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Scheduling in an M/G/1 Queue

– Poisson arrivals with rate λ. Service requirements are i.i.d. with 
distribution F(x)=P[X ≤ x]. Complementary cumulative distribution 
denoted by 

– Attained service is known (total service requirement unknown)

– Optimality criterion: Mean number of jobs in the system
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Monotonous Hazard Rate

– Hazard rate of a distribution function: h(x)dx=P[x< X ≤ x+dx | X > x]

– IHR: Non-preemptive discipline (FCFS etc.)
– Exponential: M/M/1 Mean number of jobs is policy independent
– DHR: Least Attained Service (LAS) is optimal. The job(s) who has 

attained the least amount of service is served.
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– Assume that the distribution is defined in an interval [k,∞)? for example a 
Pareto-type distribution

– If the support is bounded, that is, if F(x)=1 for all p≤x ? 

Which scheduling when HR not 
monotonous?
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Optimal discipline for general service 
requirements

– Gittins’ index policy. 
• To each job present in the system, assign an index equal to     

where

• Pick the job with highest index value, and assign him a service quota Δ*(a)

• Another job will start being served when:
The previously selected job receives Δ*(a) units of service
The previously selected job departs from the system
A new job arrives to the queue
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Gittins optimal policy

– Introduced by Sevcik [1974] for static scheduling. Optimality in 
Stochastic setting by Gittins [1989].

– Theorem [Gittins]. The index policy minimizes the 
mean number of jobs in the system among all non-
anticipating scheduling policies



Properties of Gittins

– Theorem: For all a ≤ x ≤ a+Δ*(a), 
– G(x) ≥ G(a)
– x+Δ*(x) ≤ a+Δ*(a) 

Sketch of the proof: Take a=0 and let Δ*(0)=argmaxΔ {J(0, Δ)}. For all 0 ≤
x ≤ Δ*(0), there exists a function p(x) ≤1 such that

J(0,Δ*(0))=p(x) J(0, x) + (1-p(x)) J(x,Δ*(0)-x).
But J(0,Δ*(0))≥J(0,x), thus J(x,Δ*(0)-x) ≥ J(0,Δ*(0)). 

Now it follows that

G(x) ≥ J(x,Δ*(0)-x) ≥ J(0,Δ*(0)) = G(0).



Gittins index policy

– Theorem: The scheduling discipline that at any time 
assigns an infinitesimal quota to the job with highest 
G(x) is equivalent (sample-pathwise) to the Gittins
policy

– For non-anticipative disciplines, the hazard rate suffices to 
characterize the optimal scheduling discipline.

– Theorem: For any attained service a≥0, 

Sketch of the proof:
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– Theorem: If the distribution is of type DHR, Least-
Attained-Service minimizes the mean number of 
jobs in the system

– Sketch of the proof: 
• For any fixed a, J(a,Δ) is decresing with respect to Δ.
• Then for all a, G(a)=J(a,0)=h(a), and note that h(a) is decreasing

– Similar result for IHR

G(x)=h(x)
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CDHR(k) or Pareto-type distributions

– 3 assumptions:
• A1: h(x) is constant for all x < k,
• A2: h(x) is decreasing for all x ≥ k.
• A3: h(0) < h(k).
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– Proposition. Assume that the service time distribution 
belongs to the class CDHR(k).

• (i) If assumption A3 is not satisfied, then G(x) is decreasing 
for all x.

• (ii) If assumption A3 is satisfied, then,
G(x) ≥G(0) for all x < θ and θ >k,
G(θ) ≤ G(0), and
G(x) is decreasing for all x ≥ θ.

G(x)

k x

G(0)

θ



– Theorem: Assume that the service time distribution belongs to 
CDHR(k).

• (i) If assumption A3 is not satisfied, then LAS is optimal.
• (ii) If assumption A3 is satisfied, then there is θ > k such that 

FCFS+ LAS(θ) is optimal. The precise value of θ depends only on 
the parameters of the service time distribution.

– FCFS+LAS(θ)
• Classify jobs into two classes depending on the amount of attained service

High Priority: Jobs that have obtained less service than θ
Low Priority: Jobs that have obtained more service than θ

• High Priority jobs served according to FCFS and Low Priority with LAS

Low Priority (LAS)

High Priority (FCFS)New arrivals



2 3 4 5 6 7 8
Threshold

0.825

0.85

0.875

0.9

0.925

0.95

0.975

1

M
e
a
n

d
e
l
a
y

r
a
t
i
o

Numerical example: Pareto 
distribution with k=1 and α =2
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Impact of an upper bound bounded 
distribution: Bounded Pareto
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Gittins index for Bounded Pareto
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Conclusion and future research

– In the set of non-anticipative disciplines, the hazard rate 
characterizes completely the optimal policy.

– Application of index policy for scheduling in multi-server 
systems?

• How to cope with non work conserving property of networks?

– And with time-varying server capacity like in wireless systems?

– Scheduling in a G/G/1 queue. LAS and FCFS (with DHR and 
IHR respectively). What if hazard-rate is not monotone?

– Calculate performance metrics for a given function G(a).
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