
Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Scheduling Multi-User Periodic Arrival of
Tasks : Two Linear Programming

Formulations

Emmanuel Medernach1 Philippe Lacomme1 Eric Sanlaville2

Claire Hanen3

1medernac@clermont.in2p3.fr, placomme@isima.fr
LPC - IN2P3 and LIMOS, Blaise Pascal University of Clermont-Ferrand

2Eric.Sanlaville@univ-lehavre.fr
LITIS, University of Le Havre

3Claire.Hanen@lip6.fr
LIP6, Université de Paris 10

ASTEC 2009



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Outline

1 Problem statement

2 First Linear Program (with transitory phase)

3 Second Linear Program (pattern based)

4 Conclusion



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Cyclic scheduling of periodically occurring tasks

A generic task is a task which must be performed infinitely often.

Each occurrence of a generic task is periodically released.

Known result

If a schedule exists, then there exists a feasible schedule which is
cyclic with a period T equal to the least common multiple of the
periods of the individual tasks. [“Scheduling Periodically Occurring
Tasks on Multiple Processors” - Lawler, Martel (1980)]

We will suppose that all tasks appear in the first period.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Cyclic scheduling of periodically occuring tasks

Notations

There are M identical machines.
A generic task i has

a task period αi

a release time ri

and a required processing time pi .

The schedule period is T (a multiple of all αi ).
The j th occurrence of task i is denoted by 〈i , j〉 and has a release date
ri + (j − 1)αi . The number of occurence of the task i in a period is
T/αi .

Condition of feasibility
∑

i

pi

αi
≤ M

This condition is necessary. It is also sufficient ! (Mc Naughton:
preemption at the borders mean several occurrences of the task)



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Periodic schedule

Among possible schedules we seek periodic schedules :

Definition (periodic schedule)

A schedule is periodic if all tasks run periodically (but not necessarily
on the same machine each period). The steady state begins when all
generic tasks have been executed at least once. Time before the
steady state is called the transitory phase.

Easy to implement.

The problem is back to a finite problem

But not necessarily dominant (depending on the chosen criterion)



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Steady state

Steady state

The steady state is reached on a period if and only if this period
contains the total amount of computation received during each period
which is

∑
i T pi

αi
.

As soon as a period is complete in a periodic schedule it defined a
pattern which must repeat itself in all following periods.

Definition (Pattern of a periodic schedule)

The pattern of a periodic schedule is equal to the beginning execution
times of all jobs received during a whole period in the steady state.

Note: A periodic schedule defines a pattern but a pattern defines
many schedules, because occurrence numbers of a task in a pattern
may be shifted without changing the schedule pattern.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Pattern

Example of a pattern with 2 machines and a global period of 20

r1 = 3, p1 = 3
r2 = 8, p2 = 3
r3 = 13, p3 = 3
r4 = 18, p4 = 3
r5 = 4, p5 = 4
r6 = 5, p6 = 1
r7 = 17, p7 = 5

t1 = 6
t2 = 9
t3 = 13
t4 = 18
t5 = 4
t6 = 5
t7 = 17



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Multi-User Problem

There are many users sending tasks and sharing a computing
facility.

Each task belongs to one user.

All users could use all available machines.

OBJECTIVE: To give each user a fair share of the schedule.

A comparison criterion is used to compare user share of the
schedule.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Comparison criterion

We wish to enforce this following independance property on
comparison criterion:

Independance of users in the comparison criterion

The comparision criterion used to evaluate a user share of the
schedule must depends only on the schedule of this user jobs.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Criterion used: Presence time

Definition (Presence Intervals)

A given user U is present at time t if there are tasks of U waiting or
running at time t .
Presence time for a given user is the length of presence intervals for
this user in a period after the steady state (because this is the
dominant part).

The comparison criterion will depend on the presence times. It
reduces to Flow Time if each user has only one task.

MeanPresenceTime (or total presence time)

MinMaxPresenceTime

WeightedMeanPresenceTime : We add a weight equal to the
total amount of computing of user job. (Stretch)

WeightedMinMaxPresenceTime



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Criterion used: Presence time (example)



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Pattern: Transitory phase

Dominance

For a given pattern there is only one dominant schedule (modulo
tasks locations on machines) for presence interval based criterions.

Given an arbitrary pattern we are able to reach it :

Reachability of a given pattern

It is always possible to reach the steady state after at most 2 + M
periods or after at most 3 periods if all jobs have length less than the
global period.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Transitory phase model

We wish to model a periodic schedule until it finally reaches the
steady state.

The number of time intervals of duration T is fixed to a and we
impose that the steady state is reached at the last period
[(a − 1)T , aT ].

If the problem becomes impossible we try again with a + 1. We
know that it will finally works with a at most 2 + M.

We will use integer programming techniques.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Model formulation: Data

We have M identical machines.

The global schedule period is T , which is a multiple of all αi . The
number of tasks i released during a period T is Ki = T/αi .

The generic task i belongs to the user Ui , has period αi and a
first release date ri such that the release of task 〈i , j〉 is
r〈i,j〉 = ri + (j − 1)αi .

We have a fixed number of periods a and we impose that the
steady state is reached at the last period.

H is a given sufficiently high constant.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Model formulation: Variables

The execution time of task 〈i , j〉 is denoted t〈i,j〉.

mi,j,k is a binary variable which is equal to 1 if and only if task
〈i , j〉 runs on machine l , and else it is equal to 0.

xi1,j1,i2,j2 is a binary variables which is equal to 1 if and only if task
〈i1, j1〉 runs before task 〈i2, j2〉 (not necessarily on the same
machine), and else it is equal to 0.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Constraints

For all tasks 〈i , j〉:

We must respect release times: t〈i,j〉 ≥ r〈i,j〉 and order of tasks:
t〈i,j〉 ≤ t〈i,j+1〉

All tasks must be allocated to one machine:
∑M

l=1 mi,j,l = 1

All tasks are periodic: t〈i,j+Ki〉 = t〈i,j〉 + T

For all tasks 〈i1, j1〉 6= 〈i2, j2〉:

Either a task begins before or after another one:
xi2,j2,i1,j1 + xi1,j1,i2,j2 = 1

t〈i2,j2〉 ≤ t〈i1,j1〉 + Hxi1,j1,i2,j2

If tasks are allocated on the same machine, then it must not
overlap:
∀l ∈ {1 . . . M}, t〈i1,j1〉+pi1 ≤ t〈i2,j2〉+H(3−xi1,j1,i2,j2 −mi1,j1,l −mi2,j2,l)

Order is the same between global periods:
xi1,j1,i2,j2 = xi1,j1+K1,i2,j2+K2



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

We cut tasks to look only inside the last interval [(a − 1)T , aT ].
For that we apply to all tasks the function

x 7→ max(min(x , aT ), (a − 1)T )

a T(a - 1) T

This allows to compute the amount of tasks inside the last period, we
enforce that this quantity is equal to

∑
i T pi

αi
.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

µ is a binary variable such that µ = 1 if y ≤ x and else µ = 0.

µH + y ≥ x
(1 − µ)H + x ≥ y

Minimum: z = min(x , y)

z ≤ x
z ≤ y

(1 − µ)H + z ≥ y
µH + z ≥ x

Maximum: z = max(x , y)

z ≥ x
z ≥ y

(1 − µ)H + x ≥ z
µH + y ≥ z



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

We extract for each task of a given user his tasks presence times.
Blue part is the waiting interval, Orange part is the execution interval.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

Release dates are sorted in non-decreasing order.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Linearization of Presence Time

∑

i

min(maxendi , ri+1) − ri



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Results

2 users and 4 machines.
User U1: α1 = 4, p1 = 10, r1 = 4
User U2: α2 = 4, p2 = 6, r2 = 0

Periods 5
MinMaxPresence 27s
WeightedMinMaxPresence 1.7s
MeanPresence 24s
WeightedMeanPresence 16s

Table: Execution times

WeightedMeanPresence, a = 5:



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Results

3 users and 3 machines
User U1: α1 = 3, p1 = 2, r1 = 0
User U2: α2 = 6, p2 = 4, r2 = 0
User U3: α3 = 6, p3 = 8, r3 = 0

Periods 3 4
MinMaxPresence 1s 21s
WeightedMinMaxPresence 5m15 7m43
MeanPresence 2m10 72m4
WeightedMeanPresence 28s 4m20

Table: Execution times

MeanPresence, a = 4:



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Pattern based model

This second formulation works directly on patterns.

We model pattern and evaluate its performances for all users.

If a pattern is found we know how to reconstruct a schedule
based on it. We could also use the pattern found inside the first
model to compute the best possible transitory phase.

Inside a period of the steady state, a task may be cut in pieces.

In the steady state the machines must process all the computing
quantity received during a period.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Components of a pattern

Definition (Borderline tasks)

A task i is a borderline task for the pattern if ti + pi ≥ T .
A borderline task is associated with virtual tasks, a starting task
[ti , T ], an ending task [0, ti + pi mod T ] and eventually whole period
tasks [0, T ].

Pattern feasibility

A pattern is feasible if and only if the inner tasks and corresponding
virtual tasks of borderline tasks are schedulable.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Components of a pattern

Components of a pattern

Whole period pieces (in black)

End of task pieces (in blue)

Start of task pieces (in red)

Inner tasks (in yellow)



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Whole period tasks

Whole period tasks

A borderline task may be divided in n or n + 1 whole period pieces.
Let δi be a binary variable and ai,j be the number of whole period
tasks of the borderline task 〈i , j〉. Then:

ai,j + δi,j = ⌊pi,j/T ⌋



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Variables

βi,j is a binary variable equal to 1 if task 〈i , j〉 is an inner task and
equal to 0 if this is a borderline task.

ti,j + pi ≤ T +(1 − βi,j)H
βi,jH+ ti,j + pi ≥ T

For each task 〈i , j〉, starti,j and endi,j are the length of the starting and
the ending part of a borderline task.

0 ≤ starti,j ≤ T
0 ≤ endi,j ≤ T

pi(1 − βi,j) = starti,j + ai,jT + endi,j

starti,j ≤ T − ti,j + βi,jH
starti,j ≥ T − ti,j − βi,jH



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Tasks location

machinestart
i,j,k , machineinner

i,j,k , machineend
i,j,k are binary variables equal to 1

if the starting, inner or ending respectively part of the task 〈i , j〉 runs
on machine k and else equal to 0.
Each piece is at most on one machine:

∀i , j ,
∑M

k=1 machineend
i,j,k = 1 − βi

∀i , j ,
∑M

k=1 machinestart
i,j,k = 1 − βi

∀i , j ,
∑M

k=1 machineinner
i,j,k = βi

There is at most one starting or ending piece per machine:

∀k ,
∑

i,j machineend
i,j,k ≤ 1

∀k ,
∑

i,j machinestart
i,j,k ≤ 1



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Available machines

We sort the machines so that the whole period tasks are always on
the first machines. This means that machines from 1 to

∑
i,j ai,j are

used by whole period tasks. It remains M −
∑

i,j ai,j machines.
Let γk be a binary variable such that γk = 0 if the machine k is used
by whole period tasks and else γk = 1.

∀k , γk+1 ≥ γk

M =
∑

i,j ai,j +
∑

k γk

machinestart
i,j,k ≤ γk

machineend
i,j,k ≤ γk

machineinner
i,j,k ≤ γk

As we know that ai,j ≥ ⌊pi/T ⌋ − 1, we already have:

∀k ∈ {1, . . . ,
∑

i,j

⌊pi/T ⌋ − 1}, γk = 0



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

No overlapping of tasks

∀(i1, j1) 6= (i2, j2),

xi1,j1,i2,j2 + xi2,j2,i1,j1 = 1
ti2,j2 ≤ ti1,j1 + Hxi1,j1,i2,j2

k , ti1,j1 + pi1 ≤ ti2,j2 + H(3 − xi1,j1,i2,j2 − machinterieur
i1,j1,k − machinterieur

i2,j2,k )

On a given machine all inner and starting (resp. ending and inner)
tasks must begin after the end (resp. must end before the starting)
task present on that machine it it exists.
∀i1, j1, i2, j2, i3, j3, k ,

endi1,j1 ≤ ti2,j2 + (2 − machineend
i1,j1,k − machineinner

i2,j2,k )H
ti2,j2 + pi2 + starti3,j3 ≤ T + (2 − machinestart

i3,j3,k − machineinner
i2,j2,k )H

endi1,j1 + starti3,j3 ≤ T + (2 − machinestart
i3,j3,k − machineend

i1,j1,k )H



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Schedule reconstruction

From the pattern we have to build a periodic schedule.
We have to shift tasks to the next period if it does not respect its
release:
Let t ′i,j be the real running time, if ti,j ≥ ri,j alors t ′i,j = ti,j , else
t ′i,j = ti,j + T . Thus:

t ′i,j = ti,j + θi,jT , θi,j ∈ 0, 1
t ′i,j ≥ ri,j

Presence times are computed from this reconstructed schedule.



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Results

Problem 1 2 3 4 5
User 2 3 2 10 2
Jobs 2 4 13 10 6
Machines 4 3 5 3 3
MinMaxPresence <0.01s 0.01s 0.22s 0.06s 0.17s
WeightedMinMaxPresence <0.01s 0.01s 0.51s 1.03s 4.51s
MeanPresence <0.01s 0.01s 0.45s 0.37s 0.11s
WeightedMeanPresence 0.01s 0.01s 0.51s 0.56s 0.19s

Problem 5, WeightedMinMaxPresence:



Problem statement First Linear Program (with transitory phase) Second Linear Program (pattern based) Conclusion

Summary and Conclusion.

We defined criterions based on the presence interval of each
user.
We have proposed 2 linear programming models for the
scheduling of multi-user periodic arrival of tasks.

Transitory model
Pattern-based model: much smaller, much faster

current work: accurate tests of second formulation

even second formulation will probably not be able to solve
medium to large size instances.

We are now working on heuristics for that problem, based on the
Vehicule Routing Problem


	Problem statement
	First Linear Program (with transitory phase)
	Second Linear Program (pattern based)
	Conclusion

