
Inter-Processor Communication in
SoC Systems for Intensive Fine-

Grain Data Sharing

Marek Tudruj, Łukasz Maśko

Institute of Computer Science Polish Academy of Sciences
Polish-Japanese Institute of Information Technology

Warsaw, Poland

Contents:

● Programs with architecture supported regions
● Assumed system architecture
● Program execution details:

● Reads on the fly
● Processor switching between clusters.
● Communication on the fly

● Program graph representation
● Simulation results
● Conclusions

Program graph with architecturally-
supported regions

Subgr.2

Subgr.1
B

Irregular nodes (glue)

B
Subgr.4

Subgr.3
B

B

Architecturally supported
subgraphs

Architecturally supported
subgraphs

One
processor
subgraph

P1 P2 Pn

P1 P2 Pn

Initialization of an architecturaly-
supported subgraph

 Subgr.2

 Subgr.1

B

Architecturaly-supported
 subgraphs GlueGlue

System on Chip technology

● Systems on Chip (SoC) technology offers new
implementation perspectives for parallel
processing.

● Processor centric SoC design has been replaced
by interconnect-centric design.

● In the next several years the number of
processors in SoC systems will increase up to
hundreds and thousands.

● Reconsidering the problem of massively parallel
systems has received a technical background.

System architecture

Global
Network

(Peer – to –
peer)

M

M

P P

Local
Network
(NoC)

M

M

P P

Local
Network
(NoC)

M

M

P P

Local
Network
(NoC)

M

M

P P

Local
Network
(NoC)

SoC

SoC

SoC

SoC

System architecture

Module CMP

Local communication network L2 data
cache

Bank 1
Bus

arbiter

Core 1

Bank M
Bus

arbiter

Instruction cache

Instruction
memory

L1 Data cache
L1 Data cache

Core N

Instruction cache

Local synchronization path

L1 Data cache
L1 Data cache

Local bus

Local bus

Cluster 1

Instruction
memory

Shared
data

memory

BRC

BRC

BRC

BRC

NIC

SoC implementation

Processor

Arbiter L2

Global

Network

Processor

Processor Processor

Arbiter

Arbiter

L2

L2

Connect
& snoop

circuits

New architecture to reduce data
communication time

● Introduction of shared L2 caches.
● Communication on the fly on memory to

memory transfers.

General system structure
with L1/L2 cache

CMP

CMP

Local
network
(NoC)

L2 L2

C+L1

Global network
(peer-to-peer)

C+L1

NIC

Shared
memory
modules

CMP

Local
network
(NoC)

L2 L2

C+L1

C+L1

NIC

Shared
memory
modules

CMP

Local
network
(NoC)

L2 L2

C+L1

C+L1

NIC

Shared
memory
modules Local

network
(NoC)

L2 L2

C+L1

C+L1

NIC

Shared
memory
modules

CMP module internal structure

Module CMP
i

Local communication network L2 data
cache

Bank 1
Bus

arbiter

Core 1

Bank M
Bus

arbiter

Instruction cache

Instruction
memory

L1 Data cache
L1 Data cache

Core N

Instruction cache

Local synchronization path

L1 Data cache
L1 Data cache

Local bus

Local bus

Cluster 1

NIC

Instruction
memory

Shared
data

memory

X-Bar

BRC

BRC

BRC

BRC

NIC

 Module CMP
j

Global synchronization path

Reads on the fly

● The objective is to avoid multiple reads of
the same data through a bus.

● Capturing data written by one processor on
a memory bus by other processors (similar
to cache injection).

● Synchronisation of the writing processor
with reading processors is required.

Reads on the fly (cont.)

● Activities of reading processors:
● deposing read requests to processor’s BRCs,
● execution of a barrier,
● reading data to the processor’s data cache

during write operation on the memory bus.
● Activities of the writing processor:

● barrier initialisation,
● deposing the write request to the processor

BRC.

We switch processors between
clusters because:

● more processors can be needed to work in a
target cluster on locally shared data,

● a processor can be supposed to carry data from
one cluster to another for local use,

● a processor can be supposed to catch data in a
cluster to be used in computation.

Processor switching is controlled by bus arbiters.

Communication on the fly

Communication on the fly is composed of :
● processor switching into a cluster with its

data cache contents,
● synchronisation of all reads with the write

in the target cluster,
● data write and data reads on the fly in the

cluster at the same time.

Program graph notation

● A program graph G=(V,E) consists of two sets of
nodes: “standard” nodes (V

s
) and “architectural”

nodes (V
a
), such that V=V

s
∪V

a
, V

s
∩V

a
=∅.

● The edges correspond to data transmissions
between the nodes from V

s
 and V

a
 or activation

edges.
● The standard nodes are called program graph

“glue nodes” since they usually provide
computational interface between execution of
subsequent architectural nodes of the graph.

Graph representation of programs
Extended Macro Data Flow Graph

EMDFG

T6

T3
T4

Cluster 1.0 Cluster 2.0

MDFG

R3
R6 R4

CA2

T6

W4

T3 T4

W3

Cluster 2.0

EMDFG

T5

T2
T1

R1

R2

CA1

T5

W2

T1 T2

W1

Cluster 1.0

Graph representation of programs

Read on the fly

ARBITER

R1 R2

0.5
0.7

0.5

write

barrier

P1 P2 P3

Section

R1
1

R1
2

Read request

Read execution

Initialization of an architecturaly-
supported subgraph

 Subgr.1

 Subgr.2

Architecturaly-supported
 subgraphs

B

RL1 RL1

RqL2

RL1RL1

RqL2

RL2

RL2 RL2

RqL2

RL1

B

MM

WM

W2

RqL1RqL1

B

MM

WM

W2

BB

GlueGlue

The aim of the algorithm

● The algorithm schedules standard nodes to
“general purpose” CMPs (GCMPs) and
architectural nodes to architectural CMPs
(ACMPs).

● It aims at minimal program execution time by
equal loads of all available resources.

● A program graph ideal execution:
● The program execution progress in standard

and architectural CMP nodes is similar.
● Both kinds of nodes are evenly distributed

across a program graph.

Notation (cont.)

● A standard graph node corresponds to a
classical, single-processor task in a macro
dataflow program graph. It will be basically
executed by one of processors in a GCMP
module in a system. Such node can be also
executed by a processor from an architectural
CMP if necessary.

● Architectural graph nodes correspond to parallel
subgraphs, for which a programmer denotes, that
they are „regular” subgraphs and which should
be executed using one of ACMPs in a system.

Outline of the algorithm

The algorithm is based on list scheduling with the ETF
heuristics with additional priorities of graph nodes.

● The priorities decide on the order in which program
graph nodes are taken into account by the scheduling
algorithm.

Two types of priorities (1st and the 2nd level) are defined.
● The 1st level priorities are assigned to standard and

architectural graph nodes, which are equally distant in
paths from the beginning of the program graph.

● The 2nd level priorities are assigned to architectural
nodes which are strongly bound by the activating glue
nodes.

Priority notation

● The first level priority of a node v (denoted as
pr

1
(v)) is based on topological properties of the

graph.
● The second level of priorities (denoted as pr

2
(v))

is introduced to distinguish the nodes, which
have the same 1st – level prioririty.

● For two nodes u and v (both must be either
architectural or standard), pr(u)<pr(v) ⇔
pr

1
(u)<pr

1
(v) ∨ (pr

1
(u)=pr

1
(v) ∧ pr

2
(u)<pr

2
(v)).

1st – level priority

The 1st – level priority aims at division of a set of
architectural nodes into layers used to schedule the
program nodes in the breadth-first-way.
● Each layer contains a subset of nodes, which are

pairwise independent, i.e. there is no data
dependency between any two of them.

● The scheduling algorithm tries to schedule nodes
layer-by-layer.

● The layers are created using program graph paths
analysis.

Assignment of the 1st – level
priorities

● To compute 1st – level priorities, an “architectural task
graph” G

r
=(V

r
,E’) is defined:

● nodes correspond to regular tasks in graph G.
● For two nodes u,v V∈

r
, an edge u→v exists in G

r
, if

there is a directed path between these two nodes in
original graph G such that this path contains only
standard nodes.

● For each u V∈
r
, priority of node u is equal to its depth

in graph G
r (the number of nodes on the longest path

leading to this node from one of the nodes which
have no predecessors in G

r
).

Priorities for standard nodes

● Priorities for standard nodes depend on
priorities of architectural nodes.

● For each v V∈
s
, we determine a set X⊆V

a
of

nodes such that there exists a path from
node v to each of these nodes. If X is not
empty, the priority of node v is equal to
minimal priority over the nodes from X and
is equal to max(pr

1
(u V∈

r
))+1 otherwise.

A layer of nodes

ARCHITECTURAL
TASKS

STANDARD TASKS
(„GLUE”)

Standard ETF scheduling

GCMP1 ACMP2 ACMP3

2nd – level priority asignment

● The 2nd – level priority aims at division of
nodes in layers determined by the 1st –
level priority, into subsets in such way, that
we can obtain equal, high load of all
computational resources in the system.

● Each node subset contains no more
architectural nodes, than the number of
ACMPs in the system dedicated for parallel
execution of architectural nodes of the
program graph.

Assignment of the 2nd – level
priorities (notation)

● U be a set of architectural nodes, which
have the same 1st-level priority. Let p=0 be
the first value of 2nd priority for this set.

● For each u from U we define X
u
 as a set of

standard nodes v with the same 1st-level
priority as u, such, that there is a directed
path from v to u, and which doesn’t have a
2nd -level priority assigned yet.

How sets X
u
 are defined

Assignment of the 2nd – level
priorities

Let p=0 be the first value of priority for this set.
While U is not empty {

Determine X
u
 sets for all nodes from U.

Determine a subset V of architectural nodes from U
chosen to be assigned priority p and X

V
 as a sum of

sets X
v
 for all v V.∈

Assign pr
2
(u)=p for all nodes u from V∪X

V
.

Remove architectural nodes from V from set U.
Let p=p+1

}

Selection of nodes to the V subset

Let V=∅ and X
V
=∅

while (|V| is smaller then the number of resources for architectural
nodes) {

if V is empty {
for all tasks u from U

{ Schedule a subgraph X
u
 on available resorces

dedicated for execution of standard nodes, using ETF-
based list scheduling. }

Select such node u from U, for which its X
u
 set gives the

shortest schedule in the previous step.
} else

{ Select node u from U such, that X
u
∩X

V
 is the biggest. }

 Let V=V∪{u} and X
V
=X

V
∪X

u

}

Result of scheduling with 2nd – level
priorities assigned

GCMP1 ACMP2 ACMP3

Strassen’s matrix multiplication

() ()
()

()
()

()
() ()
() ()

623122

5312

4221

754111

222122127

121111216

2212115

1121224

2212113

1122212

221122111

MMMMC

MMC

MMC

MMMMC

BBAAM

BBAAM

BAAM

BBAM

BBAM

BAAM

BBAAM

+−+=
+=
+=

+−+=

+⋅−=
+⋅−=

⋅+=
−⋅=
−⋅=

⋅+=
+⋅+=







=





•






2221

1211

2221

1211

2221

1211

CC

CC

BB

BB

AA

AA

Numerical examples: Strassen’s
matrix multiplication

A2* A1* A9* A10* A5* A6* A7* A8* A4* A3*

M2* M1* M7* M3* M4* M5* M6*

A11* A14* A12* A16* A17* A13*

A15* A18*

Start

End

3,2 P3 3,1 P9 3,3 P5 3,0 P8

A3 P3 A9 P9 A5 P5 A8 P8 A1 P1

4,1 P4 4,0 P2 4,2 P7 4,3 P10

A4 P4 A10 P10 A6 P6 A7 P7 A2 P2

M3 P5 M4 P6 M5 P7 M6 P8 M7 P9 M1 P1 M2 P3

A15 P3

A14 P9 A12 P5 A17 P6 A13 P8 A16 P7 A11 P3

A18 P8

11,0 P3 11,1 P7 11,2 P6 11,3 P8

From M1*

15,0 P3 15,1 P7 15,2 P6 15,3 P8

From A1.2*

A4* A3*

A11*

A15*

M2*

Mem2 Mem1
Subgr
0.2

Subgr
2.1

3,2 P3 3,1 P9 3,3 P5 3,0 P8

A3 P3 A9 P9 A5 P5 A8 P8 A1 P1

4,1 P4 4,0 P2 4,2 P7 4,3 P10

A4 P4 A10 P10 A6 P6 A7 P7 A2 P2

M3 P5 M4 P6 M5 P7 M6 P8 M7 P9 M1 P1 M2 P3

A15 P3

A14 P9 A12 P5 A17 P6 A13 P8 A16 P7 A11 P3

A18 P8

11,0 P3 11,1 P7 11,2 P6 11,3 P8

From M1*

15,0 P3 15,1 P7 15,2 P6 15,3 P8

From A1.2*

A4* A3*

A11*

A15*

M2*

Mem2 Mem1
Sec0.2

Sec2.1

Numerical examples: Strassen’s matrix
multiplication – graph transformations

3.2 P3 3.1 P93.3 P5 3.0 P8

A3 P3 A9 P9A5 P5 A8 P8A1 P1

W3 W5 W9 W8

R
8

R1,2
R

1,1
R

9
R

5

R
3

Subgr. 0.1

A3*

3.2 P3 3.1 P93.3 P5 3.0 P8

A3 P3 A9 P9 A5 P5 A8 P8 A1 P1

W3 W5 W9 W8

R8 R1,2 R1,1 R9 R5 R3

B1 B2 B3 B4

Subgr. 0.1

A3*

Numerical examples: Strassen’s matrix
multiplication – graph transformations

A14 P9A11 P3

M7 P9M1 P1M2 P3

Section 0.2

R1 R2

W

A14 P9A11 P3

M7 P9M1 P1M2 P3

Section 0.2

R11 R14

W

B1

Numerical examples: Strassen’s matrix
multiplication – graph transformations

A16 P7 A13 P8 A17 P6

M5 P7 M6 P8

Section 2.1

M3 P5 M4 P6

A12 P5

R16

W4 W3

R12

W5 W6

R13 R17

Numerical examples: Strassen’s matrix
multiplication – graph transformations

A17 P6 A13 P8A16 P7

M5 P7 M6 P8

Section 2.1

M3 P5 M4 P6

A12 P5

Mem2

W6

R17
B2

Mem1

W3

R16
B1

W4

R12
B3

W5

R13
B4

A: 10 busses per CMP, with processor switching and data transfers on the fly.

B: 10 buses per CMP, with processor switching, without transfers on the fly.

C: 1 bus perCMP, no processor switching, no data transfers on the fly.

recursion processors matrix size architecture
level used per processor variant 1 to 2 1 to 4 1 to 8

A 6,59 6,25 5,70
B 6,52 6,14 5,52
C 4,89 3,77 2,62
A 30,19 22,12 14,55
B 28,91 20,79 13,43
C 18,72 13,56 8,21

A 65,9% 62,5% 57,0%
B 65,2% 61,4% 55,2%
C 48,9% 37,7% 26,2%
A 43,1% 31,6% 20,8%
B 41,3% 29,7% 19,2%
C 26,7% 19,4% 11,7%

2 70 64

communication to computation ratio

Speedup

1 10 128

2 70 64

Efficiency

1 10 128

Speedup and efficiency for parallel
Strassen’s matrix multiplication of the

size 256 in multiple CMPs

A: 10 busses per CMP, with processor switching and data transfers on the fly.

B: 10 buses per CMP, with processor switching, without transfers on the fly.

C: 1 bus perCMP, no processor switching, no data transfers on the fly.

recursion processors matrix size architecture
level used per processor variant 1 to 2 1 to 4 1 to 8

A 6,92 6,85 6,71
B 6,91 6,82 6,66
C 6,48 6,03 5,30
A 43,94 39,96 33,86
B 43,42 39,12 32,66
C 38,74 23,82 21,22

A 69,2% 68,5% 67,1%
B 69,1% 68,2% 66,6%
C 64,8% 60,3% 53,0%
A 62,8% 57,1% 48,4%
B 62,0% 55,9% 46,7%
C 55,3% 34,0% 30,3%

communication to computation ratio

Speedup

Efficiency

512

1 10 1024

2 70 512

1 10 1024

2 70

Speedup and efficiency for parallel
Strassen’s matrix multiplication of the

size 2048 in multiple CMPs

Numerical examples: Strassen’s matrix
multiplication – graph transformations

3.2 P3 3.1 P93.3 P5 3.0 P8

A3 P3 A9 P9A5 P5 A8 P8A1 P1

W3 W5 W9 W8

R
8

R1,2
R

1,1
R

9
R

5

R
3

Subgr. 0.1

A3*

3.2 P3 3.1 P93.3 P5 3.0 P8

A3 P3 A9 P9 A5 P5 A8 P8 A1 P1

W3 W5 W9 W8

R8 R1,2 R1,1 R9 R5 R3

B1 B2 B3 B4

Subgr. 0.1

A3*

● Execution with architecture-supported CMP modules is 5-
6 times faster, depending on the speed of the local
communication.

Conclusions

● The proposed architecture with dynamic shared memory
clusters, communication on the fly and dual-ported data
caches is efficient for communication in fine grain and
coarse grain parallel computations.

● Communication on the fly can eliminate many
transactions on intra-cluster and inter-cluster data
transmission networks.

● In the matrix multiplication example, all standard
communication could be replaced by communication and
reads on the fly, also communication through the global
network could be eliminated .

Conclusions (cont.)

● Parallelization efficiency from 0.88 to 0.68 was observed
for execution of small size matrix 64x64 multiplication
with fine parallel grain determined by 32x32 to 8x8 serial
multiplications.

● Parallelization efficiency from 0.88 to 0.59 was observed
for execution of larger size matrix 2048x2048
multiplication with parallel grain size from 1024x1024 to
128x128.

● That confirms high potential of the proposed solutions for
designing parallel systems for numerical computations of
synchronous character.

● The proposed architecture is convergent with current
technology trends.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47

