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Multiple Strip Packing (MSP)

Formulation of the problem

Given:

I a set of n rectangles r1, . . . , rn, with heights and widths ≤ 1,

I k strips of unit width and infinite height.

Problem:
Find a non-overlapping othogonal packing without rotations into the
strips, minimizing the maximum of the heights used.
Complexity:
Strongly NP-hard by reduction to 3-Partition.
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MSP

Applications

I Computer grids

I Server consolidations

I Cutting problems
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MSP

Notation

For a list L = {r1, . . . , rn} of rectangles and k ∈ N strips S1, . . . ,Sk

I let hi denote the height of a feasible packing in Si .

I A(L) := max
i∈{1,...,k}

hi denotes the output of an algorithm A for MSP.

I OPT(L) denotes the optimal value.
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MSP

Known results

I 2-Inapproximability (Zhuk 2006)

I (2 + ε)-Approximation in O((n/ε)1/ε2
) (Ye et al. 2009)

New results

I Extension of NFDH and FFDH with same ratio

I AFPTAS

I 2-Approximation
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2-Approximation

Idea: Consider different cases for k

I k = 1: Steinberg or Schiermeyer.

I k = 2: PTAS for Rectangle Packing with Area maximization (RPA)
by Bansal et al.

I 3 ≤ k < c : Extension of the PTAS for RPA for k bins.

I k ≥ c : Asymptotic 1.69-approximation for 2-dimensional Bin Packing
by Caprara.
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k = 1

Theorem (Steinberg)

Let L = {r1, . . . , rn} be a set of rectangles with heights and widths ≤ 1. If
SIZE (L) ≤ 1 then it is possible to pack L into a rectangle
Q = [0, 1]× [0, 2]
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Rectangle Packing with Area maximization (RPA)

Formulation of the problem

Given:

I a set of n rectangles r1, . . . , rn, with heights and widths ≤ 1,

I a bin of unit size.

Problem:
Find a feasible packing of a subset L′, while maximizing the total area of
the rectangles in L′.

Theorem (Bansal et al.)

There is a polynomial-time approximation scheme for RPA.
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k = 2

Algorithm (Part I)

1. Guess the height v of an optimal solution for MSP.

2. Scale the heights of the rectangles in L by 1/v
⇒ the corresponding packing fits into [0, 1]× [0, 2].
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k=2

Binary Search for v

I heights of rectangles hi ∈ Q ⇒ ∃qi , pi ∈ N with hi = pi/qi

I v is equal to the sum of heights of rectangles in L

I for i ∈ {1, . . . , n} we have Qhi ∈ N, where Q =
n∏

i=1
qi

I Qhmax ≤ Qv ≤ Qnhmax and Qv ∈ N

⇒ log2(Qnhmax) =
n∑

i=1

log2(qi ) + log2(n) + log2(hmax) ≤ |L|
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k = 2

Consider the set of scaled rectangles in Lv as an instance of RPA with
OPTRPA(Lv ) = SIZE (Lv ) ≤ 2.

v v

S2S1 S2

v

2v
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k = 2

Algorithm (Part II)

3 Apply the algorithm of Bansal et al. for RPA with fixed accuracy
ε = 1/4.

⇒ Find a packing of a subset L′v ⊂ Lv with total area
≥ (1− ε)SIZE (Lv ) into [0, 1]× [0, 2].
Rescaling L′v gives a packing for S1 with height at most 2v .

4 Pack remaining items with Steinberg’s or Schiermeyer’s algorithm
into [0, 1]× [0, 2] and rescale them.
Possible, since SIZE (Lv\L′v ) ≤ εSIZE (Lv ) ≤ 1/2.
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k = 2

2v

vL′
v

⊂ S1

2v

v(Lv\L′
v)

⊂ S2
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3 ≤ k < c

Theorem (RPA for k bins)

For a constant number k of bins, a fixed value ε and a set of rectangles
L = {r1, . . . , rn} there is a polynomial time algorithm Ak,ε that finds a
subset L′ ⊂ L with total area at least (1− ε)SIZE (L) and a packing for L′

into k bins.

Lemma
Let k ≥ 3 and L be an instance of 2-dimensional Bin Packing with total
area SIZE (L) ≤ k/4. There exists a packing of L into k bins.
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3 ≤ k < c
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3 ≤ k < c

Algorithm (Part II)

Consider the set of resulting rectangles as an instance of RPA with k bins
and OPTRPA = SIZE (Lv ) ≤ k .

S1

v

S2

v

Sk

v

3 Apply the algorithm for RPA with k bins for a fixed accuracy ε ≤ 1/4
and find a packing for a subset L′v ⊂ Lv with total area at least
(1− ε)SIZE (Lv ). Rescale the rectangles of L′v and get k bins of
height v .
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3 ≤ k < c

Algorithm (Part III)

4 Pack the remaining items into k bins and rescale.
Possible with above Lemma, since SIZE (Lv\L′v ) ≤ εSIZE (Lv ) ≤ k/4.
This results again in k bins of height at most v .

5 Stack every two bins on top of each other.
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k ≥ c

Theorem (Caprara)

There is an asymptotic 1.69-approximation for 2-dimensional Bin Packing.

If k is large enough (≈ 128176) there is a packing of L into 2k bins.
Stack every two bins on each other.

Theorem
For arbitrary k there is a 2-approxmiation for MSP.
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AFPTAS

Theorem (Kenyon & Rémila)

There is an AFPTAS for Strip Packing with additive constant O(1/ε2).

Theorem
For arbitrary k there is an AFPTAS for MSP with additive constant
O(1/ε2).

Theorem
For ε > 0 and k ≥ d128/ε3e there is an asymptotic (1 + ε)-approximation
for MSP with additive constant O(1) with running-time polynomial in n
and 1/ε.
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Packing into a large number k of strips

I Partition L by width into Lwide(w ≥ ε′) and Lnarrow (w < ε′).

I Construct a rounded instance Lsup of the wide rectangles Lwide with
M different widths wi .

I Build configurations of widths Cj with heights xj for Lsup.

I Solve the LP

min

∑q
j=1 xj

k

s.t.

q∑
j=1

αijxj ≥ βi for all i ∈ {1, . . . ,M}

xj ≥ 0 for all j ∈ {1, . . . , q},

(LP(Lsup))

where αij is the number of rectangles of width wi in Cj

and βi is the total height of all rectangles of width wi in Lsup.

I Construct a feasible solution for Lsup by balancing configurations.

I Pack Lnarrow into the remaining space.
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Balanced configurations

From the LP solution we get a vektor (x1, . . . , xm), m ≤ M and a value h

with
∑m

j=1 xj

k = h. We can construct a fractional packing into k strips with
height ≤ (1 + ε′)h and m′ ≤ 2M different configurations

h

2h

3h

xj

εh

Cj

I Fractionally filling the
configurations leads to 2M
non-empty configurations.

I Divide each configuration Cj

with xj ≥ h into stripes of
height h.

I Divide the rest into at most 1/ε′

stripes of height ε′h.
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Balanced configurations

I Assign to each strip at most two parts of maybe different
configurations.

I Assign additional space of hmax to each part.

0

h0

(1 + ε′)h0

Cj

C`

0

h0 + hmax

(1 + ε′)h0 + 2hmax

Cj

C`

I Pack the narrow items into the remaining space and on top.
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Conclusion

Theorem
There is an algorithm for MSP with absolute ratio 2.

Theorem
In the AFPTAS the additive term O(1/ε2) improves to O(1), if the number
of strips is sufficient large.

Open questions

I Improving the running-time

I Different widths for the strips
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Thanks for your attention.
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