Approximation Algorithms for Multiple Strip Packing

Klaus Jansen Christina Otte

Department of Computer Science Christian-Albrechts-University to Kiel, Germany

3rd June 2009

Outline

Introduction

2-Approximation

AFPTAS

Conclusion

Outline

Introduction

2-Approximation

AFPTAS

Conclusion

Formulation of the problem

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- ▶ *k* strips of unit width and infinite height.

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- ► *k* strips of unit width and infinite height.

Problem:

Find a non-overlapping othogonal packing without rotations into the strips, minimizing the maximum of the heights used.

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- ▶ *k* strips of unit width and infinite height.

Problem:

Find a non-overlapping othogonal packing without rotations into the strips, minimizing the maximum of the heights used.

Complexity:

Strongly NP-hard by reduction to 3-Partition.

Applications

Applications

- Computer grids
- Server consolidations
- Cutting problems

Notation

Notation

For a list $L = \{r_1, \ldots, r_n\}$ of rectangles and $k \in \mathbb{N}$ strips S_1, \ldots, S_k

• let h_i denote the height of a feasible packing in S_i .

Notation

For a list $L = \{r_1, \ldots, r_n\}$ of rectangles and $k \in \mathbb{N}$ strips S_1, \ldots, S_k

- let h_i denote the height of a feasible packing in S_i .
- $A(L) := \max_{i \in \{1,...,k\}} h_i$ denotes the output of an algorithm A for MSP.

Notation

For a list $L = \{r_1, \ldots, r_n\}$ of rectangles and $k \in \mathbb{N}$ strips S_1, \ldots, S_k

- let h_i denote the height of a feasible packing in S_i .
- $A(L) := \max_{i \in \{1,...,k\}} h_i$ denotes the output of an algorithm A for MSP.
- OPT(L) denotes the optimal value.

Known results

Known results

- 2-Inapproximability (Zhuk 2006)
- (2 + ε)-Approximation in $\mathcal{O}((n/\varepsilon)^{1/\varepsilon^2})$ (Ye et al. 2009)

Known results

- 2-Inapproximability (Zhuk 2006)
- (2 + ε)-Approximation in $\mathcal{O}((n/\varepsilon)^{1/\varepsilon^2})$ (Ye et al. 2009)

New results

Known results

- 2-Inapproximability (Zhuk 2006)
- $(2 + \varepsilon)$ -Approximation in $\mathcal{O}((n/\varepsilon)^{1/\varepsilon^2})$ (Ye et al. 2009)

New results

- Extension of NFDH and FFDH with same ratio
- AFPTAS
- 2-Approximation

Outline

Introduction

2-Approximation

AFPTAS

Conclusion

Idea: Consider different cases for k

• k = 1: Steinberg or Schiermeyer.

- k = 1: Steinberg or Schiermeyer.
- ► k = 2: PTAS for Rectangle Packing with Area maximization (RPA) by Bansal et al.

- k = 1: Steinberg or Schiermeyer.
- ► k = 2: PTAS for Rectangle Packing with Area maximization (RPA) by Bansal et al.
- ▶ $3 \le k < c$: Extension of the PTAS for RPA for k bins.

- k = 1: Steinberg or Schiermeyer.
- ► k = 2: PTAS for Rectangle Packing with Area maximization (RPA) by Bansal et al.
- ▶ $3 \le k < c$: Extension of the PTAS for RPA for k bins.
- ► k ≥ c: Asymptotic 1.69-approximation for 2-dimensional Bin Packing by Caprara.

Theorem (Steinberg)

Let $L = \{r_1, \ldots, r_n\}$ be a set of rectangles with heights and widths ≤ 1 . If $SIZE(L) \leq 1$ then it is possible to pack L into a rectangle $Q = [0, 1] \times [0, 2]$

Rectangle Packing with Area maximization (RPA)

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- a bin of unit size.

Rectangle Packing with Area maximization (RPA)

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- ► a bin of unit size.

Problem:

Find a feasible packing of a subset L', while maximizing the total area of the rectangles in L'.

Rectangle Packing with Area maximization (RPA)

Formulation of the problem

Given:

- ▶ a set of *n* rectangles r_1, \ldots, r_n , with heights and widths ≤ 1 ,
- ► a bin of unit size.

Problem:

Find a feasible packing of a subset L', while maximizing the total area of the rectangles in L'.

Theorem (Bansal et al.)

There is a polynomial-time approximation scheme for RPA.

Algorithm (Part I)

Algorithm (Part I)

1. Guess the height v of an optimal solution for MSP.

Algorithm (Part I)

- 1. Guess the height v of an optimal solution for MSP.
- 2. Scale the heights of the rectangles in L by 1/v \Rightarrow the corresponding packing fits into $[0, 1] \times [0, 2]$.

k=2

Binary Search for v

- ▶ heights of rectangles $h_i \in \mathbb{Q} \Rightarrow \exists q_i, p_i \in \mathbb{N}$ with $h_i = P_i/q_i$
- \blacktriangleright v is equal to the sum of heights of rectangles in L
- ▶ for $i \in \{1, ..., n\}$ we have $Qh_i \in \mathbb{N}$, where $Q = \prod_{i=1}^n q_i$
- $\blacktriangleright \ \textit{Qh}_{\sf max} \leq \textit{Qv} \leq \textit{Qnh}_{\sf max} \text{ and } \textit{Qv} \in \mathbb{N}$

k=2

Binary Search for v

- ▶ heights of rectangles $h_i \in \mathbb{Q} \Rightarrow \exists q_i, p_i \in \mathbb{N}$ with $h_i = P_i/q_i$
- \blacktriangleright v is equal to the sum of heights of rectangles in L
- ▶ for $i \in \{1, ..., n\}$ we have $Qh_i \in \mathbb{N}$, where $Q = \prod_{i=1}^n q_i$
- $\blacktriangleright \ Qh_{\mathsf{max}} \leq Qv \leq Qnh_{\mathsf{max}} \text{ and } Qv \in \mathbb{N}$

$$\Rightarrow \log_2(\textit{Qnh}_{\max}) = \sum_{i=1}^n \log_2(q_i) + \log_2(n) + \log_2(h_{\max}) \le |L|$$

Consider the set of scaled rectangles in L_v as an instance of RPA with $OPT_{RPA}(L_v) = SIZE(L_v) \le 2$.

Algorithm (Part II)

3 Apply the algorithm of Bansal et al. for RPA with fixed accuracy $\varepsilon={}^{1}\!/\!{}^{4}\!.$

Algorithm (Part II)

3 Apply the algorithm of Bansal et al. for RPA with **fixed** accuracy $\varepsilon = 1/4$. \Rightarrow Find a packing of a subset $L'_{\nu} \subset L_{\nu}$ with total area $\geq (1 - \varepsilon)SIZE(L_{\nu})$ into $[0, 1] \times [0, 2]$. Rescaling L'_{ν} gives a packing for S_1 with height at most 2ν .

Algorithm (Part II)

- 3 Apply the algorithm of Bansal et al. for RPA with **fixed** accuracy $\varepsilon = 1/4$. \Rightarrow Find a packing of a subset $L' \subset L$ with total area
 - \Rightarrow Find a packing of a subset $L'_{v} \subset L_{v}$ with total area
 - $\geq (1 \varepsilon)SIZE(L_v)$ into $[0, 1] \times [0, 2]$.

Rescaling L'_{ν} gives a packing for S_1 with height at most 2ν .

4 Pack remaining items with Steinberg's or Schiermeyer's algorithm into $[0,1] \times [0,2]$ and rescale them. Possible, since $SIZE(L_v \setminus L'_v) \leq \varepsilon SIZE(L_v) \leq \frac{1}{2}$.

$3 \le k < c$

Theorem (RPA for k bins)

For a constant number k of bins, a fixed value ε and a set of rectangles $L = \{r_1, \ldots, r_n\}$ there is a polynomial time algorithm $A_{k,\varepsilon}$ that finds a subset $L' \subset L$ with total area at least $(1 - \varepsilon)SIZE(L)$ and a packing for L' into k bins.

$3 \le k < c$

Theorem (RPA for k bins)

For a constant number k of bins, a fixed value ε and a set of rectangles $L = \{r_1, \ldots, r_n\}$ there is a polynomial time algorithm $A_{k,\varepsilon}$ that finds a subset $L' \subset L$ with total area at least $(1 - \varepsilon)SIZE(L)$ and a packing for L' into k bins.

Lemma

Let $k \ge 3$ and L be an instance of 2-dimensional Bin Packing with total area $SIZE(L) \le \frac{k}{4}$. There exists a packing of L into k bins.

Algorithm (Part I)

1. Guess the height v of an optimal solution for MSP.

$3 \le k < c$

Algorithm (Part I)

- 1. Guess the height v of an optimal solution for MSP.
- 2. Scale the heights of the rectangles in L by 1/v to a set L_v . \Rightarrow the corresponding packing fits into k bins of unit size.

$3 \leq k < c$

Algorithm (Part II)

Consider the set of resulting rectangles as an instance of RPA with k bins and $OPT_{RPA} = SIZE(L_v) \le k$.

$3 \leq k < c$

Algorithm (Part II)

Consider the set of resulting rectangles as an instance of RPA with k bins and $OPT_{RPA} = SIZE(L_v) \le k$.

3 Apply the algorithm for RPA with k bins for a **fixed** accuracy $\varepsilon \leq 1/4$ and find a packing for a subset $L'_v \subset L_v$ with total area at least $(1 - \varepsilon)SIZE(L_v)$. Rescale the rectangles of L'_v and get k bins of height v.

$3 \le k < c$

Algorithm (Part III)

4 Pack the remaining items into k bins and rescale. Possible with above Lemma, since $SIZE(L_v \setminus L'_v) \le \varepsilon SIZE(L_v) \le k/4$. This results again in k bins of height at most v.

$3 \le k < c$

Algorithm (Part III)

- 4 Pack the remaining items into k bins and rescale. Possible with above Lemma, since $SIZE(L_v \setminus L'_v) \le \varepsilon SIZE(L_v) \le k/4$. This results again in k bins of height at most v.
- 5 Stack every two bins on top of each other.

Theorem (Caprara)

There is an asymptotic 1.69-approximation for 2-dimensional Bin Packing.

$k \ge c$

Theorem (Caprara)

There is an asymptotic 1.69-approximation for 2-dimensional Bin Packing. If k is large enough (\approx 128176) there is a packing of L into 2k bins. Stack every two bins on each other.

$k \ge c$

Theorem (Caprara)

There is an asymptotic 1.69-approximation for 2-dimensional Bin Packing. If k is large enough (\approx 128176) there is a packing of L into 2k bins. Stack every two bins on each other.

Theorem

For arbitrary k there is a 2-approxmiation for MSP.

Outline

Introduction

2-Approximation

AFPTAS

Conclusion

AFPTAS

Theorem (Kenyon & Rémila)

There is an AFPTAS for Strip Packing with additive constant $O(1/\epsilon^2)$.

AFPTAS

Theorem (Kenyon & Rémila)

There is an AFPTAS for Strip Packing with additive constant $O(1/\varepsilon^2)$.

Theorem

For arbitrary k there is an AFPTAS for MSP with additive constant $O(1/\varepsilon^2)$.

AFPTAS

Theorem (Kenyon & Rémila)

There is an AFPTAS for Strip Packing with additive constant $O(1/\varepsilon^2)$.

Theorem

For arbitrary k there is an AFPTAS for MSP with additive constant $\mathcal{O}(1/\epsilon^2)$.

Theorem

For $\varepsilon > 0$ and $k \ge \lceil 128/\varepsilon^3 \rceil$ there is an asymptotic $(1 + \varepsilon)$ -approximation for MSP with additive constant $\mathcal{O}(1)$ with running-time polynomial in n and $1/\varepsilon$.

▶ Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.

- Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.
- Construct a rounded instance L_{sup} of the wide rectangles L_{wide} with M different widths w_i.

- ▶ Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.
- Construct a rounded instance L_{sup} of the wide rectangles L_{wide} with M different widths w_i.
- Build configurations of widths C_j with heights x_j for L_{sup} .

- Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.
- Construct a rounded instance L_{sup} of the wide rectangles L_{wide} with M different widths w_i.
- Build configurations of widths C_j with heights x_j for L_{sup} .
- Solve the LP

$$\begin{split} \min \frac{\sum_{j=1}^{q} x_j}{k} \\ \text{s.t.} \ \sum_{j=1}^{q} \alpha_{ij} x_j \geq \beta_i \text{ for all } i \in \{1, \dots, M\} \\ x_j \geq 0 \text{ for all } j \in \{1, \dots, q\}, \end{split} \tag{LP(L_{sup})}$$

where α_{ij} is the number of rectangles of width w_i in C_j and β_i is the total height of all rectangles of width w_i in L_{sup} .

- ▶ Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.
- Construct a rounded instance L_{sup} of the wide rectangles L_{wide} with M different widths w_i.
- Build configurations of widths C_j with heights x_j for L_{sup} .
- Solve the LP

$$\begin{split} \min \frac{\sum_{j=1}^{q} x_j}{k} \\ \text{s.t.} \ \sum_{j=1}^{q} \alpha_{ij} x_j \geq \beta_i \text{ for all } i \in \{1, \dots, M\} \\ x_j \geq 0 \text{ for all } j \in \{1, \dots, q\}, \end{split} \tag{LP}(L_{sup})) \end{split}$$

where α_{ij} is the number of rectangles of width w_i in C_j and β_i is the total height of all rectangles of width w_i in L_{sup} .

• Construct a feasible solution for L_{sup} by balancing configurations.

- Partition *L* by width into $L_{wide}(w \ge \varepsilon')$ and $L_{narrow}(w < \varepsilon')$.
- Construct a rounded instance L_{sup} of the wide rectangles L_{wide} with M different widths w_i.
- Build configurations of widths C_j with heights x_j for L_{sup} .
- Solve the LP

$$\begin{split} \min \frac{\sum_{j=1}^{q} x_j}{k} \\ \text{s.t.} \ \sum_{j=1}^{q} \alpha_{ij} x_j \geq \beta_i \text{ for all } i \in \{1, \dots, M\} \\ x_j \geq 0 \text{ for all } j \in \{1, \dots, q\}, \end{split} \tag{LP}(L_{sup})$$

where α_{ij} is the number of rectangles of width w_i in C_j and β_i is the total height of all rectangles of width w_i in L_{sup} .

- Construct a feasible solution for L_{sup} by balancing configurations.
- ▶ Pack *L_{narrow}* into the remaining space.

From the LP solution we get a vektor (x_1, \ldots, x_m) , $m \le M$ and a value h with $\frac{\sum_{j=1}^m x_j}{k} = h$. We can construct a fractional packing into k strips with height $\le (1 + \varepsilon')h$ and $m' \le 2M$ different configurations

From the LP solution we get a vektor (x_1, \ldots, x_m) , $m \le M$ and a value h with $\frac{\sum_{j=1}^m x_j}{k} = h$. We can construct a fractional packing into k strips with height $\le (1 + \varepsilon')h$ and $m' \le 2M$ different configurations

From the LP solution we get a vektor (x_1, \ldots, x_m) , $m \le M$ and a value h with $\frac{\sum_{j=1}^m x_j}{k} = h$. We can construct a fractional packing into k strips with height $\le (1 + \varepsilon')h$ and $m' \le 2M$ different configurations

 Fractionally filling the configurations leads to 2M non-empty configurations.

From the LP solution we get a vektor (x_1, \ldots, x_m) , $m \le M$ and a value h with $\frac{\sum_{j=1}^m x_j}{k} = h$. We can construct a fractional packing into k strips with height $\le (1 + \varepsilon')h$ and $m' \le 2M$ different configurations

- Fractionally filling the configurations leads to 2M non-empty configurations.
- ► Divide each configuration C_j with x_j ≥ h into stripes of height h.

From the LP solution we get a vektor (x_1, \ldots, x_m) , $m \le M$ and a value h with $\frac{\sum_{j=1}^m x_j}{k} = h$. We can construct a fractional packing into k strips with height $\le (1 + \varepsilon')h$ and $m' \le 2M$ different configurations

- Fractionally filling the configurations leads to 2M non-empty configurations.
- ► Divide each configuration C_j with x_j ≥ h into stripes of height h.
- Divide the rest into at most ¹/ε' stripes of height ε'h.

 Assign to each strip at most two parts of maybe different configurations.

- Assign to each strip at most two parts of maybe different configurations.
- Assign additional space of h_{max} to each part.

- Assign to each strip at most two parts of maybe different configurations.
- Assign additional space of h_{max} to each part.

Pack the narrow items into the remaining space and on top.

Outline

Introduction

2-Approximation

AFPTAS

Conclusion

Conclusion

Theorem

There is an algorithm for MSP with absolute ratio 2.

Conclusion

Theorem

There is an algorithm for MSP with absolute ratio 2.

Theorem

In the AFPTAS the additive term $\mathcal{O}(1/\epsilon^2)$ improves to $\mathcal{O}(1)$, if the number of strips is sufficient large.

Conclusion

Theorem

There is an algorithm for MSP with absolute ratio 2.

Theorem

In the AFPTAS the additive term $\mathcal{O}(1/\epsilon^2)$ improves to $\mathcal{O}(1)$, if the number of strips is sufficient large.

Open questions

- Improving the running-time
- Different widths for the strips

Thanks for your attention.