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Introduction

The problem:

processing of a data flow

filter services with different selectivities and costs

precedence constraints between services

servers with different speeds

one-to-one mappings

The objective:

minimizing period

minimizing latency

bi-criteria: minimize latency for a fixed period
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The model

Example: In a list L of numbers:

a first filter removes odd numbers (σ1 = 1/2)

a second filter transmits only multiples of 3 (σ1 = 1/3)

The resulting list contains all multiples of 6 in L.

Hypotheses:

No communication cost

Join operation of null cost

Selectivities are independent
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Playing with selectivities

Service Si transforms (filters) data of size δ to size σi × δ
Computation cost depends on the data size (previous σ)

May add dependencies to exploit selectivity

S1 S2 S3
S4

1/2 1/32 1 S1
S4 S2 S3

S1 and S4 process file of initial size 1; S1 removes even numbers and S2

removes not multiples of 3.

Combined file of size 1
2 .

1
3 = 1

6 (no cost for join)

S2 duplicates the file

S3 processes but does not alter the file
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Fanny Dufossé (ENS Lyon) Mapping filter services June 2, 2009 6 / 32



The instances

The problems depend on:

the criteria: MinPeriod, MinLatency or BiCriteria

the platform: Hom or Het

the dependence constraints: NoPrec or Prec

The instances: A = (F ,G,S) with:

The services: F = {C1,C2, . . . ,Cn}
The precedence constraints: G ⊂ F × F
The servers: S = {S1, S2, . . . ,Sp}
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The problem

Example for 3 independent services:
The plan?

C1 C2 C3

C1

C3

C2

C1C2

C3

C2

C3

C1

The mapping?
(C1,S2), (C2,S1), (C3, S3)

(C1,S3), (C2,S2), (C3, S1)
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Example

C1 C2 C3

Figure: Chaining services.

C1

C3

C2

Figure: Combining selectivities

P = max
(

c1
s1
, σ1c2

s2
, σ1σ2c3

s3

)
P = max

(
c1
s1
, c2

s2
, σ1σ2c3

s3

)
L = c1

s1
+ σ1c2

s2
+ σ1σ2c3

s3
L = max

(
c1
s1
, c2

s2

)
+ σ1σ2c3

s3
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Example

c1 = 1, c2 = 4, c3 = 10

σ1 = 1
2 , σ2 = σ3 = 1

3

s1 = 1, s2 = 2 and s3 = 3

(C1, S1) (C2, S2) (C3, S3)

Figure: Optimal plan for period.

(C1, S1)

(C3, S2)

(C2, S3)

Figure: Optimal plan for latency

P = 1 L = 13
6

L = 5
2 P = 4

3
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General structure of optimal solutions

The instance : C1, ...,Cn, S1, ...,Sn with

σ1, ..., σp ≤ 1

σp+1, ..., σn ≥ 1

Cp+1

Cλ(3)Cλ(1)

Cn

Cλ(2) Cλ(p)

Figure: General structure
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Homogeneous case without precedence constraints

The instance : C1, ...,Cn with

c1 ≤ c2 ≤ ... ≤ cp

σ1, ..., σp < 1

σp+1, ..., σn ≥ 1

The matching: C1 → C2 → ...→ Cp
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Homogeneous case with precedence constraints

Computing the optimal subgraph for C in the graph G is polynomial.
Paper [Srivastava et al] presents a polynomial time algorithm using a
min-cut algorithm.

Optimal algorithm for period in homogeneous case:
We add the nodes step by step.
At each step, we place the available service with minimal possible period.
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Proof: NP-completeness of MinPeriod-Het

Problem (RN3DM)

Given an integer vector A = (A[1], . . . ,A[n]) of size n, does there exist two
permutations λ1 and λ2 of {1, 2, . . . , n} such that

∀1 ≤ i ≤ n, λ1(i) + λ2(i) = A[i ]

The associated instance :

ci = 2A[i ]

σi = 1/2

si = 2i

P = 2
∀1 ≤ i ≤ n, λ1(i) + λ2(i) ≥ A[i ]

⇐⇒ ∀1 ≤ i ≤ n,
(

1
2

)λ1(i)−1 × 2A[i ]

2λ2(i) ≤ 2
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Inapproximability of MinPeriod-Het

Proposition

For any K > 0, there exists no K -approximation algorithm for
MinPeriod-NoPrec-Het, unless P=NP.

Reduction from RN3DM:

ci = KA[i ]−1

σi = 1/K

si = K i

P = 1
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Integer linear program

The variables:

ti ,u = 1 if service Ci is assigned to server Su

si ,j = 1 if service Ci is an ancestor of Cj

M is the logarithm of the optimal period

The constraints:

∀i ,
∑

u ti ,u = 1

∀u,
∑

i ti ,u = 1

∀i , j , k, si ,j + sj ,k − 1 ≤ si ,k

∀i , si ,i = 0

∀i , log ci −
∑

u ti ,u log su +
∑

k sk,i log σk ≤ M

The objective function: Minimize M
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Structure of the optimal plan

Proposition

Let C1, ...,Cn,S1, ...,Sn be an instance of MinLatency. Then, the optimal
latency is obtained with a plan G such that, for any v1 = (Ci1 ,Su1 ),
v2 = (Ci2 ,Su2 ),

1 If di1 (G ) = di2 (G ), they have the same predecessors and the same successors
in G .

2 If di1 (G ) > di2 (G ) and σi2 ≤ 1, then ci1/su1 < ci2/su2 .

3 All nodes with a service of selectivity σi > 1 are leaves (di (G ) = 0).
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Principle of the algorithm

C1

Fanny Dufossé (ENS Lyon) Mapping filter services June 2, 2009 22 / 32



Principle of the algorithm

C1
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Principle of the algorithm

C1
C2
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Principle of the algorithm

C1
C2
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Principle of the algorithm

C1
C2

C3
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Principle of the algorithm

C1
C2

C3
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Principle of the algorithm

C1
C2

C3

C4
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Principle of the algorithm

C1
C2

C3

C4

C5
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Algorithm without dependence constraints

Data: n services of costs c1 ≤ · · · ≤ cn and of selectivities σ1, ..., σn ≤ 1
Result: a plan G optimizing the latency
G is the graph reduced to node C1;
for i = 2 to n do

for j = 0 to i − 1 do
Compute the completion time tj of Ci in G with predecessors
C1, ...,Cj ;

end
Choose j such that tj = mink{tk};
Add the node Ci and the edges C1 → Ci , . . . , Cj → Ci to G ;

end
Algorithm 1: Optimal algorithm for MinLatency-NoPrec-Hom.
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G is the graph reduced to the node C of minimal cost with no predecessor
in G;
for i = 2 to n do

Let S be the set of services not yet in G and such that their set of
predecessors in G is included in G ;
for C ∈ S do

for C ′ ∈ G do
Compute the set S ′ minimizing the product of selectivities
among services of latency less than LG (C ′), and including all
predecessors of C in G;

end
Let SC be the set that minimizes the latency of C in G and LC be
this latency;

end
Choose a service C such that LC = min{LC ′ ,C ′ ∈ S};
Add to G the node C , and ∀C ′ ∈ SC , the edge C ′ → C ;

end
Algorithm 2: Optimal algorithm for MinLatency-Prec-Hom.
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Proof:NP-completeness of MinLatency-Het

Lemma

Let C1, ...,Cn, S1, ...,Sn be an instance such that ∀i , ci and si are integer
power of 2 and σi ≤ 1

2 . Then the optimal latency is obtained with a plan
G such that

1 Proposition 2 is verified;

2 for all nodes (Ci1 ,Su1) and (Ci2 , Su2) with di1(G ) = di2(G ), we have
ci1
su1

=
ci2
su2

.

ci = 2A[i ]×n+(i−1)

σi =
(

1
2

)n
si = 2n×(i+1)

L = 2n − 1
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Inapproximability of MinLatency-Het

Proposition

For any K > 0, there exists no K -approximation algorithm for
MinLatency-NoPrec-Het, unless P=NP.

Reduction from RN3DM

ci = KA[i ]×n+(i−1)

σi =
(

1
K

)n
si = Kn×(i+1)

L = Kn−1
K−1
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The variables:

z(i , u, e) = 1 if the service Ci is associated to the server Su and its
set of predecessors is e ⊂ C.

t(i) is the completion time of Ci

M is the optimal latency

The constraints:

∀u ∈ S,
∑

i∈C
∑

e⊂C z(i , u, e) = 1

∀i ∈ C,
∑

u∈S
∑

e⊂C z(i , u, e) = 1

∀i , i ′ ∈ C,∀u, u′ ∈ S,∀e, e ′ ⊂ C, e * e ′, i ∈
e ′, z(i , u, e) + z(i ′, u′, e ′) ≤ 1

∀u ∈ S,∀e ⊂ C, ∀i ∈ e, z(i , u, e) = 0

∀i ∈ C,∀e ⊂ C, ∀k ∈ e, t(i) ≥∑
u∈S z(i , u, e)

(
ci
su
∗
∏

Cj∈e σj + t(k)
)

∀i ∈ C, t(i) ≥
∑

u z(i , u, e) ci
su
∗
∏

Cj∈e σj

∀i ∈ C, t(i) ≤ M

The objective function: Minimize M
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Data: n services of costs c1 ≤ · · · ≤ cn and of selectivities σ1, ..., σn ≤ 1
and a maximum throughput K

Result: a plan G optimizing the latency with a throughput less than K
G is the graph reduced to node C1;
for i = 2 to n do

for j = 0 to i − 1 do
Compute the completion time tj of Ci in G with predecessors
C1, ...,Cj ;

end
Let S = {k |ci

∏
0≤k<i σk ≤ K};

Choose j such that tj = mink∈S{tk};
Add the node ci and the edges C1 → Ci , . . . , Cj → Ci to G ;

end
Algorithm 3: Optimal algorithm for latency with a fixed throughput.
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Conclusion

The results:

MinLatency-Hom is polynomial

MinPeriod-Het is NP-hard

MinLatency-Het is NP-hard

BiCriteria-Hom is polynomial

Future work:

Model with communication costs (see SPAA’09)

Fanny Dufossé (ENS Lyon) Mapping filter services June 2, 2009 32 / 32


	Framework
	Period
	General structure of optimal solutions
	Case of homogeneous servers
	NP-completeness of MinPeriod-Het
	Integer linear program

	Latency
	General structure of optimal solutions
	Polynomial algorithm on homogeneous platforms
	NP-completeness of problem MinLatency-NoPrec-Het
	Integer linear program

	Bi-criteria problem
	Conclusion

