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System on Chip technology

● Systems on Chip (SoC) technology offers new 
implementation perspectives for parallel 
processing.

● Processor centric SoC design has been replaced 
by interconnect-centric design.

●  In the next several years the number of 
processors in SoC systems will increase up to 
hundreds and thousands. 

● Reconsidering the problem of massively parallel 
systems has received a technical background. 



System architecture
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System architecture
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SoC implementation
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New architecture to reduce data 
communication time

● Introduction of shared L2 caches.
● Communication on the fly on memory to 

memory transfers.



General system structure
with L1/L2 cache
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CMP module internal structure
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Reads on the fly 

● The objective is to avoid multiple reads of 
the same data through a bus. 

● Capturing data written by one processor on 
a memory bus by other processors (similar 
to cache injection).

● Synchronisation of the writing processor 
with reading processors is required. 



Reads on the fly (cont.)

● Activities of reading processors:
● deposing read requests to processor’s BRCs,
● execution of a barrier,
● reading data  to the processor’s data cache 

during write operation on the memory bus. 
● Activities of the writing processor:

● barrier initialisation,
● deposing the write request to the processor 

BRC. 



We switch processors between 
clusters because:

● more processors can be needed to work in a 
target cluster on locally shared data,

● a processor can be supposed to carry data from 
one cluster to another for local use,

● a processor can be supposed to catch data in a 
cluster to be used in computation.

Processor switching is controlled by bus arbiters.



Communication on the fly

Communication on the fly is composed of :
● processor switching into a cluster with its 

data cache contents,
● synchronisation of all reads with the write 

in the target cluster,
● data write and data reads on the fly in the 

cluster at the same time.



  

Program graph notation

● A program graph G=(V,E) consists of two sets of 
nodes: “standard” nodes (V

s
) and “architectural” 

nodes (V
a
), such that V=V

s
∪V

a
, V

s
∩V

a
=∅.

● The edges correspond to data transmissions 
between the nodes from V

s
  and  V

a
 or activation 

edges. 
● The standard nodes are called program graph 

“glue nodes” since they usually provide 
computational interface between execution of 
subsequent architectural nodes of the graph.



Graph representation of programs
Extended Macro Data Flow Graph

EMDFG
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Graph representation of programs

Read on the fly
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Initialization of an architecturaly-
supported subgraph
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The aim of the algorithm

● The algorithm schedules standard nodes to 
“general purpose”  CMPs (GCMPs) and 
architectural nodes to architectural CMPs 
(ACMPs).

● It  aims at minimal program execution time by 
equal loads of all available resources.

● A program graph ideal execution:
● The  program execution progress in standard 

and architectural CMP nodes is similar.
● Both kinds of nodes are evenly distributed 

across a program graph.



  

Notation (cont.)

● A standard graph node corresponds to a 
classical, single-processor task in a macro 
dataflow program graph. It  will be basically 
executed by one of processors in a GCMP 
module in a system. Such node can be also 
executed by a processor from an architectural 
CMP if necessary.

● Architectural graph nodes correspond to parallel 
subgraphs, for which a programmer denotes, that 
they are „regular” subgraphs and which should 
be executed using one of ACMPs in a system.



  

Outline of the algorithm

The algorithm is based on list scheduling with the ETF  
heuristics with additional priorities of graph nodes.

● The priorities decide on the order in which program 
graph nodes are taken into account by the scheduling 
algorithm.

Two types of priorities (1st and the 2nd level) are defined.
● The 1st level priorities are assigned to standard and 

architectural graph nodes, which are equally distant in 
paths from the beginning of the program graph.

● The 2nd level priorities are assigned to architectural 
nodes which are strongly bound by the activating glue 
nodes. 



  

Priority notation

● The first level priority of a node v (denoted as 
pr

1
(v)) is based on topological properties of the 

graph.
● The second level of priorities (denoted as pr

2
(v)) 

is introduced to distinguish the nodes, which 
have the same 1st – level prioririty.

● For two nodes u and v (both must be either 
architectural or standard), pr(u)<pr(v) ⇔ 
pr

1
(u)<pr

1
(v) ∨ (pr

1
(u)=pr

1
(v) ∧ pr

2
(u)<pr

2
(v)).



  

1st – level priority

The 1st – level priority aims at division of a set of 
architectural nodes into layers used to schedule the 
program nodes in the breadth-first-way.
● Each layer contains a subset of nodes, which are 

pairwise independent, i.e. there is no data 
dependency between any two of them.

● The scheduling algorithm tries to schedule nodes 
layer-by-layer.

● The layers are created using program graph paths 
analysis.



  

Assignment of the 1st – level 
priorities

● To compute 1st – level priorities, an “architectural task 
graph” G

r
=(V

r
,E’) is defined:

● nodes correspond to regular tasks in graph G.
● For two nodes u,v V∈

r
, an edge u→v exists in G

r
, if 

there is a directed path between these two nodes in 
original graph G such that this path contains only 
standard nodes.

● For each u V∈
r
, priority of node u is equal to its depth 

in graph G
r (the number of nodes on the longest path 

leading to this node from one of the nodes which 
have no predecessors in G

r
).



  

Priorities for standard nodes

● Priorities for standard nodes depend on 
priorities of architectural nodes.

● For each v V∈
s
, we determine a set X⊆V

a 
of 

nodes such that there exists a path from 
node v to each of these nodes. If X is not 
empty, the priority of node v is equal to 
minimal priority over the nodes from X and 
is equal to max(pr

1
(u V∈

r
))+1 otherwise.
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Standard ETF scheduling

GCMP1 ACMP2 ACMP3



  

2nd – level priority asignment

● The 2nd – level priority aims at division of 
nodes in layers determined by the 1st – 
level priority, into subsets in such way, that 
we can obtain equal, high load of all 
computational resources in the system.

● Each node subset contains no more 
architectural nodes, than the number of 
ACMPs in the system dedicated for parallel 
execution of architectural nodes of the 
program graph.



  

Assignment of the 2nd – level 
priorities (notation)  

● U be a set of architectural nodes, which 
have the same 1st-level priority. Let p=0 be 
the first value of 2nd priority for this set.

● For each u from U we define X
u
 as  a set of 

standard nodes v with the same 1st-level 
priority as u, such, that there is a directed 
path from v to u, and which doesn’t have a 
2nd -level priority assigned yet.



  

How sets X
u
 are defined



  

Assignment of the 2nd – level 
priorities  

Let p=0 be the first value of priority for this set.
While U is not empty {

Determine X
u
 sets for all nodes from U.

Determine a subset V of architectural nodes from U 
chosen to be assigned priority p and X

V
 as a sum of 

sets X
v
 for all v V.∈

Assign pr
2
(u)=p for all nodes u from V∪X

V
.

Remove architectural nodes from V from set U.
Let p=p+1

}



  

Selection of nodes to the V subset

Let V=∅ and X
V
=∅

while (|V| is smaller then the number of resources for architectural 
nodes) {

if V is empty {
for all tasks u from U

{ Schedule a subgraph X
u
 on available resorces 

dedicated for execution of standard nodes, using ETF-
based list scheduling. }

Select such node u from U, for which its X
u
 set gives the 

shortest schedule in the previous step.
} else

{ Select node u from U such, that X
u
∩X

V
 is the biggest. }

 Let V=V∪{u} and X
V
=X

V
∪X

u

}



  

Result of scheduling with 2nd – level 
priorities assigned

GCMP1 ACMP2 ACMP3



Strassen’s matrix multiplication
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Numerical examples: Strassen’s 
matrix multiplication
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Numerical examples: Strassen’s matrix 
multiplication – graph transformations
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Numerical examples: Strassen’s matrix 
multiplication – graph transformations
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Numerical examples: Strassen’s matrix 
multiplication – graph transformations

 

A16  P7 A13  P8 A17  P6 

M5   P7 M6   P8 

 
Section 2.1  

M3   P5 M4   P6 

A12  P5 

R16 

W4 W3 

R12 

W5 W6 

R13 R17 



Numerical examples: Strassen’s matrix 
multiplication – graph transformations
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A: 10 busses per CMP, with processor switching and data transfers on the fly.

B: 10 buses per CMP, with processor switching, without transfers on the fly. 

C: 1 bus perCMP, no processor switching, no data transfers on the fly. 

recursion processors matrix size architecture
level used per processor variant 1 to 2 1 to 4 1 to 8

A 6,59 6,25 5,70
B 6,52 6,14 5,52
C 4,89 3,77 2,62
A 30,19 22,12 14,55
B 28,91 20,79 13,43
C 18,72 13,56 8,21

A 65,9% 62,5% 57,0%
B 65,2% 61,4% 55,2%
C 48,9% 37,7% 26,2%
A 43,1% 31,6% 20,8%
B 41,3% 29,7% 19,2%
C 26,7% 19,4% 11,7%

2 70 64

communication to computation ratio

Speedup

1 10 128

2 70 64

Efficiency

1 10 128

Speedup and efficiency for parallel 
Strassen’s matrix multiplication of the 

size 256 in multiple CMPs



A: 10 busses per CMP, with processor switching and data transfers on the fly.

B: 10 buses per CMP, with processor switching, without transfers on the fly. 

C: 1 bus perCMP, no processor switching, no data transfers on the fly. 

recursion processors matrix size architecture
level used per processor variant 1 to 2 1 to 4 1 to 8

A 6,92 6,85 6,71
B 6,91 6,82 6,66
C 6,48 6,03 5,30
A 43,94 39,96 33,86
B 43,42 39,12 32,66
C 38,74 23,82 21,22

A 69,2% 68,5% 67,1%
B 69,1% 68,2% 66,6%
C 64,8% 60,3% 53,0%
A 62,8% 57,1% 48,4%
B 62,0% 55,9% 46,7%
C 55,3% 34,0% 30,3%

communication to computation ratio

Speedup

Efficiency

512

1 10 1024

2 70 512

1 10 1024

2 70

Speedup and efficiency for parallel 
Strassen’s matrix multiplication of the 

size 2048 in multiple CMPs



Numerical examples: Strassen’s matrix 
multiplication – graph transformations

3.2  P3 3.1  P93.3  P5 3.0  P8

A3  P3 A9  P9A5  P5 A8  P8A1  P1

W3 W5 W9 W8

R
8

R1,2
R

1,1
R

9
R

5

R
3

Subgr. 0.1

A3*

 

3.2  P3 3.1  P93.3  P5 3.0  P8 
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● Execution with architecture-supported CMP modules is 5-
6 times faster, depending on the speed of the local 
communication.



Conclusions

● The proposed architecture with dynamic shared memory 
clusters, communication on the fly and dual-ported data 
caches is efficient for communication in fine grain and 
coarse grain parallel computations.

● Communication on the fly can eliminate many 
transactions on intra-cluster and inter-cluster data 
transmission networks.

● In the matrix multiplication example, all standard 
communication could be replaced by communication and 
reads on the fly, also communication through the global 
network could be eliminated .



Conclusions (cont.)

● Parallelization efficiency from 0.88 to 0.68 was observed 
for execution of small size matrix 64x64 multiplication 
with fine parallel grain determined by 32x32 to 8x8 serial 
multiplications.

● Parallelization efficiency from 0.88 to 0.59 was observed 
for execution of larger size matrix 2048x2048 
multiplication with parallel grain size from 1024x1024 to 
128x128. 

● That confirms high potential of the proposed solutions for 
designing parallel systems for numerical computations of 
synchronous character. 

● The proposed architecture is convergent with current 
technology trends. 
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