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Two compared algorithms

● Clustering-based algorithm using 
Moldable Tasks idea.

● List-scheduling based 2-phase algorithm
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Moldable tasks

 Parallel tasks in a parallel program can be 
executed in parallel way on a variable number of 
processors.

 Malleable tasks are parallel tasks for which a 
number of assigned processors may change 
during execution.

 Moldable tasks (MT) are parallel tasks, for 
which the number of assigned processors is not 
fixed, but is determined before execution and 
then doesn't change.
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General MT-based algorithm

● This algorithm consists of three steps:

– building a MT data flow graph, based on the 
program initial macro data flow graph, 

– defining the best internal structure of each MT 
node for each number of processors (schedule 
of component nodes to logical processors inside 
CMP modules of different sizes).

– Defining an assignment of resources to MTs 
(allotment) and scheduling the MT graph in the 
architecture with simplified inter-CMP 
connections (fully connected network).
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Step 1:
Definition of moldable tasks (*)
● A moldable task is built of nodes mapped to only one 

CMP module and its size is bounded.

● Moldable tasks are defined using a clustering 
algorithm, bounded by an assumed maximal cluster 
subgraph width.

● Clustering operation includes finding a graph closure 
of a task in respect to incoming and outgoing 
communication egdes.

● Clustering leads to reduction of global communication. 
Merging  separate MTs to create a larger one 
transforms all the communication between them into 
locally executed communication inside a CMP module.
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Graph closure of a MT graph
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ETF-based clustering criterion

● A list scheduling algorithm with an ETF 
heuristics can be used to determine if the 
size of a clustered (merged) task is 
acceptable:
● Schedule a task on unbounded number of 

resources using list scheduling with ETF 
heuristics.

● Check the numbers of processors and busses 
used. These numbers constitute the size of 
this task.
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Step 2:
Moldable tasks execution times
● Determining an execution time function for every MT 

obtained in the previous step. It is done by finding 
the best schedule for a given MT on 1 to N processors 
and determining its execution time (N is the number 
of processors in a SoC module).

● The extended graph representation includes reads on 
the fly, processor switchings and synchronization.

● An ETF list scheduling algorithm is used, based on  
basic control structures and their transformations – 
standard communication in subgraphs is converted 
into reads and communication on the fly. It  
determines the best heuristic MT execution times.
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Step 3' :
Processor assignment to MTs 
● In this step an assignment of processors to 

moldable tasks is found.
● We have used a layer-based assignment 

algorithm: 
● A first layer of nodes are the nodes with no 

predecessors in the graph.
● The layer n is a set of nodes with no 

predecessors in a graph with nodes from 
previous layers removed.

● For each layer the best allotment is found 
using a greedy algorithm.
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Step 3'' :
Final scheduling of MTs 
● Step 3' assigns particular fixed numbers of 

processors to each MT. Therefore they can be 
scheduled as standard tasks with fixed resource 
requirements.

● This step consists in scheduling such tasks in the 
assumed architecture (assigning nodes to 
processors, communication to particular memory 
busses and modules) with a fully connected global 
network.

● For this step, a list scheduling algorithm with the 
ETF heuristics is used.
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2-phase scheduling algorithm

● 2-phase scheduling algorithm derived 
from list scheduling.

● This algorithm works in 2 phases:
● Distribution of nodes between processors and 

processors between SoC modules, using a 
genetic algorithm supported with list 
scheduling with ETF heuristics.

● Structuring of communication between 
processors.
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Phase 1

● In the first step, tasks are assigned to 
processors and processors are assigned to SoC 
modules in the system.

● This step reduces execution time of the graph 
by reduction of the number of global 
communication between processors.

● It uses a genetic algorithm supported by list 
scheduling with ETF heuristics.

● Each chromosome represents one distribution 
of processors between SoCs.
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Why processor mapping
is important
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Phase 1

ETF-based list scheduling Genetic algorithm

Chromosome 
corresponding

to processors distribution

Graph scheduled under 
the constraints imposed by 

a chromosome.

The best schedule
imposed by the best
individual

Schedule a given
program graph under

the constraints imposed
by the system parameters

and a given
processor distribution

Generate chromosomes
for various mapping

instances, provide them
to the list scheduling

Generate initial
population,

taking into account
the graph structure

Program graph

System constraints
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Phase 1

● For each chromosome, the schedule is 
determined by a list scheduling with ETF 
heuristics, that takes into account both global 
and local communication.
● Assignment of tasks without predecessors is 

determined by the order, in which these tasks 
are scanned by the list scheduler – each 
consecutive task is assigned to the first available 
processor (ordered with their indexes).

● Further assignments are influenced by 
distribution of processors between CMP modules 
– global communication is slower.
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Phase 1

● A value of a fitness function Fit for a 
chromosome C is determined by the following 
formula:

were E is a set of nodes without successors in 
graph G scheduled according to a distribution 
defined by chromosome C.

Fit C =
∑v∈E

end v 

∣E∣
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Phase 2

● After the first phase, all the nodes in the graph 
are assigned to processors distributed between 
SoCs. Therefore for each communication it is 
determined, if it is a global or local one.

● In the second phase, for each local 
communication it is determined, if it will be 
performed on the fly or in the standard way.
● Data transfers on the fly are faster, but they may 

introduce latencies and require additional graph 
structuring.
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Phase 2

● For transformation of communication, 
basic structures and their transformations 
are used.

● The basic structures are determined and 
ordered using graph traversal based on 
Critical Path.
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Experimental graphs
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Comparison of results
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Influence of reads on the fly (2F)
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Influence of reads on the fly (MT)
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The end
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