
1

Comparison of two approaches for
scheduling program graphs for

dynamic SMP clusters with
communication on the fly

Marek Tudruj, Łukasz Maśko

Institute of Computer Science Polish Academy of Sciences
Polish-Japanese Institute of Information Technology

Warsaw, Poland

2

Two compared algorithms

● Clustering-based algorithm using
Moldable Tasks idea.

● List-scheduling based 2-phase algorithm

3

Moldable tasks

 Parallel tasks in a parallel program can be
executed in parallel way on a variable number of
processors.

 Malleable tasks are parallel tasks for which a
number of assigned processors may change
during execution.

 Moldable tasks (MT) are parallel tasks, for
which the number of assigned processors is not
fixed, but is determined before execution and
then doesn't change.

4

General MT-based algorithm

● This algorithm consists of three steps:

– building a MT data flow graph, based on the
program initial macro data flow graph,

– defining the best internal structure of each MT
node for each number of processors (schedule
of component nodes to logical processors inside
CMP modules of different sizes).

– Defining an assignment of resources to MTs
(allotment) and scheduling the MT graph in the
architecture with simplified inter-CMP
connections (fully connected network).

5

Step 1:
Definition of moldable tasks (*)
● A moldable task is built of nodes mapped to only one

CMP module and its size is bounded.

● Moldable tasks are defined using a clustering
algorithm, bounded by an assumed maximal cluster
subgraph width.

● Clustering operation includes finding a graph closure
of a task in respect to incoming and outgoing
communication egdes.

● Clustering leads to reduction of global communication.
Merging separate MTs to create a larger one
transforms all the communication between them into
locally executed communication inside a CMP module.

6

Graph closure of a MT graph

T T T T

T T

T

T T T T

T T

T

 Graph Closure of a given
set of nodes P is such set
P', that P⊆P' and all nodes
from P' fulfill (*)

T T T T

T T

T

7

ETF-based clustering criterion

● A list scheduling algorithm with an ETF
heuristics can be used to determine if the
size of a clustered (merged) task is
acceptable:
● Schedule a task on unbounded number of

resources using list scheduling with ETF
heuristics.

● Check the numbers of processors and busses
used. These numbers constitute the size of
this task.

8

Step 2:
Moldable tasks execution times
● Determining an execution time function for every MT

obtained in the previous step. It is done by finding
the best schedule for a given MT on 1 to N processors
and determining its execution time (N is the number
of processors in a SoC module).

● The extended graph representation includes reads on
the fly, processor switchings and synchronization.

● An ETF list scheduling algorithm is used, based on
basic control structures and their transformations –
standard communication in subgraphs is converted
into reads and communication on the fly. It
determines the best heuristic MT execution times.

9

Step 3' :
Processor assignment to MTs
● In this step an assignment of processors to

moldable tasks is found.
● We have used a layer-based assignment

algorithm:
● A first layer of nodes are the nodes with no

predecessors in the graph.
● The layer n is a set of nodes with no

predecessors in a graph with nodes from
previous layers removed.

● For each layer the best allotment is found
using a greedy algorithm.

10

Step 3'' :
Final scheduling of MTs
● Step 3' assigns particular fixed numbers of

processors to each MT. Therefore they can be
scheduled as standard tasks with fixed resource
requirements.

● This step consists in scheduling such tasks in the
assumed architecture (assigning nodes to
processors, communication to particular memory
busses and modules) with a fully connected global
network.

● For this step, a list scheduling algorithm with the
ETF heuristics is used.

11

2-phase scheduling algorithm

● 2-phase scheduling algorithm derived
from list scheduling.

● This algorithm works in 2 phases:
● Distribution of nodes between processors and

processors between SoC modules, using a
genetic algorithm supported with list
scheduling with ETF heuristics.

● Structuring of communication between
processors.

12

Phase 1

● In the first step, tasks are assigned to
processors and processors are assigned to SoC
modules in the system.

● This step reduces execution time of the graph
by reduction of the number of global
communication between processors.

● It uses a genetic algorithm supported by list
scheduling with ETF heuristics.

● Each chromosome represents one distribution
of processors between SoCs.

13

Why processor mapping
is important

1 2 3 4

5 6

P1->1, P2->2, P3->1, P4->2P1->1, P2->1, P3->2, P4->2

1 2 3 4

5 6

P1 P2 P3 P4

CMP 1 CMP 2

1 23 4

5 6

P1 P2P3 P4

CMP 1 CMP 2

14

Phase 1

ETF-based list scheduling Genetic algorithm

Chromosome
corresponding

to processors distribution

Graph scheduled under
the constraints imposed by

a chromosome.

The best schedule
imposed by the best
individual

Schedule a given
program graph under

the constraints imposed
by the system parameters

and a given
processor distribution

Generate chromosomes
for various mapping

instances, provide them
to the list scheduling

Generate initial
population,

taking into account
the graph structure

Program graph

System constraints

15

Phase 1

● For each chromosome, the schedule is
determined by a list scheduling with ETF
heuristics, that takes into account both global
and local communication.
● Assignment of tasks without predecessors is

determined by the order, in which these tasks
are scanned by the list scheduler – each
consecutive task is assigned to the first available
processor (ordered with their indexes).

● Further assignments are influenced by
distribution of processors between CMP modules
– global communication is slower.

16

Phase 1

● A value of a fitness function Fit for a
chromosome C is determined by the following
formula:

were E is a set of nodes without successors in
graph G scheduled according to a distribution
defined by chromosome C.

Fit C =
∑v∈E

end v 

∣E∣

17

Phase 2

● After the first phase, all the nodes in the graph
are assigned to processors distributed between
SoCs. Therefore for each communication it is
determined, if it is a global or local one.

● In the second phase, for each local
communication it is determined, if it will be
performed on the fly or in the standard way.
● Data transfers on the fly are faster, but they may

introduce latencies and require additional graph
structuring.

18

Phase 2

● For transformation of communication,
basic structures and their transformations
are used.

● The basic structures are determined and
ordered using graph traversal based on
Critical Path.

19

Experimental graphs

20

Comparison of results

1x4
1x8

2x4
1x16

2x8
4x4

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

ETF

2F

MT

ETF
2F
MT

21

Influence of reads on the fly (2F)

1x4
1x8

2x4
1x16

2x8
4x4

2,00

4,00

6,00

8,00

10,00

12,00

2F no OTF

2F with OTF

2F no OTF 2F with OTF

22

Influence of reads on the fly (MT)

1x4
1x8

2x4
1x16

2x8
4x4

2,00

4,00

6,00

8,00

10,00

12,00

14,00

MT no OTF

MT with OTF

MT no OTF MT with
OTF

23

The end

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23

