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Agenda

• Part I: Leakage-Aware Multiprocessor Scheduling
• Part II: Scheduling issues in a highly scalable parallel 

implementation of H.264 decoding
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Part I: Leakage-Aware Multiprocessor 
Scheduling

• Motivation
• Power/Energy Consumption
• Dynamic Voltage/Frequency Scaling (DVFS)
• Processor Shutdown
• System and application model
• Schedule & Stretch (S&S)
• Leakage-Aware Multiprocessor Scheduling
• LIMIT
• Experimental Results
• Conclusions
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Motivation

• Currently, dynamic power 
dominates static power

• Static power due to leakage 
current is expected to grow 
significantly

Source: http://www.actel.com
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Power Consumption

Power model of (Jejurikar et al., 2004), 70nm technology
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Energy Consumption

• Scaling below critical frequency fcrit (normalized 0.38, actual 
1.18GHz) increases energy consumption
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Dynamic Voltage/Frequency Scaling (DVFS)

• Dynamic power grows quadratically with supply voltage

• Static power grows “linearly” with supply voltage

•

• Static energy consumption increases when voltage is scaled down

onjbssubnddddeff PIVIVfVCP +•+•+•••= 2α

dynamic power PAC static power PDC

fV •+= 21 ββ
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Processor Shutdown

• Processor shutdown reduces both static and dynamic energy 
consumption

• Shutdown involves an (energy) penalty due to loss of state 
(caches, branch predictors)

• ≈483 μJ (Jejurikar et al., 2004)
• Shutdown saves energy only if idle period sufficiently long

onjbssubnddddeff PIVIVfVCP +•+•+•••= 2α

dynamic power static power
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System Model

• Shared memory multi-core
• Application computation bound
• Scaling down clock frequency by factor of k increases execution 

time by factor of at most k
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Application Model
• Weighted directed acyclic graph G = (V, E, w)
• Graphs taken from Standard Task Graph Set 

(http://www.kasahara.elec.waseda.ac.jp/schedule/)
• random TGs
• application TGs

• Deadlines relative to critical path length (CPL)
• Coarse-grain tasks: 1 unit = 1 ms at max frequency (3.1·106 cycles)
• Fine-grain tasks: 1 unit = 10 μs at max frequency (3.1·104 cycles)
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Schedule and Stretch
• When dynamic power dominates, optimal strategy is to

• schedule tasks on as many processors as can be used to reduce 
makespan (we employ LS+EDF)

• use remaining time at end of schedule (slack) to lower voltage/ 
frequency as much as possible

• Due to (Zhu et al., 2003) and (Gruian and Kuchcinski, 2001)
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Leakage-Aware Multiprocessor Scheduling
• When dynamic power does not dominate, need to find balance between

• number of processors employed
• amount of voltage/frequency scaling

• Our LAMPS (   ) algorithm:
• for each number of processors Nmin … Nmax

• schedule using EDF

• use slack at end of schedule to lower voltage/frequency
• return number of cores with least energy consumption
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S&S+PS
• Schedule to minimize makespan
• Compute energy consumption for each voltage/frequency level

• shutdown cores during idle periods if it reduces energy
• Return voltage/frequency level with least energy consumption
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LAMPS+PS

• For each number of processors Nmin … Nmax
• Schedule using LS+EDF
• Compute energy consumption for each voltage/frequency level

• shutdown cores during idle periods if it reduces energy

• Return voltage/frequency level with least energy consumption

• LAMPS+PS determines an optimal balance between
• voltage/frequency scaling
• processor shutdown
• number of cores to employ
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How close to optimal?

• Known limitations:
• EDF is “just” a heuristic
• In our low-energy scheduling algorithms, all processors run at same 

frequency and this frequency is constant throughout the schedule
• Lower bounds:

• Idle cores consume no energy
• Number of cores = number of tasks
• LIMIT-SF: All cores are scaled down to critical frequency, or as much 

as possible to meet deadline → no single-frequency schedule can 
consume less energy

• LIMIT-MF: All cores are scaled down to critical frequency, possibly 
missing deadline → no schedule can consume less energy
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Experimental Results (I)

• For coarse-grain tasks and tight deadlines:
• LAMPS performs just little better than S&S (cannot use fewer cores)

• Processor shutdown approaches perform better (sufficient intra-schedule slack) and 

almost as good as LIMIT-SF

• LIMIT-MF lower bound probably too tight in this case (misses deadlines)
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Experimental Results (II)

• For coarse-grain tasks and loose deadlines:
• LAMPS much better than S&S (can employ fewer cores)

• Processor shutdown approaches perform only slightly better than LAMPS (can use 

intra-schedule slack to shutdown cores or to reduce number of cores)

• LAMPS+PS optimal
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Experimental Results (III)

• For fine-grain tasks and tight deadlines:
• LAMPS significantly better than S&S only in few cases (when not all cores are needed 

to meet deadline)
• S&S+PS worse than LAMPS (insufficient intra-schedule slack)
• Quite a gap between LAMPS+PS and LIMIT-SF/LIMIT-MF (room for improvement or 

lower bounds too tight)



19ASTEC, June 2-5, 2009 | 41

Experimental Results (IV)

• For fine-grain tasks and loose deadlines:
• LAMPS much better than S&S and S&S+PS (insufficient intra-schedule slack)

• LAMPS+PS close to optimal
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Conclusions
• When leakage-current is significant, the possibility of reducing 

energy by only employing DVFS is limited
• In this case, higher energy savings are obtained by shutting down 

cores temporarily or completely
• For coarse-grain tasks, LAMPS+PS attains > 84% of possible 

energy saving
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Future Work

• Determine a stronger lower bound (can be formulated as ILP 
problem)

• If results show that higher energy savings can be obtained, 
develop a scheduling algorithm that maximizes amount of slack

• Incorporate communication
• Other scheduling models
• How to deal w/ incomplete information (worst-case vs. actual 

execution time)
• …
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Part II: Scheduling Issues in a Highly Scalable 
Parallel Implementation of H.264 Decoding

• Motivation
• H.264 decoding

• where’s the parallelism?
• 2D-Wave

• need for dynamic scheduling
• parallel programming model
• 2D-Wave pseudo-code
• user-level scheduling for locality
• scalability

• 3D-Wave
• implementation
• scalability

• Increasing programmability
• ENCORE project

• Conclusions
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Motivation

• “Developing parallel applications to harness and effectively use 
the massively parallel tera-scale processors is likely to be the key 
challenge for tera-scale computing.” (Azimi et al., Intel 
Technology Journal, 2007)

• As a case study, we consider H.264 decoding
• State-of-the-art video coding standard
• Challenging to find massive TLP
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Overview of H.264

inverse
quantization IDCT

deblocking
filter

intra
prediction

MC
prediction

frame
buffer

uncompressed 
videoentropy

decoding

compressed 
video
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Where is the Data Parallelism?

• Between frames?
• Limited, because of inter-frame dependences

• Between slices?
• No, because there might be only one slice per frame

• Between macroblocks (MBs)?
• Yes

• Between operations?
• Of course. ILP and SIMD (short vectors).
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2D-Wave

• Proposed by (Van der Tol et al., 2003)
• Exploits intra-frame MB-level parallelism
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The Need for Dynamic Scheduling
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Parallel Programming Model: Task Pool

• Software structure in shared memory
• Contains tasks ready for execution

Cores

Task pool in memory

submit task get task
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2D-Wave: Deblocking a Frame
• MB dependencies covered by dependencies 

from upper-right MB to current MB and 
from left MB to current MB

int deblock_ready[w][h]; // array of reference counts

void deblock_frame() 
{ 
for(x = 1; x <= w; x++) 
for(y = 1; y <= h; y++) 
deblock_ready[x][y] = initial reference count; // 0, 1, or 2

tp_submit(deblock_mb, 1, 1); // start first task: MB <1,1>

tp_wait();
}
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2D-Wave: Deblocking a Macroblock
void deblock_mb(int x, int y) 
{ 

... the actual work ...

if(x >= 2 && y != h) 
{ 

new_value = tp_atomic_decrement(&deblock_ready[x-1][y+1], 1); 
if(new_value == 0) 

tp_submit(deblock_mb, x - 1, y + 1); 
} 

if(x != w) 
{ 

new_value = tp_atomic_decrement(&deblock_ready[x+1][y], 1); 
if(new_value == 0) 

tp_submit(deblock_mb, x + 1, y); 
} 

} 
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User-level Scheduling for Locality
void deblock_mb(int x, int y) 
{
again:

... the actual work...

ready1 = x >= 2 && y != h && 
tp_atomic_decrement(&deblock_ready[x-1][y+1], 1) == 0; 

ready2 = x != w && tp_atomic_decrement(&deblock_ready[x+1][y], 1) == 0;

if(ready1 && ready2) {
tp_submit(deblock_mb, x - 1, y + 1); // submit left-down block
x++; // goto right block
goto again;

}
else if(ready1) {
x--; // goto to left-down block
y++;
goto again;

}
else if(ready2) {
x++; // goto right block
goto again;

}
}

• Reduces task pool overhead
• Improves locality of reference
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2D-Wave max scalability

• 32x for ideal conditions (constant MB decoding time) 
• 23x for real video (variable MB decoding time) 

Frame number
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motion compensation

frame 0 (I) frame 1 (P) frame 2 (P)

3D-Wave

• How to increase scalability?
• 3-Wave: exploit intra-frame and inter-frame MB-level parallelism

• motion vectors typically short
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3D-Wave Implementation

• Implementation more complex than 2D-Wave due to complex, 
dynamic, inter-frame dependencies

• developed a subscription mechanism where tasks subscribe themselves 
to a kick-off list associated with reference MB 

Ref MB F1;MB(1,3) NULL

Frame 0 Frame 1
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3D-Wave Scalability

• Speedup of >51 (efficiency >80%) for 64 cores
• Start-up and end-down of short sequence (25 frames) limit efficiency
• 64 cores is 16x faster than real-time for FHD
• 3D-Wave more scalable than 2D-Wave because

• exhibits more TLP

• 3D-Wave spawns fewer thread due to excess TLP

Speedups for Rush Hour Full HD
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Increasing Programmability

• Programming is difficult
• Parallel programming is more difficult
• Efficient parallel programming is extremely difficult

• In 2D- and 3D-Wave programmer has to take care of:
• static task dependencies
• dynamic task dependencies
• optimizing data locality
• …

• Can we relieve the programmer from this burden?
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ENCORE Project

• Programmer only has to specify the tasks and the inputs and 
outputs of those tasks

• Runtime system takes care of
• scheduling
• optimizing for data locality
• …

• Challenges:
• How to specify static task dependencies?
• How to balance the workload?
• How to specify dynamic data dependencies?
• How to specify communication volumes?
• How to make sure that RTS does not become a bottleneck
• …
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ENCORE Programming Model
• Based on Open-MP

Sequential application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

mb_decode(&frame[i][j]);

Annotated application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

# task input (...) output (...)
mb_decode(&frame[i][j]);

user

ENCORE application

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

add_task(&mb_decode, &frame[i][j], ...);

mb_decode(){
get_data(...);
...
put_data(...);

}

ENCORE src2src compiler
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Encore Runtime Environment and 
Architecture Vision

Control processor

for (i=0; i<n; i+=16)
for (j=0; j<n; j+=16)

add_task(&m, &f, ...);

Task manager

RTS

Worker
processor

Worker
processor

Worker
processor

Worker
processor

Worker
processor
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Conclusion

• Many scheduling issues that now have to handled by expert 
programmers

• If parallel computing is to become a success, we have to hide 
(most of) the complexity
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