Static Strategies for Worksharing with Unrecoverable Interruptions

Anne Benoit, Yves Robert, Arnold Rosenberg and Frédéric Vivien

École Normale Supérieure de Lyon Yves.Robert@ens-lyon.fr http://graal.ens-lyon.fr/~yrobert

ASTEC, June 2009

Problem

- Large divisible computational workload
- Assemblage of *p* identical computers
- Unrecoverable interruptions
- A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done

Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

 \odot Fault tolerant computing (hence scheduling) becomes unavoidable

 \odot Well, same story told since very long!

Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

$\ensuremath{\textcircled{\ensuremath{\mathbb{C}}}}$ Fault tolerant computing (hence scheduling) becomes unavoidable

 \odot Well, same story told since very long!

Related work

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

$\ensuremath{\textcircled{\ensuremath{\mathbb{C}}}}$ Fault tolerant computing (hence scheduling) becomes unavoidable

☺ Well, same story told since very long!

Cycle-stealing scenario (1/2)

- Execute 4 jobs A B C D during week-end
- Replicate them on 3 machines P_1 , P_2 and P_3
- Risk increases with time
- Machines reclaimed at 8am on Monday with probability 1

Cycle-stealing scenario (1/2)

- Execute 4 jobs A B C D during week-end
- Replicate them on 3 machines P_1 , P_2 and P_3
- Risk increases linearly with time
- Machines reclaimed at 8am on Monday with probability 1

Technical framework Single remote computer Two remote computers p remote computers Beyond the linear risk model

Cycle-stealing scenario (2/2)

Beyond the linear risk model

Cycle-stealing scenario (2/2)

Technical framework Single remote computer Two remote computers p remote computers Beyond the linear risk model

Cycle-stealing scenario (2/2)

Beyond the linear risk model

Cycle-stealing scenario (2/2)

Beyond the linear risk model

Cycle-stealing scenario (2/2)

3

Technical framework Single remote computer Two remote computers p remote computers Beyond the linear risk model

Cycle-stealing scenario (2/2)

3

Dilemma: Chunking?

- Sending each remote computer large amounts of work:

 ⁽ⁱ⁾ decreases message packaging overhead
 - © maximizes vulnerability to interruption-induced losses
- Sending each remote computer small amounts of work:
 iminimizes vulnerability to interruption-induced losses
 maximizes message packaging overhead

Dilemma: Replication?

- Replicating tasks (same work sent to q ≥ 2 remote computers):
 - © lessens vulnerability to interruption-induced losses
 - © minimizes opportunities for "parallelism" and productivity
- Communication/control to/of remote computers **costly**
 - \Rightarrow orchestrate task replication statically
 - 🔅 duplicates work unnecessarily when few interruptions
 - © prevents server from becoming bottleneck
 - \odot alleviates control/replay issues

Dilemma: Replication?

- Replicating tasks (same work sent to q ≥ 2 remote computers):
 - ③ lessens vulnerability to interruption-induced losses
 - © minimizes opportunities for "parallelism" and productivity
- Communication/control to/of remote computers costly
 - \Rightarrow orchestrate task replication statically
 - 🙂 duplicates work unnecessarily when few interruptions
 - ☺ prevents server from becoming bottleneck
 - © alleviates control/replay issues

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

1 Technical framework

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

- ×

A 🕨

Interruption model

$$dPr = \begin{cases} \kappa dt & \text{for } t \in [0, 1/\kappa] \\ 0 & \text{otherwise} \end{cases}$$
$$Pr(w) = \min\left\{1, \int_0^w \kappa dt\right\} = \min\{1, \kappa w\}$$

Interruption model

$$dPr = \begin{cases} \kappa dt & \text{for } t \in [0, 1/\kappa] \\ 0 & \text{otherwise} \end{cases}$$
$$Pr(w) = \min\left\{1, \int_0^w \kappa dt\right\} = \min\{1, \kappa w\}$$

Goal: maximize expected work production

- 4 同 6 4 日 6 4 日 6

Free-initiation model (1/2)

Regimen Θ : allocate whole workload on a single computer

$$E^{(\mathrm{f})}(\mathsf{jobdone},\Theta) \;=\; \int_0^\infty \mathsf{Pr}(\mathsf{jobdone} \geq u \; \mathsf{under} \; \Theta) \; du$$

Single chunk

$$E^{(f)}(W,\Theta_1) = W(1 - Pr(W))$$

Two chunks with $\omega_1 + \omega_2 = W$

 $E^{(\mathrm{f})}(W,\Theta_2) = \omega_1(1 - \Pr(\omega_1)) + \omega_2(1 - \Pr(\omega_1 + \omega_2))$

- 4 目 ト - 4 日 ト - 4 日 ト

Free-initiation model (1/2)

Regimen Θ : allocate whole workload on a single computer

$$E^{(\mathrm{f})}(\mathsf{jobdone},\Theta) \;=\; \int_0^\infty \mathsf{Pr}(\mathsf{jobdone} \geq u \; \mathsf{under} \; \Theta) \; \mathit{du}$$

Single chunk

$$E^{(f)}(W,\Theta_1) = W(1-Pr(W))$$

Two chunks with $\omega_1 + \omega_2 = W$

 $E^{(\mathrm{f})}(W,\Theta_2) = \omega_1(1 - \Pr(\omega_1)) + \omega_2(1 - \Pr(\omega_1 + \omega_2))$

- 4 目 ト - 4 日 ト - 4 日 ト

3

Free-initiation model (1/2)

Regimen Θ : allocate whole workload on a single computer

$$E^{(\mathrm{f})}(\mathrm{jobdone},\Theta) = \int_0^\infty Pr(\mathrm{jobdone} \ge u \text{ under }\Theta) \ du$$

Single chunk

$$E^{(f)}(W,\Theta_1) = W(1-Pr(W))$$

Two chunks with $\omega_1 + \omega_2 = W$ $E^{(f)}(W, \Theta_2) = \omega_1(1 - Pr(\omega_1)) + \omega_2(1 - Pr(\omega_1 + \omega_2))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Free-initiation model (2/2)

With n chunks, maximize

$$E^{(f)}(W,n) = \omega_1(1 - Pr(\omega_1)) + \omega_2(1 - Pr(\omega_1 + \omega_2))$$
$$\cdots + \omega_n(1 - Pr(\omega_1 + \cdots + \omega_n))$$

where

$$\omega_1>0, \ \omega_2>0,\ldots, \ \omega_n>0$$

$$\omega_1 + \omega_2 + \dots + \omega_n \leq W$$

Free-initiation model (2/2)

With n chunks, maximize

$$E^{(f)}(W,n) = \omega_1(1 - Pr(\omega_1)) + \omega_2(1 - Pr(\omega_1 + \omega_2))$$

$$\cdots + \omega_n(1 - Pr(\omega_1 + \cdots + \omega_n))$$

where

$$\omega_1>0, \ \omega_2>0,\ldots, \ \omega_n>0$$

$$\omega_1 + \omega_2 + \dots + \omega_n \leq W$$

$$E^{(\mathrm{c})}(\mathrm{jobdone}) = \int_0^\infty Pr(\mathrm{jobdone} \ge u + \varepsilon) \ du.$$

Single chunk

$$E^{(c)}(W,1) = W(1 - Pr(W + \varepsilon))$$

Two chunks with $\omega_1 + \omega_2 \leq W$

 $E^{(c)}(W,2) = \omega_1(1 - Pr(\omega_1 + \varepsilon)) + \omega_2(1 - Pr(\omega_1 + \omega_2 + 2\varepsilon))$

- 4 目 ト - 4 日 ト - 4 日 ト

$$E^{(\mathrm{c})}(\mathrm{jobdone}) = \int_0^\infty Pr(\mathrm{jobdone} \ge u + \varepsilon) \ du.$$

Single chunk

$$E^{(\mathrm{c})}(W,1) = W(1 - Pr(W + \varepsilon))$$

Two chunks with $\omega_1 + \omega_2 \leq W$

 $E^{(c)}(W,2) = \omega_1(1 - \Pr(\omega_1 + \varepsilon)) + \omega_2(1 - \Pr(\omega_1 + \omega_2 + 2\varepsilon))$

- 4 目 ト - 4 日 ト - 4 日 ト

3

$$E^{(\mathrm{c})}(\mathrm{jobdone}) = \int_0^\infty Pr(\mathrm{jobdone} \ge u + \varepsilon) \ du.$$

Single chunk

$$E^{(\mathrm{c})}(W,1) = W(1 - Pr(W + \varepsilon))$$

Two chunks with $\omega_1 + \omega_2 \leq W$ $E^{(c)}(W, 2) = \omega_1(1 - Pr(\omega_1 + \varepsilon)) + \omega_2(1 - Pr(\omega_1 + \omega_2 + 2\varepsilon))$

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

э.

Relating the two models

Theorem

$$E^{(\mathrm{f})}(W,n) \geq E^{(\mathrm{c})}(W,n) \geq E^{(\mathrm{f})}(W,n) - n\varepsilon$$

1 Technical framework

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

Free-initiation model

$$E^{(f)}(W,\Theta_1) = W - \kappa W^2$$

$$\begin{split} E^{(\mathrm{f})}(W,\Theta_2) &= \omega_1(1-\omega_1\kappa) + \omega_2(1-(\omega_1+\omega_2)\kappa)) \\ &= E^{(\mathrm{f})}(W,\Theta_1) + \omega_1\omega_2\kappa \end{split}$$

$$Z = \min\left\{W, \frac{n}{n+1}\frac{1}{\kappa}\right\}$$
$$E^{(f)}(W, n) = Z - \frac{n+1}{2n}Z^2$$

Free-initiation model

$$E^{(f)}(W,\Theta_1) = W - \kappa W^2$$

$$\begin{split} E^{(\mathrm{f})}(W,\Theta_2) &= \omega_1(1-\omega_1\kappa) + \omega_2(1-(\omega_1+\omega_2)\kappa)) \\ &= E^{(\mathrm{f})}(W,\Theta_1) + \omega_1\omega_2\kappa \end{split}$$

Theorem

Optimal schedule to deploy $W \in [0, \frac{1}{\kappa}]$ units of work in *n* chunks: use identical chunks of size Z/n:

$$Z = \min\left\{W, \frac{n}{n+1}\frac{1}{\kappa}\right\}$$
$$E^{(f)}(W, n) = Z - \frac{n+1}{2n}Z^2\kappa$$

∃ ► < ∃</p>

Theorem

Optimal schedule to deploy $W \in [0, \frac{1}{\kappa}]$ units of work in *n* chunks (assume min $(W, \frac{1}{\kappa}) \geq \frac{n(n+1)}{2}\varepsilon$):

$$\omega_{1,n} = \frac{Z}{n} + \frac{n+1}{2}\varepsilon - \varepsilon$$

$$\omega_{i+1,n} = \omega_{i,n} - \varepsilon$$

$$Z = \min\left\{W, \frac{n}{n+1}\frac{1}{\kappa} - \frac{n}{2}\varepsilon\right\}$$

$$E^{(c)}(W,n) = Z - \frac{n+1}{2n}Z^2\kappa - \frac{n+1}{2}Z\varepsilon\kappa + \frac{(n-1)n(n+1)}{24}\varepsilon^2\kappa$$

・ 同 ト ・ 三 ト ・ 三 ト

Technical framework

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

- 4 E N

General shape of optimal solution

Theorem

 W_1 and W_2 assigned workloads in optimal solution:

- **1** Either $W_1 \cap W^2 = \emptyset$ or $W_1 \cup W^2 = W$
- 2 P_1 processes $W_1 \setminus W_2$ before $W_1 \cap W_2$
- **(a)** P_1 and P_2 process $W_1 \cap W_2$ in reverse order

General shape of optimal solution

Theorem

 W_1 and W_2 assigned workloads in optimal solution:

- **1** Either $W_1 \cap W^2 = \emptyset$ or $W_1 \mid W^2 = W$
- **2** P_1 processes $W_1 \setminus W_2$ before $W_1 \cap W_2$
- **(a)** P_1 and P_2 process $W_1 \cap W_2$ in reverse order

© Optimal out of reach even for 2 or 3 chunks per processor
Beyond the linear risk model

Algorithm (at most *n* chunks per computer)

If
$$W \ge \frac{2}{\kappa}$$
 then
 $\forall i \in [1, n], \ \mathcal{W}_{1,i} = \left[\frac{i-1}{n}\frac{n}{n+1}\frac{1}{\kappa}, \frac{i}{n}\frac{n}{n+1}\frac{1}{\kappa}\right]$
 $\forall i \in [1, n], \ \mathcal{W}_{2,i} = \left[W - \frac{i}{n}\frac{n}{n+1}\frac{1}{\kappa}, W - \frac{i-1}{n}\frac{n}{n+1}\frac{1}{\kappa}\right]$
If $W \le \frac{1}{\kappa}$ then
 $\forall i \in [1, n], \ \mathcal{W}_{1,i} = \mathcal{W}_{2,n-i+1} = \left[\frac{i-1}{n}W, \frac{i}{n}W\right]$
If $\frac{1}{\kappa} < W_{\kappa}^{2}$ then
 $I \leftarrow \lfloor \frac{n}{3} \rfloor$
 $\forall i \in [1, I], \ \mathcal{W}_{1,i} = \left[\frac{i-1}{l}(W - \frac{1}{\kappa}), \frac{i}{l}(W - \frac{1}{\kappa})\right]$
 $\forall i \in [1, I], \ \mathcal{W}_{2,i} = \left[W - \frac{i}{l}(W - \frac{1}{\kappa}), W - \frac{i-1}{l}(W - \frac{1}{\kappa})\right]$
 $\forall i \in [1, 2I], \ \mathcal{W}_{1,l+i} = \mathcal{W}_{2,3l-i+1} = \left[(W - \frac{1}{\kappa}) + \frac{i-1}{2l}(\frac{2}{\kappa} - W), (W - \frac{1}{\kappa}) + \frac{i}{2l}(\frac{2}{\kappa} - W)\right]$

< 回 ト < 三 ト < 三 ト

æ

Algorithm (at most *n* chunks per computer)

Theorem

Previous algorithm is:

• Optimal when $W \ge 2\frac{1}{\kappa}$:

$$E^{(\mathrm{f},2)}(W,n)=\frac{n-1}{n}\frac{1}{\kappa}\xrightarrow[n\to\infty]{}\frac{1}{\kappa};$$

2 Asymptotically optimal when $W \leq \frac{1}{r}$

$$\mathsf{E}^{(\mathrm{f},2)}(W,n) = W - \frac{W^3 \kappa^2}{6} \left(1 + \frac{3}{n} + \frac{2}{n^2}\right) \xrightarrow[n \to \infty]{} W - \frac{W^3 \kappa^2}{6};$$

Solution Asymptotically optimal when $\frac{1}{\kappa} < W < 2\frac{1}{\kappa}$

horrible formula for $E^{(f,2)}(W, n)$

$$E^{(\mathrm{f},2)}(W,n) \xrightarrow[n\to\infty]{} 2W - \frac{1}{3}\frac{1}{\kappa} - W^2\kappa + \frac{W^3\kappa^2}{6}.$$

Algorithm (at most *n* chunks per <u>computer</u>)

Technical framework Single remote computer Two remote computers

Beyond the linear risk model

Asymptotically optimal solution when $W \leq rac{1}{\kappa}$

Optimal scheduling with n chunks

3 D (3 D)

Technical framework Single remote computer Two remote computers

Beyond the linear risk model

Asymptotically optimal solution when $W \leq rac{1}{\kappa}$

Optimal scheduling with *n* chunks

$\mathcal{W}_{1,1}$	W	1,2	$W_{1,3}$	$\mathcal{W}_{1,4}$		
$\mathcal{W}_{2,4}$			$W_{2,3}$	W_2	.2	$\mathcal{W}_{2,1}$

Solution extended with (n + 1)-st chunk

Beyond the linear risk model

<u>Asymptotically optimal solution when $W \leq \frac{1}{2}$ </u>

Optimal scheduling with *n* chunks

$\mathcal{W}_{1,1}$	W	1,2	$W_{1,3}$	$\mathcal{W}_{1,4}$		
$\mathcal{W}_{2,4}$			$\mathcal{W}_{2,3}$	W_2	.2	$\mathcal{W}_{2,1}$

Solution extended with (n + 1)-st chunk

Dividing chunks so that boundaries coincide

Asymptotically optimal solution when $W < \frac{1}{2}$

Optimal scheduling with *n* chunks

$\mathcal{W}_{1,1}$	W	1,2	$W_{1,3}$	$\mathcal{W}_{1,4}$		
$\mathcal{W}_{2,4}$			$W_{2,3}$	W_2	.2	$\mathcal{W}_{2,1}$

Solution extended with (n + 1)-st chunk

Dividing chunks so that boundaries coincide

Solution returned by algorithm with 2n + 1 equal-size chunks

Technical framework

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

- 4 E N

• Difficult \Rightarrow only heuristics!

- Partition
 - workload into slices
 - resources into groups
- Replicate each slice on every processor in its group

- Difficult ⇒ only heuristics!
- Partition
 - workload into slices
 - resources into groups

• Replicate each slice on every processor in its group

A 🕨

- Difficult ⇒ only heuristics!
- Partition
 - workload into slices
 - resources into groups
- Replicate each slice on every processor in its group

- Difficult ⇒ only heuristics!
- Partition
 - workload into slices
 - resources into groups
- Replicate each slice on every processor in its group

Partitioning

• Small $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

• Large $W \ge p \frac{1}{\kappa}$: p independent slices of size $\frac{1}{\kappa}$

General case ¹/_κ < W < p¹/_κ:
partition work into q = [Wκ] slices of size sl = W/q
deploy these q slices to disjoint subsets of computers
replicate each slice on either |p/q| or [p/q] computers

Partitioning

• Small $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

• Large $W \ge p \frac{1}{\kappa}$: p independent slices of size $\frac{1}{\kappa}$

General case ¹/_κ < W < p¹/_κ:
 partition work into q = [Wκ] slices of size sl = W/q
 deploy these q slices to disjoint subsets of computers
 replicate each slice on either [p/q] or [p/q] computers

Partitioning

• Small $W \leq \frac{1}{\kappa}$: single slice, replicated on all p computers

• Large
$$W \ge p \frac{1}{\kappa}$$
: p independent slices of size $\frac{1}{\kappa}$

- General case ¹/_κ < W < p¹/_κ:
 partition work into q = ⌈Wκ⌉ slices of size sl = W/q
 deploy these q slices to disjoint subsets of computers
 - replicate each slice on either $\lfloor p/q \rfloor$ or $\lceil p/q \rceil$ computers

Orchestrating

Chunk	1	2	3	4	5	6	7	8	9	10	11	12
<i>P</i> ₁	1	6	9	12	2	5	8	11	3	4	7	10
<i>P</i> ₂	12	1	6	9	11	2	5	8	10	3	4	7
<i>P</i> ₃	9	12	1	6	8	11	2	5	7	10	3	4
P ₄	6	9	12	1	5	8	11	2	4	7	10	3

Time-steps for execution of n = 12 chunks with g = 4 processors

3

Chunk	1	2	3	4	5	6	7	8	9	10	11	12
<i>P</i> ₁	1	6	9	12	2	5	8	11	3	4	7	10
<i>P</i> ₂	12	1	6	9	11	2	5	8	10	3	4	7
<i>P</i> ₃	9	12	1	6	8	11	2	5	7	10	3	4
<i>P</i> ₄	6	9	12	1	5	8	11	2	4	7	10	3

Group 1	Group 2	Group 3
chunks 1-4	chunks 5-8	chunks 9-12
1	2	3
6	5	4
9	8	7
12	11	10

Time-steps for group execution

3

Group 1	Group 2	Group 3
1	2	3
6	5	4
9	8	7
12	11	10

æ

Group 1	Group 2	Group 3
1	2	3
6	5	4
9	8	7
12	11	10
\downarrow		

All four executions fail with probability proportional to $1 \times 6 \times 9 \times 12$

E 5 4

< 177 ▶

All four executions fail with probability proportional to $2\times5\times8\times11$

Group 1	Group 2	Group 3
1	2	3
6	5	4
9	8	7
12	11	10
		\downarrow

All four executions fail with probability proportional to $3\times 4\times 7\times 10$

All four executions fail with probability proportional to $3 \times 4 \times 7 \times 10$

$$\mathsf{K} = \sum_{j=1}^{\frac{n}{\mathsf{g}}} \prod_{i=1}^{\mathsf{g}} G_{i,j} = 1.6.9.12 + 2.5.8.11 + 3.4.7.10$$

Better performance for small K

Scheduling objective

$$E(\mathsf{sl},\mathsf{n}) = \mathsf{sl}\left(1 - \frac{\mathsf{g}}{\mathsf{n}}\left(\frac{\mathsf{sl}\kappa}{\mathsf{n}}\right)^{\mathsf{g}}\sum_{j=1}^{rac{\mathsf{n}}{\mathsf{g}}}\prod_{i=1}^{\mathsf{g}}G_{i,j}
ight)$$

Problem

Minimize

$$\mathsf{K} = \sum_{j=1}^{\frac{\mathsf{n}}{\mathsf{g}}} \prod_{i=1}^{\mathsf{g}} \mathsf{G}_{i,j}$$

where entries of G are a permutation of [1..n]

Bound

$$\mathsf{K}_{\mathsf{min}} = \left\lceil \frac{\mathsf{n}}{\mathsf{g}}(\mathsf{n}!)^{\frac{\mathsf{g}}{\mathsf{n}}} \right\rceil$$

- 4 回 ト - 4 回 ト

Heuristics (1/3)

Group 1	Group 2	Group 3		
1	2	3		
4	5	6		
7	8	9		
10	12			
(a) Cyclic: K = 3104				

Group 1	Group 2	Group 3		
1	2	3		
6	5	4		
9	8	7		
12 11 10				
(b) Reverse: K = 2368				

æ

Heuristics (2/3)

Group 1	Group 2	Group 3			
1	2	3			
4	5	6			
9	8	7			
12 11 10					
(c) Mirror: K = 2572					

Group 1	Group 2	Group 3					
1	2	3					
6	5	4 9					
7	8						
12	11	10					
(d) Snake: K = 2464							

æ

Heuristics (3/3)

Group 1	Group 2	Group 3					
1	2	3					
8	6	4 5					
9	7						
10	11	12					
(e) Worm: K = 2364							

3

Image: A matrix

Comparing group schedules for n = 9 and g = 3

くほと くほと くほと

Technical framework Single remote computer Two remote computers premote computers Beyond the linear risk model

Comparing group schedules for n = 20 and g = 4

1	2	3	4	5		1	2	3	4	5	1	2	3	4	5
6	7	8	9	10		6	7	8	9	10	10	9	8	7	6
11	12	13	14	15		15	14	13	12	11	15	14	13	12	11
16	17	18	19	20		20	19	18	17	16	20	19	18	17	16
$K_{cyclic} = 34104 \qquad \qquad K_{mirror} = 27284$					k	rever	se =	243	96						
1	2	3	4	5	1	1	2	3	4	5	1	2	3	4	5
10	9	8	7	6		14	12	10	8	6	10	9	8	7	6
11	12	13	14	15		15	13	11	9	7	15	14	13	12	11
20	19	18	17	16		16	17	18	19	20	20	19	18	16	17
ł	ζ_{snak}	$_{e} =$	2578	34		I	≺ _{worr}	m =	2427	'6	k	(greed	_{ły} =	2439	90

 $K_{min} = 23780$

米国 とくほとくほど

3

A nice little algorithmic challenge

	Group 1	Group 2	Group 3	 Group n
P_1	х	х	Х	 Х
P_2	х	х	х	 х
P_3	х	х	х	 х
P_4	х	х	х	 х
P_p	х	х	х	 х

Fill up matrix with a **permutation of** $[1..n \times p]$ minimizing the **sum of column products**

Simulations: Experimental Plan

- $\kappa = 1$, random interruptions with uniform distribution
- p = 5, 10, 25, 50, or 100
- *W* = 0.3*p* or 0.7*p*
- *n* = 47, 97, 147, or 197
- $\varepsilon = 0.1, 0.01, 0.001$, or 0.0001

Replication factor

W = 1: each computer can potentially do all the work

W = p: deploy one different slice of size 1 on each computer

Simulations: Experimental Plan

- $\kappa = 1$, random interruptions with uniform distribution
- p = 5, 10, 25, 50, or 100
- W = 0.3p or 0.7p
- *n* = 47, 97, 147, or 197
- $\varepsilon = 0.1, 0.01, 0.001$, or 0.0001

Replication factor

W = 1: each computer can potentially do all the work W = p: deploy one different slice of size 1 on each computer

Simulations: Heuristics

- H1-brute- Replicates entire workload onto all computers
- H2-norep- Distributes work in round-robin fashion, no replication
- H3-cyclic rep– Distributes work in round-robin fashion \rightarrow keeps distributing chunks until local workload is 1
- H4-random rep- Distributes a total workload of 1 to each computer \rightarrow chooses (distinct) chunks & their order randomly

H5-groupgreedy– Our favorite candidate 🙂

H6-omniscient– Statically knows when each computer is interrupted \rightarrow returns maximal work that could be done

Simulations: Results

Simulations: Results

37/42

Technical framework

- 2 Single remote computer
- 3 Two remote computers
- *p* remote computers
- 5 Beyond the linear risk model

Technical framework Single remote computer Two remote computers *p* remote computers Beyond the linear risk model

A couple of theorems . . .

General risk, free initiation model

With 1 computer *n* same-size chunks \Rightarrow asymptotically optimal as $n \rightarrow +\infty$

With 2 computers *n* same-size chunks, reverse order \Rightarrow asymptotically optimal as $n \rightarrow +\infty$
... Some trace-based simulations ...

Traces

- SDSC: 5678 availability durations from a desktop grid
- UCB : 19276 availability durations from 53 DEC workstations
- UT: 1898 availability durations from 31 Sun workstations
- ... (5 more)

Normalize so that longest availability interval is 1

 $Pr(trace, t) = \frac{\text{Number of availability durations in trace that are shorter than t}}{\text{Number of availability durations in trace}}$

... And a last plot for the road

Statistics over all 608000 instances

Yves.Robert@ens-lyon.fr

Conclusion

- Turned out much more difficult than expected (☺ or ☺?)
- Extension to resources with different risk functions
- Extension to resources with different computation capacities
- Master-slave approach with communication costs
- Comparison with dynamic approaches

• Prove that little permutation problem is NP-hard!!!!!!!