
Optimisation dans les r éseaux :

de l’approximation polynomiale
à la th éorie des jeux

Fanny PASCUAL

Encadrants : Eric ANGEL et Evripidis BAMPIS

IBISC, université d’Évry Val d’Essonne

– p.1

Networks

A network: “set of entities connected by links”.

Optimization problems:

e.g. routing problem, scheduling problem.

– p.2

Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work

– p.3

Classical combinatorial optimization problems

Given:� A set of instances (data)� For each instance: a set of feasible solutions� An objective function

Our goal:

Find the best solution for the objective function.

– p.4

Example

Given:� a set of tasks: 31 2 4

2 machines:

time0 1 2 3 4 5 6 7

M1
M2

� we have to schedule the tasks on the machines

Goal:
Minimize the completion time of the last task (makespan).

time0 1 2 3 4 5 6 7

3

1

2

4M1
M2

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2

– p.5

Performance measure

Let I be the set of possible instances.

Let I be an instance.A(I) = obj. function’s value in the solution returned by A.OPT (I) = obj. function’s value in an optimal solution.

Approximation ratio (A) = maxI2I A(I)OPT (I)
Example: for a scheduling problem

Approximation ratio (A) = maxI Makespan in the schedule returned by A

Makespan in an optimal schedule

– p.6

Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

��

– p.7

Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Nash equilibrium: a situation in which no user can improve its
own objective function by unilaterally changing strategy.

��

– p.7

Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Nash equilibrium: a situation in which no user can improve its
own objective function by unilaterally changing strategy.

Truthfulness: a situation in which no user has incentive to give
false informations about its private data.

��

– p.7

Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Nash equilibrium: a situation in which no user can improve its
own objective function by unilaterally changing strategy.

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled

Nash equilibrium:

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2

If I go on M2 the load of
my machine will be 6.

��

– p.7

Taking into account independent users

Each independent user has:� its own objective function� a set of possible strategies (a degree of freedom)� private data

Truthfulness: a situation in which no user has incentive to give
false informations about its private data.

Example:� Each task wishes to minimize its completion time� Private data = length of a task.
Each task bids a value representing its length

– p.7

Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:

– p.8

Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:

returns stable
solutions

– p.8

Optimization problems with independent users

Given:
a combinatorial optimization problem

+

a set of independent users.

Our goal: to find an algorithm which optimizes the (global)
objective function despite the behavior of the selfish users.

This algorithm:

returns stable
solutions

and/or is truthful

– p.8

Distributed or centralized settings

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled

– p.9

Distributed or centralized settings

Example:� Each task wishes to minimize the load of its machine� Each task can choose on which machine to be scheduled

distributed setting centralized setting

time0 1 2 3 4 5 6 7

3

2

1

4M1
M2

or :

time0 1 2 3 4 5 6 7

3

1

2

4M1
M2

time0 1 2 3 4 5 6 7

3

1

2

4M1
M2

– p.9

Performance measures� In a distributed setting:

Introduced in [Koutsoupias et Papadimitriou, STACS 1999].

Price of anarchy = maxI2I Global obj. function in the worst NE(I)OPT (I)

�

= maxI2I (I)OPT (I)

– p.10

Performance measures� In a distributed setting:

Introduced in [Koutsoupias et Papadimitriou, STACS 1999].

Price of anarchy = maxI2I Global obj. function in the worst NE(I)OPT (I)

� In a centralized setting:

Introduced in [Schultz et al., SODA 2003] and [Anshelevich et al., FOCS 2004].

Approximation ratio w.r.t stable solutions:

Price of stability = maxI2I Global obj. function in the best NE(I)OPT (I)

– p.10

Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work

– p.11

Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.

�
43 � 13m

– p.12

Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.� Each machine has a local policy to schedule its tasks.

43 � 13m

– p.12

Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.� Each machine has a local policy to schedule its tasks.

e.g. the LPT policy (“for Longest Processing Time first”):
each machine schedules its tasks from the largest one to the
smallest one.

43 � 13m

– p.12

Performance vs Stability: introduction

We wish to schedule selfish tasks on m machines.� Each task is free to choose the machine on which it will be
executed. It wishes to minimize its own completion time.� Each machine has a local policy to schedule its tasks.

e.g. the LPT policy (“for Longest Processing Time first”):
each machine schedules its tasks from the largest one to the
smallest one.

Conjecture CKN: [Christodoulou et al., ICALP 2004]

There is no distributed algorithm which has a price of anarchy
smaller than 43 � 13m .

If this conjecture is true, in order to get a better approximation
ratio, a centralized algorithm is necessary.

– p.12

Performance vs Stability: introduction

We have:� A policy per machine.� A protocol which suggests an assignment of the tasks on the
machines.

The tasks accept or refuse this assignment.

��

– p.13

Performance vs Stability: introduction

We have:� A policy per machine.� A protocol which suggests an assignment of the tasks on the
machines.

The tasks accept or refuse this assignment.

Goal: A protocol which returns a solution:� which minimizes the makespan� and which is stable.

– p.13

Performance vs Stability: introduction

Example: The policy of each machine is LPT: each machine
schedules its tasks from the largest one to the smallest one.

2 2 2

3 3

2

223

3M2
M1 M1

M2

I finish at time 6.
If I go on M2

I’ll finish at time 3.

Not stable Stable

– p.14

Price of stability

Recall:

Price of stability = maxI Makespan in the best NE

Makespan in an optimal solution

:

Example: If the policy of each machine is LPT, then the price of
stability is 43 � 13m .

– p.15

�-approximate Nash equilibrium

�-approximate Nash equilibrium = a situation in which no task
can decrease its completion time by a factor larger than � by
changing machine.

M2M2

M1M1

M2

– p.16

�-approximate Nash equilibrium

�-approximate Nash equilibrium = a situation in which no task
can decrease its completion time by a factor larger than � by
changing machine.

Example: Policy of each machine = LPT.

2 2 2

3 3

2

223

3M2M2

M1M1

I finish at time 6.
If I go on M2, I’ll divide my

completion time by 2.

2-approximate Nash Eq. Nash Eq.

– p.16

Price of �-approximate stability

Price of �-approximate stability = maxI Makespan in the best �-approx. NE

Makespan in an optimal solution

[Chen and Roughgarden, SPAA 2006]: study the tradeoff
between stability (�-Nash equilibrium) and approximation ratio in
a network problem.

– p.17

Our goal

Goal: study the tradeoff between stability and approximation
ratio.

Policy of the machines = LPT.

What is the price of �-approximate stability ?

Given (r; �), is there a r-approximate algorithm which returns�-approximate NE ?

– p.18

Lower bounds (policy = LPT)

Theorem: Let n > 5. There is no algorithm with an approx. ratio< (1 + 1n(n+1)) which returns �-approximate NE with � < n.

n

nn+ 1

n� 1n� 1 : : :: : : nn+1nn+1

nn+1nn+1nn+1 MMMM

1+ 1n(n+1) 1+ 1n(n+1)n

– p.19

Lower bounds (policy = LPT)

Theorem: Let n > 5. There is no algorithm with an approx. ratio< (1 + 1n(n+1)) which returns �-approximate NE with � < n.

Sketch of the proof:

1

2

1

2

1

1

n

n tasksn+ 1 tasks

n� 1n� 1 : : :: : : nn+1nn+1

nn+1nn+1nn+1 MMMM

approx. ratio < 1+ 1n(n+1) approx. ratio = 1+ 1n(n+1)n-approximate NE

– p.19

Lower bounds (policy = LPT)

1

1.11.051

5

4

3

2

6

7

8

10

9

1.15

87

76

�
approximation ratio

(r; �) : no r-approximate
algorithm which returns �-
approx. NE.

– p.20

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap
– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

8

M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

8

M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

4

8

M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

4

8

3M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

4

8

3

3M3M2
M1

– p.21

Upper bounds (policy = LPT)

Theorem: There is a 87 -approximate algorithm which returns3-approximate NE.! Algorithm LPTswap

Algorithm LPT: schedule greedily the tasks from the largest one
to the smallest one.

Example: Tasks of lengths 8, 5, 4, 3, 3, 2

5

4

8

23

3M3M2
M1

– p.21

Upper bound: LPTswap� Build an LPT schedule

� � x1 x2 x3

x4
y1 y2M1M2

� x1 x2 x3 x4y1 y2M1M2

�

– p.22

Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.

� x1 x2 x3 x4y1 y2M1M2

�

– p.22

Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2
Return the best schedule among the 2 possible ones.

�

– p.22

Upper bound: LPTswap� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2

Return the best schedule among the 4 possible ones.� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2
Return the best schedule among the 2 possible ones.� Other cases:
Return the LPT schedule.

– p.22

Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:

� 76�
P < 17 OPT

� 87

– p.23

Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:� 76 -approximate.

�
P < 17 OPT

� 87

– p.23

Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:� 76 -approximate.

�
P < 17 OPT

� LPT is 87 -approximate.

– p.23

Upper bound: LPTswap

� Build an LPT schedule� Look at this schedule:� 1st case:

...

x1 x2 x3

x4
y1 y2M1M2� 2nd case:

...

x1 x2 x3 x4y1 y2M1M2� Other cases:
Return the LPT schedule.

Sketch of the proof:� 76 -approximate.� In both cases:

- a swap returns an optimal
solution of the large tasks.

-
P

(small tasks) < 17 OPT .
� LPT is 87 -approximate.

– p.23

Upper bounds (policy = LPT)

Theorem: There is a (1 + 1�)-approximate algorithm which
returns �-approximate NE.

! Approximation scheme [Graham, 1966]

– p.24

Results: (policy = LPT)

1

1.11.051

5

4

3

2

6

7

8

10

9

1.15

87

76

�

(r; �) : no r-approximate
algorithm which returns�-approximate NE.

(r; �) : r-approximate
algorithm which returns�-approximate NE.

approximation ratio

– p.25

Other results

� The SPT policy (for “Shortest Processing Time first”) is not as
good as the LPT policy.

� If randomized policies are allowed: each task wishes to
reduce its expected completion time.

The policy which schedules the tasks randomly is optimal.

– p.26

Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work

– p.27

Performances of a truthful algorithm: introduction� Task i has a secret real length (execution time) li.
1� A task can add “fake” data to artificially increase its length:

each task bids a value bi � li.
����
����
����

����
����
����

2.5

bi = 2:5
li = 1� Each task knows the values bidded by the other tasks and the

algorithm.

Each task wishes to reduce its completion time (and may lie if
necessary).

– p.28

Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.

– p.29

Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.

A truthful algorithm: an algorithm in which no task has incentive
to bid a false value.

– p.29

Performances of a truthful algorithm: introduction

We have tasks to schedule on m machines.

Our goal: to minimize the makespan.

If the tasks lie, it is often not possible to have a guarantee of the
approximation ratio of the makespan.

A truthful algorithm: an algorithm in which no task has incentive
to bid a false value.

Aim: an algorithm (centralized or distributed) which is truthful
and which minimizes the makespan.

– p.29

Related work

� Distributed algorithms:
- Not truthful: [Christodoulou et al., ICALP 2004], [Immorlica et al., WINE 2005]

� Truthful centralized algorithms:
- Users are the tasks: they wish to minimize the load of their

machine. [Auletta et al., SPAA 2004]

- Users are the machines which bid their speeds. [Nisan, Ronen,

STOC 1999], [Archer, Tardos, FOCS 2001], [Auletta et al., STACS 2004], etc.

– p.30

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

1

M3
M1M2

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

1

1

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2

1

1

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2

1

1 3

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2

41

1 3

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8

M3
M2

M1

2� 1m

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8

M3
M2

M1

This algorithm is truthful.

Approx. ratio: 2� 1m . [Graham 1966]

– p.31

A truthful algorithm

Algorithm SPT: schedule greedily the tasks from the smallest
one to the largest one.

Example: Tasks of lengths 1, 1, 2, 3, 4, 5, 8

2 5

41

1 3 8

M3
M2

M1

This algorithm is truthful.

Approx. ratio: 2� 1m . [Graham 1966]

Is there a better truthful algorithm ?

– p.31

Performances of a truthful algorithm

Theorem: There is no truthful deterministic algorithm with an
approx. ratio smaller than 2� 1m .

Is there a better truthful (randomized) algorithm ?

32 � 12m

– p.32

Performances of a truthful algorithm

Theorem: There is no truthful deterministic algorithm with an
approx. ratio smaller than 2� 1m .

Is there a better truthful (randomized) algorithm ?

Theorem: There is no truthful randomized algorithm with an
approx. ratio smaller than 32 � 12m .

– p.32

Performances of a truthful algorithm

Idea: to combine:� A truthful algorithm� an algorithm not truthful but with a good approximation ratio

Algorithm LPT: schedules greedily the tasks from the smallest
one to the largest one.
Approx. ratio = 43 � 13m . [Graham, 1966]

Algorithm SPT�LPT :� with a proba. p: SPT� with a proba. (1� p): LPT.

– p.33

Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

C1 = p + 3(1� p) = 3� 2p

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 1

– p.34

Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

if task 1 bids its true value: 1

2

3

1

3

2

1
SPT : LPT : C1 = p + 3(1� p) = 3� 2p

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 1

– p.34

Performances of a truthful algorithm

Algorithm SPT�LPT is not truthful:

We have 3 tasks:

13 2

if I bid 2.5 instead of 1.
I will be completed earlier

if task 1 bids its true value: 1

2

3

1

3

2

1
SPT : LPT : C1 = p + 3(1� p) = 3� 2p

if task 1 bids a false value: 2. 5

����
����
����

����
����
����

����
����
����

����
����
����

2.5

2 3
SPT : LPT :

3

2.5 2

C1 = 1

– p.34

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

m = 3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

1M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

1

2

M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

1

2

3

M1M2M3

time

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

1

2

3

5

5

6

M1M2M3

(2� 1m)

– p.35

Algorithm DSPT

Algorithm DSPT (“delayed SPT”):

Schedules tasks 1; 2; : : : ; n such that l1 � l2 � : : : ln.
Task (i+ 1) starts when 1m of task i has been executed.

Example: m = 3, tasks of lengths 1, 1, 1, 1, 2, 3, 5, 5, 6.

0 1 2 3 4 5 6 7 11 121098 time

1

1

1

1

2

3

5

5

6

M1M2M3

Theorem: DSPT is (2� 1m)-approximate.

– p.35

A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�m = 2 DSPT�LPT(1:25� ")

DSPT�LPT

– p.36

A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

Theorem: Expected approximation ratio of DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�
e.g. for m = 2: ratio(DSPT�LPT)<1.39, ratio(SPT)=1.5
Recall: there is no truthful (1:25� ")-approximate algorithm.

DSPT�LPT

– p.36

A truthful algorithm

Algorithm DSPT�LPT :� With a proba. mm+1 : DSPT� With a proba. 1m+1 : LPT

Theorem: Expected approximation ratio of DSPT�LPT= mm+1 �2� 1m�+ 1m+1 � 43 � 13m�
e.g. for m = 2: ratio(DSPT�LPT)<1.39, ratio(SPT)=1.5
Recall: there is no truthful (1:25� ")-approximate algorithm.

Theorem: DSPT�LPT is truthful.

– p.36

A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

C1 = 53

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 53

– p.37

A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

if task 1 bids its true value: 1

1

3

22

31
LPT :DSPT : C1 = 53

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
���� C1 = 53

– p.37

A truthful algorithm

Example:
We have 3 tasks:

13 2

I do not have incentive
to bid a false value.

if task 1 bids its true value: 1

1

3

22

31
LPT :DSPT : C1 = 53

if task 1 bids a false value: 2. 5

2

����
����
����

����
����
����

2.5

3

����
����
����

����
����
����

LPT :
3

2.5 2
DSPT : C1 = 53

– p.37

Other results

Until now: if task i bids bi > li, its execution time is li (it gets its
results li time units after its start).

����
����
����

����
����
����

2.5

bi = 2:5
li = 1

i bi > li bi

� �43 � 13m�� (1:1� ")�

– p.38

Other results

Until now: if task i bids bi > li, its execution time is li (it gets its
results li time units after its start).

����
����
����

����
����
����

2.5

bi = 2:5
li = 1

Other model: if task i bids bi > li, its execution time is bi.

� �43 � 13m�� (1:1� ")�

– p.38

Other results

Until now: if task i bids bi > li, its execution time is li (it gets its
results li time units after its start).

����
����
����

����
����
����

2.5

bi = 2:5
li = 1

Other model: if task i bids bi > li, its execution time is bi.
With this 2nd model:� A deterministic

�43 � 13m�-approximate truthful algorithm.� No deterministic (1:1� ") truthful algorithm.� An optimal randomized truthful algorithm.

– p.38

An optimal truthful algorithm

Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.

– p.39

An optimal truthful algorithm

Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.

Example:

9 9

3

2 49

10

n
M2M3

M1
– p.39

An optimal truthful algorithm

Algorithm BLOCK:� Get an optimal schedule of the tasks.
Let OPT be the makespan of the schedule.
Let Li be the sum of the tasks lengths on Mi.� Add a fake task of length OPT � Li on Mi.� On each machine, tasks are scheduled in a random order.

Example:

9 9

3

2 4 3

5

9

10

n
M2M3

M1
– p.39

An optimal truthful algorithm

Lemma: Let a set of tasks scheduled in a random order on a
single machine.
The expected completion time of task t is:

lt + 12 Xj 6=t lj

OPT i liOPT 0 bi OPT � OPT 0� i bi = li li + 12 (OPT � li)� i bi > li bi + 12 (OPT 0 � bi)

– p.40

An optimal truthful algorithm

Lemma: Let a set of tasks scheduled in a random order on a
single machine.
The expected completion time of task t is:

lt + 12 Xj 6=t lj
Theorem: Algorithm BLOCK is truthful.

Proof: Let OPT be the makespan when i bids li, andOPT 0 be the makespan when it bids bi: OPT � OPT 0.� if i bids bi = li : expected comp. time = li + 12 (OPT � li)� if i bids bi > li : expected comp. time = bi + 12 (OPT 0 � bi)

– p.40

Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work

– p.41

Performance of distributed algorithms

On a set of parallel links:

1P

2P

2 43a set of packets:

source destination

– p.42

Performance of distributed algorithms

On a set of parallel links:

23

4

1P

2P
2P
1P 3 2

4

3 61 4 time0 2 5

source destination

– p.42

Performance of distributed algorithms

On a set of parallel links:

23

4

1P

2P
2P
1P 3 2

4

3 61 4 time0 2 5

source destination

Best known distributed algorithm: LPT policy. [Christodoulou et al.,

ICALP 2004]

– p.42

Distributed algorithms in trees and rings

We wish to route packets, released at the same time from a
same source in:

SourceSource� Each packet has: a length, a destination� It wishes to minimize its arrival date at its destination� “Store and forward” network

– p.43

Related work

The goal is to minimize the maximal arrival date.

� Centralized algorithms in general graphs but with packets of
same length. [Leighton, Maggs, Rao, FOCS 1988], [auf der Heide, Vöcking,

STACS 1995], [Ostrovsky, Rabani, STOC 1997]

�

– p.44

Related work

The goal is to minimize the maximal arrival date.

� Centralized algorithms in general graphs but with packets of
same length. [Leighton, Maggs, Rao, FOCS 1988], [auf der Heide, Vöcking,

STACS 1995], [Ostrovsky, Rabani, STOC 1997]

� Multicommodity flows over time problem: in a path, optimal
solution if each link routes the packets in order of decreasing
remaining distance. [Hall, Hippler, Skutella, ICALP 2003]

– p.44

Distributed algorithms in trees and rings

Decentralized setting: each link knows only the packets it has to
route and has a policy to route them. For example:� SPT: Shortest Processing Time first� LPT: Longest Processing Time first� LRD: Longest Remaining Distance first

What is the performance of these policies for the following
problems ?� Minimize the maximum arrival date.� Minimize the average arrival date.

– p.45

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

dB

dC

dASource

task C:

task B:

task A: 2

1

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 0

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [0, 2)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [2, 3)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [3, 4)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [4, 5)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [5, 6)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [6, 7)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [7, 8)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [8, 13)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time interval= [13, 23)

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 23

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

– p.46

Example

With the LRD policy: the more a task goes far, the earliest it is
scheduled.

time = 23

dB

dC

dASource

task C:

task B:

task A: 2

2

1

1

10

10

In an optimal solution, maximum arrival date = 20.! Approximation ratio � 23=20.

– p.46

Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.

– p.47

Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.

Nash equilibrium: No user has incentive to unilaterally change
strategy.

– p.47

Rings

Tree: each packet has only one possible strategy.

Ring: choice between two paths at the source.

Nash equilibrium: No user has incentive to unilaterally change
strategy.

Example:

Policy = LPT

1

5 1 5
S S

d d

Arrival date of 5 : 10

Arrival date of 1 : 11 Arrival date of 1 : 7

Arrival date of 5 : 10

– p.47

Results

Our goal: to minimize the maximum arrival date:� LPT policy: ratio in �(number of packets).� SPT and LRD policies: in a tree: ratio = 2
in a ring: ratio < 3

� �()�

– p.48

Results

Our goal: to minimize the maximum arrival date:� LPT policy: ratio in �(number of packets).� SPT and LRD policies: in a tree: ratio = 2
in a ring: ratio < 3

Our goal: to minimize the average arrival date:� LPT and LRD policies: ratio in �(number of packets).� SPT policy: in a tree: optimal
in a ring: ratio < 2

– p.48

Outline

� Context

- Classical optimization problems
- Optimization problems with independent users� Results� Scheduling

- Performance vs stability
- Performance vs truthfulness� Routing
- Performance of distributed algorithms� Future work

– p.49

Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium

�

bi < li�

– p.50

Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium� Truthfulness
- In a distributed setting: truthful algorithms
- Consider related machines
- Truthful algorithms when considering payments
- Truthful algorithms when a task can bid bi < li ?

�

– p.50

Future work� Trade-off stability/performance
- In a distributed setting: solve the CKN conjecture
- In a centralized setting: is there a deterministic policy

better than LPT ?
- Mixed Nash equilibrium, correlated equilibrium� Truthfulness
- In a distributed setting: truthful algorithms
- Consider related machines
- Truthful algorithms when considering payments
- Truthful algorithms when a task can bid bi < li ?� Distributed algorithms for a routing problem
- Several sources/destinations
- Other topologies: in any graph
- Online analysis

– p.50

Annexe

– p.51

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

1

4

3

6

7

2

5

8

9

depot

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

1

4

3

6

7

2

1

1

11

1

1
2 5

8

9

3

3

2

4

2

depot

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

Topology Traffic Matrix (requests)

e2

e1

r1

r2

r3

hub

V1

e3

V2

number of links = 2, capacity of each link = 10

T = 0B� 9 8 20 2 05 7 4
1CA

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

Topology Traffic Matrix (requests)

e2

e1

r1

r2

r3

hub

V1

e3

V2

4

7

2

28 9

7

4

28

9

2

5

5

number of links = 2, capacity of each link = 10

T = 0B� 9 8 20 2 05 7 4
1CA

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

1P

2P

source destination

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

1P

2P

2 43a set of packets :

source destination

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

23

4

1P

2P

source destination

– p.52

Other problems

Examples : vehicule routing problem, traffic grooming problem,
scheduling problem.

23

4

1P

2P
2P
1P 3 2

4

3 61 4 time0 2 5

source destination

– p.52

	Networks
	Outline
	Classical combinatorial optimization problems
	Example
	Performance measure
	Taking into account independent users
	Optimization problems with independent users
	Distributed or centralized settings
	Performance measures
	Outline
	Performance vs Stability: introduction
	Performance vs Stability: introduction
	Performance vs Stability: introduction
	Price of stability
	$alpha $-approximate Nash equilibrium
	Price of $alpha $-approximate stability
	Our goal
	Lower bounds (policy = LPT)
	Lower bounds (policy = LPT)
	Upper bounds (policy = LPT)
	Upper bound: LPT_{swap}
	Upper bound: LPT_{swap}
	Upper bounds (policy = LPT)
	Results: (policy = LPT)
	Other results
	Outline
	Performances of a truthful algorithm: introduction
	Performances of a truthful algorithm: introduction
	Related work
	A truthful algorithm
	Performances of a truthful algorithm
	Performances of a truthful algorithm
	Performances of a truthful algorithm
	Algorithm DSPT
	A truthful algorithm
	A truthful algorithm
	Other results
	An optimal truthful algorithm
	An optimal truthful algorithm
	Outline
	Performance of distributed algorithms
	Distributed algorithms in trees and rings
	Related work
	Distributed algorithms in trees and rings
	Example
	Rings
	Results
	Outline
	Future work
	Annexe
	Other problems

