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Motivation

The importance of cooperation

The importance of cooperation
Current global computing technology (e.g. grid computing
systems) makes very clear the importance of creating
coalitions of computational resources.
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Motivation

Goal: encourage collaboration

Goal: encourage collaboration
If each organization cooperates unconditionally, we can
achieve the best utilization possible of the available resources.

O(1)

O
(2)

time

O(1)

O
(2)

time

Although (if you look closely) sometimes some concessions
must be made:

Cmax that O(1) can achieve by itself: 1
Cmax of O(1) in the global optimum configuration: 2
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Motivation

Goal: encourage collaboration

Goal: encourage collaboration

What if we have only selfish organizations with specific
performance goals?

An organization could just leave the coalition and do all the
work by itself instead of helping others (which is even worse
for the entire community).

Our goal is to provide a scheduling mechanism that can improve
the global performance of the system while assuring that the local
performance of each organization will not be penalized for
cooperating with others.
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The Multi-Organization Scheduling Problem

The problem

The problem

The multi-organization scheduling problem can be defined as the
problem of minimizing the maximum completion time (makespan)
of all jobs and, at the same time, minimize locally:

the makespan of k organizations
MOSP(k : Cmax )

the average completion time of k organizations
MOSP(k :

∑
Ci )

Under the additional constraint that
no local schedule criterion can be increased.
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The Multi-Organization Scheduling Problem

Model

Model

N organizations, where each organization O(k) has m(k)

identical processors and n(k) jobs to be executed;

Each job J(k)
i (1 6 i 6 n(k)) requires exactly q(k)

i processors

for p(k)
i units of time;

Each user submits his/her own jobs locally in his/her
organization.
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The Multi-Organization Scheduling Problem

Impact of the local constraint

Impact of the local constraint

What makes this problem interesting is the additional
constraint that no local schedule can be worsen if compared
with the schedule that one organization can obtain by itself.
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The ratio between the optimal solution and the optimal without
the local constraints is asymptotically equal to 3

2 .
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The Multi-Organization Scheduling Problem

Previous work

Previous work

This problem was first introduced by [Pascual et al.,
Europar’07], that proposed an algorithm and a load-balancing
heuristic called ILBA for parallel rigid jobs;

Dutot et al. refined the algorithm and obtained a
3-approximation algorithm with tight bound for parallel rigid
jobs.
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The Multi-Organization Scheduling Problem

Related work

Related work

Without the local constraint introduced by MOSP, this problem is
equivalent to the Multiple Strip Packing Problem.

[Schwiegelshohn et al., IPDPS’08] studied this problem in the
context of grid computing systems. They proposed an
3-approximation algorithm for the offline case and a
5-approximation for the online case;

Christina Otte and Klaus Jansen just presented their new
results on this problem.
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Game-theoretic Model

Introduction

Introduction

We are working on modeling MOSP as a non-cooperative
game;

MOSP constraint of not worsening the local objective makes
the problem tricky;

We will focus in the case where all organizations have only
one machine (m(k) = 1, 1 6 k 6 N).

14 / 25



Game Theoretic Analysis of the Multi-Organization Scheduling Problem

Game-theoretic Model

Less jobs makes the problem easier?

Less jobs makes the problem easier?

The general MOSP problem is NP-hard. Taking N = 1,
m(k) = 2 and q(k)

i = 1, (∀i, k) we have the classical P2||Cmax

scheduling problem;

What if we have one machine per organization (m(k) = 1),
only 2 jobs per organization (n(k) = 2) and sequential jobs
(q(k)

1 = q(k)
2 = 1)?
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NP-completeness

NP-completeness

Even with less jobs, the problem is NP-Complete in the strong
sense.

Proof: reduction from 3-PARTITION problem.

The decision problem version can be defined as follows:

Instance: the number N of organizations, the size of all jobs p(k)
i and an

integer K ;

Question: does there exist a feasible scheduling with
Cmax = max

i,k
{p(k)

i } 6 K ?
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Sketch of the proof

Sketch of the proof

First, lets see how to reduce from the 2-PARTITION problem:
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Sketch of the proof

First, lets see how to reduce from the 2-PARTITION problem:
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Sketch of the proof

Sketch of the proof

In the 3-PARTITION problem we want to partition a set of 3m
integers (that sums up to mB) into m disjoint sets composed
of exactly three elements (that sums up to B).

To extend this proof to reduce from 3-PARTITION we must
take:

An instance of 3-PARTITION ({a1, . . . , a3m}, B), where∑3m
i=1 ai = mB;

N = 4m organizations;
For the first 3m organizations, we set p(k)

1 = (m + 1)B + 7 and
p(k)

2 = (m + 1)ak + 1,∀k ∈ [1; 3m];
For the remaining organizations (3m + 1 to 4m), we set
p(k)

1 = p(k)
2 = 2,∀k ∈ [3m + 1; 4m] (the last m organizations

have two jobs of size 2).
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Sketch of the proof

Sketch of the proof

We can build an optimal schedule for the described instance
with makespan exactly equal to (m + 1)B + 7:
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Proposed model

Proposed model

We are studying a non-cooperative game defined as follows:

Each player is an organization responsible for an “application”
(a set of n(k) jobs) and wants to minimize its cost(k)

(completion time of its last job, average completion time, etc.);
Each organization applies some schedule algorithm locally
(LPT, SPT, etc.) putting its own jobs first;
A strategy S(k) for player k is a vector of n(k) elements such
that S(k)(i) corresponds to the organization chosen by player
k for job J(k)

i ;
A configuration (profile) M is the vector (S(1), S(2), . . . , S(N))
such that S(k) is a strategy of player k .
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Game-theoretic Model

Nash equilibrium

Nash equilibrium

A configuration M = (S(1), S(2), . . . , S(N)) is a Nash
equilibrium if all players k (applications) satisfies the following
property:

∀s ∈ S(k), cost(k)(M) 6 cost(k)(s, M−k), where M−k is a
vector (S(1), S(2), S(k−1), S(k+1) . . . , S(N))

Do there always exist Nash Equilibria for MOSP(k : Cmax ) or
MOSP(k :

∑
Ci )?
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Nash equilibrium and MOSP(k : Cmax )

Nash equilibrium and MOSP(k : Cmax )

If every organization uses LPT and puts its jobs first, then there are
instances of MOSP(k : Cmax ) where we do not have equilibrium:

O(1)

O(2)

O(3)

O(4)

C(1)
max = 11

C(2)
max = 8

Suppose this initial configuration.
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Nash equilibrium and MOSP(k : Cmax )

If every organization uses LPT and puts its jobs first, then there are
instances of MOSP(k : Cmax ) where we do not have equilibrium:

O(1)

O(2)

O(3)

O(4)

C(1)
max = 6

C(2)
max = 5

What if O(1) changes its strategy?
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If every organization uses LPT and puts its jobs first, then there are
instances of MOSP(k : Cmax ) where we do not have equilibrium:
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Nash equilibrium and MOSP(k :
∑

Ci)

If every organization uses SPT and puts its jobs first, then there are
instances of MOSP(k :

∑
Ci ) where we do not have equilibrium:

O(1)

O(2)

O(3)

O(4) ∑
C(3)

i = 77∑
C(4)

i = 98

Suppose this initial configuration.
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O(1)

O(2)

O(3)

O(4) ∑
C(3)

i = 57∑
C(4)

i = 68
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What if O(3) changes its strategy?
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Future Work

Future work

Study of:

Price of Anarchy (ratio between the worst objective function
value of an equilibrium and the optimal)
Price of Stability (ratio between the best objective function
value of one of its equilibria and the optimal outcome)

ε-approximate Nash Equilibrium

Fairness
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