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Scheduling in an M/G/1 Queue

]
] <‘ server
]
service requirement

— Poisson arrivals with rate A. Service requirements are i.i.d. with
distribution F(x)=P[X < x]. Complementary cumulative distribution

denoted by F(x)=1—F(x)
— Attained service is known (total service requirement unknown)

— Optimality criterion: Mean number of jobs in the system



Monotonous Hazard Rate

— Hazard rate of a distribution function: h(x)dx=P[x< X < x+dx | X > X]

4 1/(x-a) uniform
h(x)= f(x) cons. exponential
1-F(x)
oc1/x for Pareto
» X

— IHR: Non-preemptive discipline (FCFS etc.)
— Exponential: M/M/1 Mean number of jobs is policy independent

— DHR: Least Attained Service (LAS) is optimal. The job(s) who has
attained the least amount of service is served.



Which scheduling when HR not
monotonous?

— Assume that the distribution is defined in an interval [k,«)? for example a

Pareto-type distribution (1, 0<x<k
Fx)= (k)"
(X) <(£j . X>k
X
h(x) 4 )
X
X k » X

— If the support is bounded, that is, if F(x)=1 for all p<x ?



Optimal discipline for general service
requirements

— Gittins’ index policy.
* To each job present in the system, assign an index equal to

f(a+A)

D> O Sy >

G(a)=supJ(a,A) where J(a,A)=
" [Fla+a)

0

* Pick the job with highest index value, and assign him a service quota A*(a)

A(a)=inf{A>0|G(a)=J(a,A)}

* Another job will start being served when:
» The previously selected job receives A*(a) units of service
» The previously selected job departs from the system
= A new job arrives to the queue



Gittins optimal policy

— Introduced by Sevcik [1974] for static scheduling. Optimality in
Stochastic setting by Gittins [1989].

— Theorem [Gittins]. The index policy minimizes the
mean number of jobs in the system among all non-
anticipating scheduling policies



Properties of Gittins

— Theorem: For all a < x < a+A*(a),
— G(x) 2 G(a)
— X+A*(X) < at+A*(a)

Sketch of the proof: Take a=0 and let A*(0)=argmax, {J(0, A)}. For all 0 <
x < A*(0), there exists a function p(x) <1 such that

J(0,4%(0))=p(x) J(0, x) *+ (1-p(x)) J(x,A%(0)-x).
But J(0,A*(0))2J(0,x), thus J(x,A*(0)-x) = J(0,A*(0)).

Now it follows that

G(x) 2 J(x,A%(0)-x) 2 J(0,4%(0)) = G(0).



Gittins index policy

— Theorem: The scheduling discipline that at any time
assigns an infinitesimal quota to the job with highest
G(x) is equivalent (sample-pathwise) to the Gittins
policy

— For non-anticipative disciplines, the hazard rate suffices to

characterize the optimal scheduling discipline.
A

— Theorem: For any attained service a=0,

J(a,A)
6(a)=hla-+ &'(a) /\

>

A

Sketch of the proof: 8% J (a, A) =0=J (a, A (a)): h(a + A*(a))



— Theorem: If the distribution is of type DHR, Least-
Attained-Service minimizes the mean number of
jobs in the system

— Sketch of the proof:

* For any fixed a, J(a,A) is decresing with respect to A.
* Then for all a, G(a)=J(a,0)=h(a), and note that h(a) is decreasing

— Similar result for IHR



CDHR(k) or Pareto-type distributions

— 3 assumptions:
* A1: h(x) is constant for all x <Kk,

* A2: h(x) is decreasing for all x = k.
* A3: h(0) < h(k).

h(x)

>




— Proposition. Assume that the service time distribution
belongs to the class CDHR(k).

* (i) If assumption A3 is not satisfied, then G(x) is decreasing
for all x.

* (ii) If assumption A3 is satisfied, then,
» G(x) 2G(0) for all x < 6 and 6 >k,
» G(8) < G(0), and
» G(x) is decreasing for all x = ©.

G(x)4

G(0)




— Theorem: Assume that the service time distribution belongs to
CDHR(k).
* (i) If assumption A3 is not satisfied, then LAS is optimal.

* (ii) If assumption A3 is satisfied, then there is 8 > k such that
FCFS+ LAS(09) is optimal. The precise value of 6 depends only on
the parameters of the service time distribution.

— FCFS+LAS(9)
* Classify jobs into two classes depending on the amount of attained service

= High Priority: Jobs that have obtained less service than 6

= Low Priority: Jobs that have obtained more service than 6

* High Priority jobs served according to FCFS and Low Priority with LAS

NEW arrivals ———  — High Priority (FCFS)

Low Priority (LAS)



Numerical example: Pareto
distribution with k=1 and o =2
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Impact of an upper bound bounded
distribution: Bounded Pareto
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Gittins index for Bounded Pareto

Gittins index G(a)
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Conclusion and future research

— In the set of non-anticipative disciplines, the hazard rate
characterizes completely the optimal policy.

— Application of index policy for scheduling in multi-server
systems?
* How to cope with non work conserving property of networks?

— And with time-varying server capacity like in wireless systems?

— Scheduling in a G/G/1 queue. LAS and FCFS (with DHR and
IHR respectively). What if hazard-rate is not monotone?

— Calculate performance metrics for a given function G(a).
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