in Section 3 this is a point layout order
traversal with point neighborhood operations.

. Connect. The VTK connectivity filter applies a
breadth first search on the mesh to compute the

connected region each cell lies in. This filter uses a
connectivity traversal.

. RC. A mesh volume rendering computed by the
VTK Bunyk Ray Cast filter [29]. Each ray traverses
the mesh cell by cell and then accesses points
attributes to compute the contribution of the cell to
the pixel color. This is a connectivity traversal with
point attributes operations.

. PT. A mesh volume rendering computed by the VTK
Projected Tetrahedra filter [30]. Tetrahedra are
sorted by their centroid according to the viewing
direction and then sent to the GPU for projection.
During the sorting phase, each tetrahedron accesses
its points and tetrahedra are processed in the order
given by the cell layout. This is a cell layout order
traversal with points attributes operations. Both
CPU and GPU computations are included in the
time measure but only the CPU part is included in
the number of cache misses.

. HAVS. A mesh volume rendering computed by the
VTK HAVS filter [31]. Data accesses are similar to
PT. Again, both CPU and GPU computations are
included in the time measure but only the CPU part
is included in the number of cache misses.

. VtkIso. The VTK isosurface extraction filter imple-
ments the marching tetrahedra algorithm. Each cell
accesses to its points. Cells are processed in the cell
layout order. This is a cell layout order traversal
with points attributes operations.

. CpuIso and GpuIso. One CPU and one GPU
homemade implementation of the marching tetra-
hedra isosurface extraction algorithm.

. CpuTree and GpuTree. The CpuIso and GpuIso
code extended to include a min-max tree accelera-
tion structure. For the OpenCCL layout a kd-tree is
used. For the FastCOL layout two versions are
tested: one based on a kd-tree and one relying on the
BSP tree built when computing the layout. Only
some cells are processed, in a min-max tree driven
order. This is a data structure traversal with points
attributes operations. We only time the processing of
the cells intersected by the isosurface and not the
tree traversal (the kd-tree is the same for both layout
and the code for its traversal is not optimized).

The bigger meshes (50 M cells) have not been tested with
the volume rendering filters due to the very large execution
time, nor on the GPU that has only 1 GB of memory.

For our GPU implementation, we only measure the time
to compute the kernel and not the memory transfers
between CPU and GPU, which take the same amount of
time for all layouts.

6.2 Layout Algorithm Performance

All layouts have been prepared on an Opteron875 @ 2.2 Ghz
with 32 GB of memory and 64 GB of swap. Table 1 shows
the execution time and memory needs for computing the
OpenCCL and FastCOL layouts. Our FastCOL program is
about three times faster than the OpenCCL one. It requires
far less memory. The bigger meshes with 50 M cells have
not been processed with OpenCCL because their computa-
tion would have required more than 96 GB of memory. The

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 823

1. Blunt fin, buckyball, langley fighter, liquid oxygen post, plasma64, san
fernando, and spx models are provided by the AIM@SHAPE Shape
Repository (http://shapes.aim-at-shape.net/). Torso is courtesy of SCI and
the last one is not published.

2. Available at http://tetgen.berlios.de/.
3. We used the command tetgen � raq.

multilevel heuristic used in OpenCCL may explain such
memory consumption. Space is needed at each level to store
the coarsened access graph and additional information to
undo the coarsening operation.

Computing the geometric layout, a coordinate sort by the
x, y, and z-axes, is very fast (less than 40 s for the biggest
meshes) and compact in memory.

6.3 Mesh Layout Performance

We measured the execution time, the number of L1 and L2
cache-misses using the PAPI software [32] for the CPU tests,
and the number of uncoalesced parallel accesses for the
GPU ones. For each experiment (architecture, layout, and
algorithm fixed), the execution time, the numbers of cache-
misses and uncoalesced accesses are very stable.

Tables 2 and 3 show the means of the speedup
(“Speedup”), ratio of saved L2 cache-misses on CPU (“L2”)

and ratio of coalesced memory accesses on GPU (“Coal.”) for
the geometric, OpenCCL and FastCOL layouts. These ratios
are relative to the performance obtained with the initial
layout. In all cases, higher values are better. Table 24 gathers
the results for the tests visiting the entire mesh, while Table 3
displays the performance results for the min-max tree
accelerated isosurface extraction using a kd-tree for the
OpenCCL and FastCOL layouts, and the BSP tree computed
for the FastCOL layout (“FastCOL (bsp)”).

6.3.1 CO Layouts on CPU

Table 2 shows higher performance ratios with larger
meshes where cache effects are predictably more important.
Indeed, with smaller meshes, a bigger part of the mesh can
be loaded in the cache, whatever the layout is. Both CO
layouts, OpenCCL, and FastCOL, lead to speedup ratios
from 1.01 to 4.87, all tests being in-core. It shows the benefits
of CO layouts that can bring significant performance
increases without any change to the application. The
geometric layout is significantly less efficient for most of
the tests, a result analyzed in Section 6.3.2.

The FastCOL layout reaches similar performance com-
pared to OpenCCL, while providing a theoretical perfor-
mance guarantee.

Some important differences are observed between the L2
cache-miss ratio and the speedups for the Gradient and
HAVS tests. Gradient is computationally intensive and
HAVS extensively uses the GPU, making the cache-miss
overhead a small fraction of the overall computation time.

We can also observe that measured speedups are
generally smaller with VTK filters than with homemade
ones. This clearly appears for the isosurface filter that is
implemented with VTK (VtkIso) compared to the homemade
code (CpuIso). The VTK implementation shows a maximum
speedup of 1.44 whereas our implementation goes up to 4
(with a smaller global execution time). The VTK library is not
fully optimized and performs several other computations.
For instance, after the extraction of the isosurface, the VtkIso
filter merges the identical points to provide a mesh (instead
of a triangle soup) as a result.

6.3.2 Edge Lengths and Layout Quality

To better analyze the properties of the different layouts, we
analytically relate the performance improvements to the

824 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

TABLE 1
Layout Computation (on Opteron)

TABLE 2
CPU and GPU Performance Ratios Relative

to the Original Layout (on Core2)

TABLE 3
CPU and GPU Performance Ratios Relative to the Original

Layout for Tree Accelerated Isosurface Extraction (on Core2)

4. Ratio of coalesced parallel memory accesses on GPU.

better data locality in memory. We call “edge length” the
memory gap between two vertices of the same edge in the
vertex array loaded in memory. If a mesh has shorter edges,
more of them will fit in cache and a better performance should
be observed. Other analysis could also be conducted with
similar metrics. For example, instead of considering the
length of edges, we can consider the “size of a cell,” which
would be either the maximum memory gap between all
vertices of the cell in the vertex array, or the maximum
memory gap between all adjacent cells in the cell array.

Fig. 10 shows the cumulative distribution of edge lengths
for the 10 M cells torso mesh.5 The two graphs are focused
around the L1 and L2 cache sizes of the tested architectures.
CO layouts appear to favor small edge lengths.

The geometric layout behaves differently. The amount
of small edges is reduced compared to CO layouts, but

almost all edges have a length shorter than 2 M. Actually,
by construction, the edge lengths are shorter than the size
of two entire slices of the mesh in the x direction. The
layout thus leads to a good performance when two slices in
the x direction can fit in the L2 caches. This is visible in the
results where the geometric layout performs well for small
meshes while it is outperformed by the CO layouts for the
bigger ones. For small meshes, the geometric layout is
often slightly less efficient due to its low efficiency with
respect to the L1 cache (L1 cache-miss ratios omitted for
sake of conciseness).

We now estimate the number of cache misses using an
edge length based metric, and show that there is a strong
correlation with the actual number of observed cache
misses. Let N be the size of a mesh (in bytes), E the set of
all edges of the mesh, B the cache line size, and M the cache
size, we estimate the number of cache-misses by:

ExpectedCM � N
B
þ
X
e2E

11�e>M;

where �e is the length of the edge e. We count the number of
cache-misses for a linear full read of the data arrays, and we
add one cache-miss per edge whose length is bigger than
the cache size M.

The theoretical upper bound N
B þOOðkMÞ for our FastCOL

algorithm is larger because we count one cache miss for
each cut edge in the TM BSP tree (Theorem 3). Some cut
edges counted in our theoretical bound can in fact have an
edge length shorter than M.

In Fig. 11, we display the correlation between the
expected cache-misses for the considered mesh layouts
and the cache misses observed on both CPU architectures.
The N

B factor has been subtracted from this measure as it
does not depend on the layout. The correlation between
expected cache misses and actual ones is very high with a
calculated r2 of 0.98.

Notice that the layout quality is not only influenced by
the edge lengths (directly linked with the number of edges
cut), but also by the dispersion of cut edges. The number of
cache misses is smaller than the number of edges cut by a
separator if successive cut edges point toward the same
memory block (Fig. 12).

6.3.3 CO Layouts on GPU

The last test of Table 2 (GpuIso) evaluates the benefits of CO
layouts on a Nvidia GPU. We measure the execution time
and the number of coalesced accesses. All data are stored in
the global GPU memory. There is no cache mechanism
involved. The only block-based data transfer that occurs is
related to coalesced parallel memory accesses. The con-
current global memory access performed by all threads of a
half-warp (16 threads) is coalesced into a single memory
block transfer as soon as the data accessed lie in the same
128 Bytes segment for 32, 64, and 128 bit data. The context is
very different from cache based CPUs. We only have a single
small block M ¼ B ¼ 128 Bytes. CO layouts lead to speed-
ups ranging from 1.52 to 4.09, which is significant knowing
that only the layout is modified. It shows they efficiently
minimize the edge lengths even for very small sizes
(128 Bytes). OpenCCL slightly outperforms the FastCOL
layout. The geometric layout suffers from too long edges.

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 825

Fig. 10. Cumulative distribution function of edge lengths for various
layouts applied to the torso mesh (10 M resolution). The CO layouts
(OpenCCL and FastCOL) favor small edges: 80 percent of their edges
have a length below 8 K (a) and 95 percent below 256 K (b). The original
layout does not appear on graphic (b) as the cumulative distribution is
too small: only 40 percent of its edges have a length smaller than 2 M.
(a) Zoom on L1 cache sizes and (b) zoom on L2 cache sizes.

5. The other meshes produce similar graphs.

Various applications can share work between the CPU

and the GPU. The same CO layout can thus be shared

between the CPU and the GPU to reduce both cache-misses

and noncoalesced accesses.

6.3.4 Layout Consistent Min-Max Tree

In all tests, the OpenCCL and FastCOL layouts show similar

results. However, the FastCOL layout is computed from a

BSP tree that can be used as an internal, layout consistent,

acceleration data structure to further take advantage of this

layout. Experiments of Table 3 reveal that using it as a min-

max tree for accelerating an isosurface extraction brings

significant additional performance improvements. Com-

pared to OpenCCL or the FastCOL layout that both use an

external min-max kd-tree, the min-max BSP tree provides a

performance improvement of 11 percent to 55 percent on

CPU and of 11 percent on GPU. The leaves to be processed

being M-size leaves of the BSP tree, they are less likely to

trigger cache-misses than the leaves of the kd-tree com-

puted independently from the layout. The speedup is

smaller on the GPU because we could not use the biggest

meshes (50 M cells) due to memory constraints.

6.3.5 Comparison on a Scanned Model

We compare OpenCCL and FastCOL on the Thai statue.6

This is a triangle mesh with 5 M vertices and 10 M
triangles (Fig. 13a). To build the layout, OpenCCL needs
912 s and FastCOL 311 s, which is comparable with the
tetrahedral meshes. We compared these two layouts on
two VTK filters, the connectivity filter previously used and
the depth sort filter that sorts triangles with respect to a
view direction. We cannot use all previous filters as they
require a tetrahedral mesh. On these two filters, the
performances of both layouts are comparable, between 10
and 20 percent faster than the original layout, OpenCCL
being slightly better (Table 4).

6.3.6 Comparison on a CAD Mesh

We now compare OpenCCL and FastCOL on the UNC
Powerplant mesh.7 This is a triangle mesh with 12.7 M
triangles and 11 M points and a complex geometry and
topology (Fig. 13b). It consists of several totally discon-
nected parts (1;083;733). We reorder each of those parts
independently with OpenCCL and FastCOL. OpenCCL
reorder points and then use min-vertex to find the cell

826 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

Fig. 12. Mesh layout using the solid purple line as a separator. We
assume that neighbor points are needed to process each mesh point
(e.g., the VTK gradient filter). Even if the separator cuts seven edges of
the access graph, only two induce a cache miss if the cache can hold at
least three blocks (in light green).

Fig. 11. Correlation between edge lengths and measured L2 cache-
misses on CpuIso. Each point corresponds to a mesh with geometric,
OpenCCL or FastCOL layouts. (a) Core2 and (b) Opteron.

Fig. 13. Two triangle meshes. (a) Thai statue and (b) UNC Powerplant.

6. Available at http://graphics.stanford.edu/data/3Dscanrep/.
7. Available at http://www.cs.unc.edu/geom/Powerplant/.

order. For the whole mesh, OpenCCL needs 671 s and
FastCOL only 223 s.

We again compare those two layouts on the connectivity
filter and the depth sort filter. Both layouts perform worse
than the original that is already well optimized (Table 4). In
the original layout, each connected part is stored contigu-
ously and each of those parts is then well organized. No big
improvement was expected due to this already good layout
(Fig. 14). Previous work on this mesh led to improvements
over the original layout using experiments much more
based on the geometry than the filters we used: view
dependent rendering in [19] and collision detection in [20].

6.3.7 Comparison with a Space Filling Curve Approach

We now compare our layout to a space filling curve approach.
We use the Z-curve as in [2]. To compute the layout
efficiently, we decompose the space using a kd-tree8 until
there is only one point for each leaf and then order the leaves
in the order of the Z-curve. This algorithm is very similar to
FastCOL except that, instead of looking for an efficient
separator at each step of the recursion, we use planes parallel
to the x-, y-, z-axes cutting exactly in half the set of points.

The space-filling curve approach is faster but does not
take into account the topology of the mesh. The kd-tree does
not provide an upper bound on the number of cells cut by
the plane separator. However, this approach performs
almost as well as FastCOL and OpenCCL on most of our
meshes and very well on regular meshes.

As the space-filling curve does not take into account the
topology of the mesh, it can perform badly on specific
meshes. We created a mesh with a high density of points
and cells where the kd-tree cut the mesh. To do so, we first
generated a set of points in ½�1; 1�3 with a high density
around the planes x ¼ 0, y ¼ 0, z ¼ 0, x ¼ �0:5, y ¼ �0:5,
z ¼ �0:5. We tetrahedralized them with tetgen. We mapped
the scalar field of one of our meshes using a linear
interpolation. On CpuIso the FastCOL layout is about
1.4 time faster than the space-filling curve layout.

7 CONCLUSION

We introduced FastCOL, an algorithm relying on Miller et al.
[6] geometric separator for computing CO mesh layouts. To
our knowledge, this is the first CO layout algorithm for

unstructured meshes with a guaranteed theoretical upper

bound of N=BþOOðN=M1=dÞ cache-misses.
Experiments show that this algorithm requires signifi-

cantly less computation time and memory than OpenCCL,

the best known CO mesh layout algorithm [5]. Without

modifying the visualization algorithms, both CO layouts

can bring comparable performance improvements on CPUs

where they reduce the number of cache-misses, as well as

on GPU architectures where they favor parallel coalesced

data accesses. FastCOL improves its performance by more

than 10 percent when using the layout consistent BSP tree

produced by the algorithm as an acceleration data

structure instead of an external one.

ACKNOWLEDGMENTS

This work is partly funded by CEA/DIF/DSSI, Bruyères le

Châtel, France, and by the Agence Nationale de la

Recherche contract ANR-07-CIS7-003.

REFERENCES

[1] NVIDIA, “Nvidia Cuda Programming Guide 2.3.1,” 2009.
[2] V. Pascucci and R. Frank, “Global Static Indexing for Real-Time

Exploration of Very Large Regular Grids,” Proc. Supercomputing,
p. 45, 2001.

[3] A. Aggarwal and J.S. Vitter, “The Input/Output Complexity of
Sorting and Related Problems,” Comm. ACM, vol. 31, no. 9,
p. 1116, 1988.

[4] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-Oblivious Algorithms,” Proc. Ann. Symp. Foundations of
Computer Science (FOCS ’99), p. 285, 1999.

[5] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, “Cache-
Oblivious Mesh Layouts,” Proc. ACM SIGGRAPH, p. 886, 2005.

[6] G. Miller, S.-H. Teng, W. Thurston, and S. Vavasis, “Geometric
Separators for Finite-Element Meshes,” J. Scientific Computing,
vol. 19, no. 2, pp. 364-386, 1998.

[7] Algorithms for Memory Hierarchies, Advanced Lectures, U. Meyer, P.
Sanders, and J. Sibeyn, eds., Springer, 2003.

[8] R.C. Whaley and A. Petitet, “Minimizing Development and
Maintenance Costs in Supporting Persistently Optimized BLAS,”
Software: Practice and Experience, vol. 35, no. 2, pp. 101-121, 2005.

[9] M. Bader and C. Zenger, “Cache Oblivious Matrix Multiplication
Using an Element Ordering Based on a Peano Curve,” Linear
Algebra and Its Applications, vol. 417, nos. 2-3, p. 301, 2006.

[10] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson,
“An Experimental Comparison of Cache-Oblivious and Cache-
Conscious Programs,” Proc. ACM Symp. Parallel Algorithms and
Architectures (SPAA ’07), pp. 93-104, 2007.

[11] H. Hoppe, “Optimization of Mesh Locality for Transparent Vertex
Caching,” Proc. ACM SIGGRAPH, pp. 269-276, 1999.

[12] A. Bogomjakov and C. Gotsman, “Universal Rendering Sequences
for Transparent Vertex Caching of Progressive Meshes,” Proc.
Graphics Interface (GRIN ’01), pp. 81-90, 2001.

[13] G. Lin and T.P.-Y. Yu, “An Improved Vertex Caching Scheme for
3D Mesh Rendering,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 4, pp. 640-648, July/Aug. 2006.

[14] P. Sander, D. Nehab, and J. Barczak, “Fast Triangle Reordering for
Vertex Locality and Reduced Overdraw,” ACM Trans. Graphics,
vol. 26, no. 3, 2007.

TCHIBOUKDJIAN ET AL.: BINARY MESH PARTITIONING FOR CACHE-EFFICIENT VISUALIZATION 827

TABLE 4
Comparison of OpenCCL and FastCOL on Two Triangle

Meshes (Thai Statue and UNC Powerplant)
with the VTK Connectivity Filter and the VTK Depth

Sort Filter (Median of 30 Runs on Core2)
Fig. 14. Visual illustration of the original cell layout of the section 01 part
a of the UNC powerplant model. Successive cells in memory are colored
from blue to red.

8. We used the VTK implementation of the kd-tree.

[15] P. Diaz-Gutierrez, A. Bhushan, M. Gopi, and R. Pajarola, “Single-
Strips for Fast Interactive Rendering,” The Visual Computer: Int’l J.
Computer Graphics, vol. 22, no. 6, pp. 372-386, 2006.

[16] J. Chhugani and S. Kumar, “Geometry Engine Optimization:
Cache Friendly Compressed Representation of Geometry,” Proc.
Symp. Interactive 3D Graphics and Games (I3D ’07), pp. 9-16, 2007.

[17] M. Isenburg and P. Lindstrom, “Streaming Meshes,” Proc.
Visualization Conf., pp. 231-238, 2005.

[18] “OpenCCL: Cache-Coherent Layouts,” http://www.cs.unc.edu/
geom/COL/OpenCCL/, 2009.

[19] S.-E. Yoon and P. Lindstrom, “Mesh Layouts for Block-Based
Caches,” IEEE Trans. Visualization and Computer Graphics, vol. 12,
no. 5, pp. 1213-1220, Sept./Oct. 2006.

[20] S.-E. Yoon and D. Manocha, “Cache-Efficient Layouts of Bounding
Volume Hierarchies,” Computer Graphics Forum, vol. 25, no. 3,
pp. 507-516, 2006.

[21] J. Wilhelms and A. Van Gelder, “Octrees for Faster Isosurface
Generation,” ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, 1992.

[22] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, “Optimal
Isosurface Extraction from Irregular Volume Data,” Proc. Symp.
Volume Visualization (VVS ’96), pp. 31-38, 1996.

[23] Y.-J. Chiang and C. Silva, “I/O Optimal Isosurface Extraction,”
Proc. Visualization Conf., p. 293, 1997.

[24] Y.-J. Chiang, C. Silva, and W. Schroeder, “Interactive Out-of-Core
Isosurface Extraction,” Proc. Visualization Conf., pp. 167-174, 1998.

[25] Y.-J. Chiang and C. Silva, “External Memory Techniques for
Isosurface Extraction in Scientific Visualization,” Proc. External
Memory Algorithms Conf., pp. 247-277, 1999.

[26] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit,
An Object-Oriented Approach to 3D Graphics, 3rd ed., Kitware Inc.,
2004.

[27] K. Clarkson, D. Eppstein, G. Miller, C. Sturtivant, and S.-H. Teng,
“Approximating Center Points with Iterated Radon Points,” Proc.
Ann. Symp. Computational Geometry (SoCG ’93), pp. 91-98, 1993.

[28] M. Tchiboukdjian, V. Danjean, and B. Raffin, “Binary Mesh
Partitioning for Cache-Efficient Processing,” INRIA, technical
report, 2009.

[29] P. Bunyk, A. Kaufman, and C. Silva, “Simple, Fast, and Robust
Ray Casting of Irregular Grids,” Proc. Visualization Conf., pp. 30-36,
1997.

[30] P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” Proc. ACM SIGGRAPH, vol. 24,
no. 5, p. 63, 1990.

[31] S. Callahan, M. Ikits, J. Comba, and C. Silva, “Hardware-Assisted
Visibility Sorting for Unstructured Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 11, no. 3, pp. 285-
295, May-June 2005.

[32] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
Portable Programming Interface for Performance Evaluation on
Modern Processors,” The Int’l J. High Performance Computing
Applications, vol. 14, pp. 189-204, 2000.

Marc Tchiboukdjian received an engineering
degree in computer science at ENSIMAG in
France in 2007. He is currently working toward
the PhD degree in the MOAIS team of the
Laboratoire d’Informatique de Grenoble where
he is studying efficient scientific visualization
algorithms. His research interests include scien-
tific visualization, cache-aware and cache-obliv-
ious algorithms, parallel computing, and gpu
programming.

Vincent Danjean received the PhD degree on
parallel computing from the �Ecole normale
supérieure de Lyon in 2004. He is a research
scientist at University Joseph-Fourier at Greno-
ble. After a one year postdoc in French CEA
institute working on large parallel computers, he
has been hired in the MOAIS INRIA team to
work on middleware for large and efficient
parallel computing. Today, his research interests
include high performance parallel computing on

large scale machine, multicore machines, and on embedded hardware
such as GPU. He develops the KAAPI software that wins several times
the GRIDS@WORK international challenge, being able to deploy and
efficiently run applications on several thousands of cores.

Bruno Raffin received the PhD degree on
parallel computing from the Université d’Orléans
in 1997. He is a research scientist at INRIA
Rhône-Alpes Grenoble. After a 2 year postdoc in
USA working on large parallel computers, he
returned to France to work on the association of
virtual reality, scientific visualization, and parallel
computing. Today his research interests include
high performance interactive computing. He
develops the FlowVR software suite and man-

ages the real-time multi-camera 3D modeling platform called Grimage.
He has co-chaired the 2004 and 2006 Eurographics Symposium on
Parallel Graphics and Visualization and participated to the program
committee of several international conferences.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

828 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010

