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Going to ASTEC

Through a complex road network, what should you do ?

national roads ?

highways ?

Trade-off

national roads are cheaper but slower

highways are faster but expensive (toll and oil)

No best solution, only different trade-offs.

Complex problem

several roads

variable speed (but no more than the limit)

Driving at low speed on highway is inefficient.
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Multi-Objective in Computing Systems

Several trade-offs in modern computing systems:

Computation time

Power consumption

Real-time constraints

Reliability

Memory consumption

Image quality/Refresh rate

Latency/Bandwidth

Scheduling

Allocate a set of tasks onto machines (processors) respecting a set of
constraints to optimize a performance index.
Broad literature on single objective optimization.
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Definitions - Problem

Multi objective scheduling problem

Let m be the number of processors, denoted by P1, . . . , Pm. Let n be the
number of task, denoted by t1, . . . , tn , with processing time pi,j for task ti
on processor Pj .
The multi-objective optimization problem consists of finding starting times
σ(i) for all tasks and a function π that maps tasks to processors (π(i) = j
if ti is scheduled on Pj), such that the processors compute jobs one at a
time:

∀i, i′ if π(ti) = π(ti′) then Ci ≤ σ(i′) or Ci′ ≤ σ(i)

and the objective functions are minimized:

min
(
f1(π, σ(1), . . . , σ(n)), . . . , fk(π, σ(1), . . . , σ(n))

)
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Definitions - Optimality

S1

S2

S3

f2

f1

Pareto dominance (Partial Order)

S1 Pareto dominates S2 if S1 is not worse than S2 on all dimensions and
better on at least one.
Otherwise they are Pareto independent, such as S1 and S3.
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f2

f1

Pareto optimal solution

A Pareto non-dominated solution.
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Definitions - Optimality

S4

f2

f1

Weak Pareto optimality

S4 is a Weak Pareto optimal solution if no solution is strictly better than
S4 on all the dimensions.
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Definitions - Optimality

f2

f1

Pareto set

The set of Pareto optimal solutions.
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How to Solve a Multi Objective Problem ?

Three main methods :

Lexicographical Ordering

Objective functions are totally ordered: Lex(f1, f2, . . . , fk).

S1 < S2 ⇔ (f1(S1) < f1(S2))∨(f1(S1) = f1(S2) ∧ f2(S1) < f2(S2))∨ . . .

∨ (f1(S1) = f1(S2) ∧ · · · ∧ fk−1(S1) = fk−1(S2) ∧ fk(S1) < fk(S2))

Aggregation

Optimizes an aggregation function (usually linear):
f(S) = α1f1(S) + α2f2(S) + · · ·+ αkfk(S)

ε-Constraint

ε(f1, . . . , fk−1\fk): Given parameters ω1, . . . , ωk−1, find the solution S
that minimizes fk such that f1(S) ≤ ω1, . . . , fk−1(S) ≤ ωk−1.
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Classical Method: Lexicographical Ordering

f2

f1

Only a few solutions are reachable (and no tradeoff solutions).
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Classical Method: Linear Aggregation

f2

f1
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Classical Method: Linear Aggregation, drawbacks

f1

f2
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Classical Method: Linear Aggregation, drawbacks

f1

f2

Reachable solutions are said to be supported (or extreme).
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Classical Method: ε-constraint

f2

f1
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Classical Method: ε-constraint

Good points

Allows the enumeration of the Pareto set.

If the ε-constraint problem is polynomial and the cardinality of the
Pareto set is polynomial, enumerating the Pareto set can be done in
polynomial time.

In fact, ε-constraint is even equivalent to the enumeration.

Bad points

Solving each subproblem is generally an NP-Hard problem.

The cardinality of the set is generally exponential.

Need for approximation!

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 12 / 51



Classical Method: ε-constraint

Good points

Allows the enumeration of the Pareto set.

If the ε-constraint problem is polynomial and the cardinality of the
Pareto set is polynomial, enumerating the Pareto set can be done in
polynomial time.

In fact, ε-constraint is even equivalent to the enumeration.

Bad points

Solving each subproblem is generally an NP-Hard problem.

The cardinality of the set is generally exponential.

Need for approximation!

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 12 / 51



Classical Method: ε-constraint

Good points

Allows the enumeration of the Pareto set.

If the ε-constraint problem is polynomial and the cardinality of the
Pareto set is polynomial, enumerating the Pareto set can be done in
polynomial time.

In fact, ε-constraint is even equivalent to the enumeration.

Bad points

Solving each subproblem is generally an NP-Hard problem.

The cardinality of the set is generally exponential.

Need for approximation!

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 12 / 51



Approximating

Mono-objective approximation

Well defined: S is a ρ-approximation if f(S) ≤ ρf∗

Multi-objective approximation

definition needed!
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Approximating

Mono-objective approximation

Well defined: S is a ρ-approximation if f(S) ≤ ρf∗

Multi-objective approximation

S is a ρ = (ρ1, . . . , ρk)-approximation of the Zenith if for all objective
o, fo(S) ≤ ρof∗o (sometimes called simultaneous approximation).

P is a ρ = (ρ1, . . . , ρk)-approximation of the Pareto set P ∗ if
∀S∗ ∈ P ∗,∃S ∈ P , for all objective o, fo(S) ≤ ρoS∗ [PY00]
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Multi-Objective Approximation

f2

f1
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Multi-Objective Approximation

Z
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Multi-Objective Approximation

Z

≤ ρ2f2Z

≤ ρ1f1Z

f2

f1
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Multi-Objective Approximation

f2x
ρ2

f2x

f1x
f1x
ρ1

f2

f1
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How to obtain a Zenith approximation ?

ad hoc methods

degradation control

combining solutions [SW97]

parametric algorithm (1 + ∆, 1 + 1
∆)-approximation
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How to obtain a Pareto set approximation ?

〈
ρ1, ρ2

〉
-approximation algorithm

Given a parameter ω, a
〈
ρ1, ρ2

〉
-approximation algorithm Algo returns a

solution S such that f1(S) ≤ ρ1ω and f2(S) ≤ ρ2f
ω−,∗
2 where fω−,∗2 is the

best value of f2 in solution such that f1 ≤ ω.

(ρ1 + ε, ρ2)-approximation of the Pareto set [PY00]

ωi = (1 + ε
ρ1

)ifmin1

Si = Algo(ωi)
imax = log1+ ε

ρ1

fmax1

fmin1

return {S1, . . . , Simax}
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Pareto set approximation : [PY00]

f1

f2

S∗
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Pareto set approximation : [PY00]
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Generalities on 1 || Lmax,
∑
Ci

The problem

One processor, n tasks having deadline di to optimize both
∑
Ci and

maxiCi − di.

On
∑
Ci

1 ||
∑
Ci is solved by the Shortest Processing Time (Smith’s rule).

On Lmax
1 || Lmax reduces to 1 | di | ∅ using a binary search (the same is true for
1 || Lmax = k).
1 | di | ∅ is solved by Earliest Deadline First (Jackson’s rule).
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The ε constraint problem: ε(Lmax\
∑
Ci)

1 | di |
∑
Ci

Can be solved using the backward Smith’s rule: From the latest deadline
to the first one, schedule the largest job available

Bounding the number of Pareto optimal solutions

Pareto optimal solutions can be reached by local improvement: there is
less than n2 of them.[Hoo04]

Enumeration can be done in polynomial time
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Motivation

Physic applications

In the LHC, simulation tasks generate huge amount of data. Storage is a
key issue as changing/cleaning hard-drives takes a long time. [CBB+05]

Embedded Systems

Application graphs are scheduled onto a MPSoC. Processing times are
worst-case evaluations. The makespan is optimized at run-time by
changing the processor executing the task. Code size on a processor in a
MPSoC is limited. [CKC07]
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Model

Instance

A set of tasks T = {t1, . . . , tn}
m processors

Processing time pi
Memory consumption si

A memory limit Mmax

(A precedence constraint graph G)

Solution

A function π allocating tasks to processors.

A function σ allocating tasks to times.

Memory constraint: maxj
∑

π(i)=j si ≤Mmax

Optimize Cmax, the date when the last task finishes.
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Complexity

No memory constraint

Optimizing the makespan is NP -hard. But there exists approximation
algorithms: LPT is a 4

3 -approximation algorithm and there exists a PTAS.

Our case

Deciding whether there is a solution or not is NP -complete. Thus, no
polynomial approximation algorithm could be derived (unless P = NP ).

⇒ What could we do ?
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A Classical Solution

Dealing with NP -Complete Decision Problems

Two techniques:

deriving structural properties

consider the optimization problem and derive approximation properties

A Bi-objective Optimization Problem

Transform the memory constraint into an objective
Mmax = maxj

∑
π(i)=j si

Minimize Cmax and Mmax

Notice: the problem is still NP-Complete. Approximation is needed.
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Zenith approximation

Z

≤ ρ2f2Z

≤ ρ1f1Z

f2

f1
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Mixing Two Schedules

The SBO algorithm

Let us have 2 schedules SM and SC , each one optimal on one objective.
For all i, if si

M∗max
≤ pi

C∗max
schedule i according to SC . Or schedule i

according to SM otherwise.

Cmax Mmax

1

3

4

2

1

2

3

4

i

j

j

i

SC SM

i is scheduled on processor 1. j is scheduled on processor 4.
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SBO’s property

Property

C
(SBO)
max ≤ 2C∗max (and M

(SBO)
max ≤ 2M∗max)

Proof:

������
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������
������

��������
��������
��������
��������

Cmax

TMTC

Pj

If si
M∗max

≤ pi
C∗max

, then i is scheduled according to Sc, SM otherwise.∑
i∈TC pi ≤ C

∗
max∑

i∈TM pi ≤
∑

i∈TM
siC
∗
max

M∗max
≤ C∗max

M∗max

∑
i∈Tm si ≤ C

∗
max∑

i∈Pj pi ≤
∑

i∈TC pi +
∑

i∈TM pi ≤ 2C∗max
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Enhanced Version

Corolary

SBO is a (2, 2)-approximation of the Zenith

Adding a parameter

Add a ∆ parameter. The comparison becomes “if si
M∗max

≤ ∆ pi
C∗max

”.

Using non-optimal schedules

When SM (resp. SC) is a ρM -approximation (resp ρC-approximation).
The comparison becomes “if si

Mmax(Sm) ≤ ∆ pi
Cmax(SC)”.

Properties

SBO∆ is a ((1 + 1
∆)ρC , (1 + ∆)ρM )-approximation algorithm of the

Zenith.
using a PTAS : (1 + 1

∆ + ε, 1 + ∆ + ε)
using LPT: (4

3(1 + 1
∆), 4

3(1 + ∆)).
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The (3
2 ,

3
2) Impossibility

A particular instance

3 tasks. (1, ε), (ε, 1), (1− ε, 1− ε). Only 3 Pareto optimal solutions:

ε
11− ε

1

ε 1
1− ε

1 + ε

ε
1

1− ε

2− ε

Inapproximability

When ε goes to 1
2 , values of Pareto optimal solutions goes to

(1, 3
2), (3

2 ,
3
2), (3

2 , 1). There is no algorithm better than (3
2 ,

3
2).

It does not rely on P 6= NP assumption
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The (1 + i
km , 1 + (m− 1)(1− i

k)) Impossibility

The instance

k + 1 tasks. (1, ε) and k tasks: (ε, 1
k ) Only k + 1 Pareto optimal solutions:

1

ε
1 1 1 1

ε

1 + i
kk − i tasks

i tasks

Inapproximability

The idea extends to m processors:
There is no algorithm better than
(1 + i

km , 1 + (m− 1)(1− i
k )),∀k ≥ 2, 0 ≤ i ≤ k
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Summing Up

1

2

3

1 2 3 4
ρC

ρ
M
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Restricted List Scheduling

Precedence graph G

RLS∆

Compute a lower bound LB on memory.

Select a ready task i.

Mark processors with memory usage greater than ∆LB − si
Schedule i on the unmarked processor that will complete it the
soonest

Loop until the end of the DAG.
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RLS’s properties

Property

There is less than
⌊

m
∆−1

⌋
marked processors for ∆ ≥ 2.

Proof: argument based on the area

Theorem

RLS∆ is a (2 + 1
∆−2 −

∆−1
m(∆−2) ,∆)-approximation algorithm of the Zenith.

Proof: Graham analysis on the unmarked processors

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 34 / 51



RLS’s properties

Property

There is less than
⌊

m
∆−1

⌋
marked processors for ∆ ≥ 2.

Proof: argument based on the area

Theorem

RLS∆ is a (2 + 1
∆−2 −

∆−1
m(∆−2) ,∆)-approximation algorithm of the Zenith.

Proof: Graham analysis on the unmarked processors

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 34 / 51



Outline

1 Introduction

2 Definitions and General Methods

3 The 1 || Lmax,
∑
Ci Problem

4 Memory Constraint

5 Fault Tolerance

6 Conclusion
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Motivation

Non-safe systems

Hardware breakdown

Cosmic rays (ECC memory)

In Grid computing

more processors, more failures

maintenance operations

power outage

Critical Embedded Systems

Car braking systems, Avionic, Aeronautic, ...

Real-time Constraints

No error allowed
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A Bunch of Models

Architecture

Heterogeneous processors

(Fully connected network of processors)

(Communication according to the delay model)

(An application DAG)

Failures

transient

fail-silent

statistically independent

(only affect computations)

occur following a Poisson’s process
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Formal definitions

The Scheduling Problem

A set T of n tasks (with dependencies)

A set of m processors

Task i on processor j is computed in pij time units

Failures on j follow a Poisson’s process of parameter λj :

P (i, j) = e−λjpij

A solution is composed of two functions:

π, a spatial allocation (π(i) is the set of processors scheduling i)

σ, temporal allocation (σ(i, j) is the starting time of i on j)

Objective functions

The makespan Cmax

The reliability rel, the probability of success of the application
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Computing the reliability

In general

rel(π, σ) =
∏
i(P (i is ok)).

Without duplication

rel(π, σ) =
∏
i

(
exp−λπ(i)pi,πi

)
.

With duplication

rel(π, σ) =
∏
i∈T

(
1− (

∏
j∈π(i) 1− P (i, j))

)
=∏

i∈T

(
1− (

∏
j∈π(i) 1− exp−λπ(i)pi,j )

)
Remark: Does not depend on starting time
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Inapproximability of the Zenith

Theorem

The zenith solution can not be approximated within a constant factor

Idea of the proof

One task, two processors.
The first is fast but unreliable.
The second is slow but very reliable.
No existing tradeoff

Z

unbounded

u
n
b
o
u
n
d
e
d

Cmax

rel
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Pareto Set Approximation

f2x
ρ2

f2x

f1x
f1x
ρ1

f2

f1
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Independent Task no Replication on Uniform Machines

Properties

Processor capabilities are linked by their speed. pij = piτj .

The reliability becomes : rel = e−
P
i∈T λπ(i)τπ(i)pi

CMLT

Dual approximation: looking for a schedule of Cmax ≤ ω
Sort task in non increasing order of pi
Schedule greedily each task on the processor j that minimizes λjτj
under two constrains pi,j ≤ ω and C(j) ≤ ω
If no such processor exist, reject ω.

time

low τjλj

ω

high τjλj
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CMLT

Rejection

If CMLT rejects the makespan then no such solution exists.

The proof shows a set of task that can not be scheduled on the processor
using a area argument.

Lemmas

Cmax ≤ 2ω
rel is optimal (among schedule with Cmax ≤ ω)

The makespan bound is direct from the algorithm.
The reliability optimality comes from the overloading of reliable processors.

Theorems

CMLT is a
〈
2, 1
〉
-approximation algorithm.

Using CMLT, one can construct a (2 + ε, 1)-approximation of the Pareto
set.
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Tasks on Homogeneous Processors with Duplication

Property

rel(π) =
∏
i∈T

(
1− (1− exp−λπ(i)pi)|π(i)|)

Remarks

Reliability does not depend on the actual schedule but only on the number
of copies of each task are scheduled.
Reliability is difficult to analyze. So let’s compute it!

A Dynamic Programming Formulation

R(C, n) = maxj∈M
(
R(C − jpn , n − 1)

(
1− (1− exp−λπ(i)pn)j)

))
.

R(C, 0) = 1 if C ≥ 0 and 0 otherwise.
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To Approximation Algorithm

Scaling technique

By scaling the processing time, it is possible to keep the computation
volume below (1 + ε)C and obtaining optimal reliability.

Algorithm

Dual approximation: looking for a schedule of Cmax ≤ ω.

Let C = ωm.

Use the scaled DP to get the number of copies ri of each task.

Schedule the ri copies of each task on different processors using List
Scheduling.

Theorem

This algorithm is a
〈
2 + ε, 1

〉
-approximation algorithm.
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Why use multi objective approximation ?

It allows to study/tackle more complex problem.

With such properties :

Really multi-objective

Impossible to approximate due to strong constraints

Complex objective function that can be expressed as an increasing
aggregation

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 47 / 51



How to study a multi objective problem ?

The important questions :

What about the mono objective sub problems ?

What is the complexity of the multi objective decision problem ?

What is the shape of the Pareto set ?
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Most of the time solve the next question.

What is the complexity of the multi objective decision problem ?

If NP-Complete, approximation is needed.
Caution: all mono objective versions may be polynomial, but the multi
objective one still can be NP-Complete.

What is the shape of the Pareto set ?

Cardinality ? Maximum values Convex ? Concave ?
If its size is exponential, approximation is needed.
If the interesting objective values are unbounded, Pareto set
approximation is not polynomial.
If it is not convex, linear aggregation is a bad idea.
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How to solve a multi-objective optimization problem ?

Optimally in polynomial time

If the cardinality of the Pareto set is bounded and if the ε constraint
problem can be solved in polynomial time.

Approximating the Zenith

look for inapproximability bound (not complexity results)

mixing several solutions

most of the time it reuses the mono objective arguments

Approximating the Pareto set

there could be no Zenith approximation possible

if the size of the objective values are polynomial

when the cardinality of the Pareto set is exponential.

close to dual approximation techniques
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What’s next ?

Multi-objective as a field to study

Methods and concept come from the study of various problems

Studying other applicative problems could lead to new results

link between Zenith and Pareto set approximation ?

What about problems where the information is incomplete ?

Most algorithms use a global knowledge of the instance.

How to deal with Online or Distributed problems ?

How to derive a Pareto set approximation ?

What about links with other theory ?

Mainly, with Game Theory.

Truthfulness, Equity, Jealousy, ...

If players rewards are not unidimensional
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Going Further

Presented Things

General: [Hoo04, TB07, DRST09]

Memory constraint: [SDM08]

Fault Tolerant: [JST08, DJSS07, GST09, ST09]

Other Things

Polynomial Problems: [Hoo04, TBE07]

Zenith Approximation:
[SW97, BFM06, RSTU02, ARSY99, CMNS97, BBL04, ABF07]

Pareto Approximation: [PY00, ST93, ABG05, ABK01]

Power Aware: [GM02, Bun06, AF06]

Pipelined execution: Ask Anne ! :)

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 51 / 51



E. Angel, E. Bampis, and A. V. Fishkin.
A note on scheduling to meet two min-sum objectives.
Operation Research Letters, 35(1):69–73, 2007.

E. Angel, E. Bampis, and L. Gourvès.
Approximation results for a bicriteria job scheduling problem on a
single machine without preemption.
Information Processing Letters, 94(1):19–27, April 2005.

E. Angel, E. Bampis, and A. Kononov.
A FPTAS for approximating the unrelated parallel machines
scheduling problem with costs.
In Proceeding of European Symposium on Algorithms (ESA), pages
194–205, 2001.

S. Albers and H. Fujiwara.
Energy-efficient algorithms for flow time minimization.
In Springer LNCS, editor, Proceedings of the 23rd International
Symposium on Theoretical Aspects of Computer Science, volume
3884, pages 621–633, 2006.

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 51 / 51



J. Aslam, A. Rasala, C. Stein, and N. Young.
Improved bicriteria existence theorems for scheduling.
In SODA ’99: Proceedings of the tenth annual ACM-SIAM
symposium on Discrete algorithms, pages 846–847, 1999.

F. Baille, E. Bampis, and C. Laforest.
A note on bicriteria schedules with optimal approximations ratios.
Parallel processing letters, 14(2):315–323, 2004.

Vittorio Bil, Michele Flammini, and Luca Moscardelli.
Pareto approximations for the bicriteria scheduling problem.
JPDC, 66(3):393–402, 2006.

D. Bunde.
Power-aware scheduling for makespan and flow.
In Proceedings of the 18th Symposium of Parallelim in Algorithms and
Architecture, pages 190–196, 2006.

S. Campana, D. Barberis, F. Brochu, A. De Salvo, F. Donno,
L. Goossens, S. Gonzalez de la Hoz, T. Lari, D. Liko, J. Lozano,

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 51 / 51



G. Negri, L. Perini, G. Poulard, S. Resconi, D. Rebatto, and
L. Vaccarossa.
Analysis of the atlas rome production experience on the lhc computing
grid.
In E-SCIENCE ’05: Proceedings of the First International Conference
on e-Science and Grid Computing, pages 82–89, Washington, DC,
USA, 2005. IEEE Computer Society.

P. Choudhury, R. Kumar, and P. P. Chakrabarti.
Hybrid scheduling of dynamic task graphs with selective duplication
for multiprocessors under memory and time constraints.
IEEE Transactions on Parallel and Distributed Systems, (preprint),
2007.

C. Chekuri, R. Motwani, B. Natarajan, and C. Stein.
Approximation techniques for average completion time scheduling.
In SODA ’97: Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, pages 609–618, 1997.

J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi.

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 51 / 51



Bi-objective scheduling algorithms for optimizing makespan and
reliability on heterogeneous systems.
In SPAA ’07: Proceedings of the nineteenth annual ACM symposium
on Parallelism in algorithms and architectures, pages 280–288. ACM
press, June 2007.

P-F Dutot, K. Rzadca, E. Saule, and D. Trystram.
Introduction to Scheduling, chapter Multi-objective approximation.
2009.

R. GrayBill and R. Melhem, editors.
Power Aware Computing.
Series in Computer Science. Kluwer Academic/Plenum Publishers,
New York, May 2002.

Alain Girault, Erik Saule, and Denis Trystram.
Reliability versus performance for critical applications.
JPDC, 69(3):326–336, March 2009.

H. Hoogeveen.
Multicriteria scheduling.

Erik Saule (BMI) Multi-Objective Scheduling ASTEC 09 51 / 51



European Journal of Operational Research, 167(3):592–623,
December 2004.

E. Jeannot, E. Saule, and D. Trystram.
Bi-objective approximation scheme for makespan and reliability
optimization on uniform parallel machines.
In Euro-Par 2008. LNCS, August 2008.

C. H. Papadimitriou and M. Yannakakis.
On the approximability of trade-offs and optimal access of web
sources.
In FOCS, editor, 41st Annual Symposium on Foundations of
Computer Science, pages 86–92, 2000.

A. Rasala, C. Stein, E. Torng, and P. Uthaisombut.
Existence theorems, lower bounds and algorithms for scheduling to
meet two objectives.
In SODA ’02: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 723–731, 2002.

E. Saule, P.-F. Dutot, and G. Mounié.
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