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ABSTRACT

Existing parallel or remote rendering solutions rely on com-
municating pixels, OpenGL commands, scene-graph changes or
application-specific data. We propose an intermediate solution
based on a set of independent graphics primitives that use hard-
ware shaders to specify their visual appearance. Compared to an
OpenGL based approach, it reduces the complexity of the model
by eliminating most fixed function parameters while giving access
to the latest functionalities of graphics cards. It also suppresses
the OpenGL state machine that creates data dependencies making
primitive re-scheduling difficult.

Using a retained-mode communication protocol transmitting
changes between each frame, combined with the possibility to use
shaders to implement interactive data processing operations instead
of sending final colors and geometry, we are able to optimize the
network load. High level information such as bounding volumes
is used to setup advanced schemes where primitives are issued in
parallel, routed according to their visibility, merged and re-ordered
when received for rendering. Different optimization algorithms can
be efficiently implemented, saving network bandwidth or reducing
texture switches for instance.

We present performance results based on two VTK applications,
a parallel iso-surface extraction and a parallel volume renderer.
We compare our approach with Chromium. Results show that our
approach leads to significantly better performance and scalability,
while offering easy access to hardware accelerated rendering algo-
rithms.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

Keywords: Distributed Rendering; Shaders; Volume Rendering

1 INTRODUCTION

Context. In recent years, graphics clusters have become a
platform of choice for high performance scientific visualization.
The goal is to interconnect multiple PCs through a dedicated net-
work to aggregate the power of their disks, memories, CPUs and
GPUs. Such cluster can drive from a single screen to a display wall
of several projectors allowing a higher brightness, resolution and
display size. The difficulty is then to develop software solutions to
efficiently take advantage of such platforms.

Graphics applications, like scientific visualization ones, are of-
ten structured as a pipeline. A raw data set is read either from disk
or from a live simulation application. It is processed to obtain a
graphical representation. This scene is then rendered to an image
that is finally displayed. Each of these stages can be distributed
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differently on a cluster. For example, the final display can be con-
nected to a single host, or each host can drive one video projector
of a large display wall. Each host can render the pixels it displays,
or it can render pixels to be displayed by different hosts. In this
case pixels have to be communicated on the network and recom-
posed to form the final images [20]. This scheme is usually called
a sort-last approach [18]. The graphics objects can also be pro-
duced with a different distribution scheme than the one adopted
for rendering (sort-first approach). When the higher-level stage is
distributed, multiple data streams have to be merged, and similarly
scatter operations are required when distributing lower-level stages.
The scalability of the system depends on the overhead introduced
by these operations and the volume of communications.

Implementing higher level communications is generally more
dependent on the application. Sort-last solutions are highly generic,
as pixel format does not change. Sort-first frameworks depend on
the rendering API used in the application to describe the scene.
Most applications use OpenGL.

Humphreys et al. [10] proposes a framework called Chromium.
Chromium uses a protocol for distributing OpenGL commands.
However, due to OpenGL’s history and the requirement to sup-
port legacy applications, these commands are numerous and of-
ten redundant. For example, OpenGL supports both immediate-
mode primitives and retained-mode objects (using several concepts
such as display lists, vertex array, buffer objects). Immediate-
mode rendering does not allow to easily detect changes between
frames, introducing duplicated communications or a high compu-
tational overhead to detect unchanged primitives. Similarly, high
level informations such as bounding boxes are not available. It
makes it difficult to perform efficient scatter operations (i.e. frustum
culling) to different render hosts. Moreover, as OpenGL is based on
a sequential state machine, commands must respect a strict order-
ing. Merging multiple streams together requires Chromium to track
state changes and to use special commands defining the relative or-
dering of each stream.

All these constraints are driven by the need to support legacy
OpenGL applications. In the context of scientific visualization
where performance is critical and the final rendering is often han-
dled by a shared toolkit, considering alternative solutions to an
OpenGL based protocol is relevant.

In the rest of this paper we will refer to the programs used in
the rendering stage of the pipeline as renderers, and the programs
responsible to create the graphics objects will be called viewers.

Contribution. We propose a sort-first retained-mode parallel
rendering framework called FlowVR Render. Instead of relying on
OpenGL commands, we define a shader based protocol using inde-
pendent batches of polygons as primitives. This protocol offer the
following benefits:

• Shaders are used to specify the visual appearance of graphics
objects. They require only a few parameters and not the full
complexity of the fixed-function OpenGL state machine. It
leads to a simpler protocol that does not have to manage state
tracking.

• Shaders enables to easily take advantage of all features offered
by programmable graphics cards.
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• Primitives are un-ordered unless explicitly stated by view-
ers (for transparent objects or user-interface overlays for in-
stance). It enables renderers to optimize the local rendering
order, reducing shader and texture switches for example. It
also eases merging and reordering primitives coming from
multiple streams.

• A higher level information such as bounding-boxes or
changes since the last frame can be directly specified by view-
ers, avoiding unnecessary processing and network traffic. In
most cases this information is already available (visualization
toolkits often detect changes between frames to recompute
only the affected data).

We base our design and implementation on FlowVR [3], a mid-
dleware for modular data-flow based interactive applications. It
provides the environment to develop, launch and execute a dis-
tributed application on a cluster. It also allows to express complex
collective communications patterns and coupling policies.

Compared to an OpenGL based protocol, our approach requires
modifying the applications to issue FlowVR Render primitives.
However this drawback is limited as scientific visualization codes
usually rely on a reduced set of graphics primitives. Porting their
rendering API to FlowVR Render is usually not too difficult. To
demonstrate this, we modified the rendering code of VTK [29], one
of the most widely used visualization toolkit, to transparently sup-
port FlowVR Render.

Rendering on a display wall with a varying number of parallel
viewers and renderer for iso-surface extraction and volume render-
ing was tested both with VTK+Chromium and VTK+FlowVR Ren-
der. FlowVR Render leads to a higher performance and a bet-
ter network scalability as the number of viewers and/or renderers
increases. The shader based protocol also enables to implement
hardware-accelerated volume rendering algorithms that achieve
high quality rendering [7, 13].

Organization. After presenting the related works in section 2,
we detail the protocol as well as the basic filtering operations used
by FlowVR Render in section 3. Communication patterns for par-
allel rendering will be discussed in section 4. Their usage is pre-
sented and tested using two applications in section 5. Finally results
and future works are discussed in section 6.

2 BACKGROUND AND RELATED WORK

In this section, we discuss rendering APIs before giving an
overview of existing parallel rendering approaches. The section
ends with a discussion on the benefits of using shaders for visual-
ization algorithms.

2.1 Rendering APIs

OpenGL [30] is currently the predominant graphics rendering API
and is available for most platforms and graphics cards. It is origi-
nally based on a immediate-mode model where the application se-
quentially specifies the objects in the scene. A large state machine
is used to handle rendering parameters such as transformation ma-
trices, lights, material properties, etc. Graphics cards and hardware
platforms have evolved significantly since OpenGL introduction in
1992. To match this evolution an extension mechanism is used for
hardware vendors to expose additional functionalities correspond-
ing to new features or optimizations. Periodically, a new OpenGL
version standardizing useful extensions is released by the Architec-
ture Review Board (ARB). The latest version, OpenGL 2.0, was
released in September 2004 and supports recent features such as
non-power-of-two textures and high-level programmable shaders.

Pure immediate-mode rendering requires re-issuing all graphics
primitives for each frame and thus can not benefit from inter-frame

coherence. It introduces a high overhead on the CPU and the CPU
to GPU communication bus. As the graphics cards performance
improved, it became a serious performance bottleneck. To reduce
this bottleneck, OpenGL has evolved to support a number of mech-
anisms to optimize data uploads to the graphics card, ranging from
the original display-list mechanism to compiled vertex arrays and
the recent vertex/pixel buffer objects extensions.

Each new OpenGL version is backward compatible with all pre-
vious versions. As a consequence many deprecated or duplicate
functionalities exist such as the different ways to specify vertex
data or the fixed function pipeline superseded by programmable
shaders [4]. This significantly increases the complexity of OpenGL
implementations. An effort to remove legacy commands and states
from OpenGL’s core API was originally proposed for OpenGL 2.0.
This proposal was not accepted but led to a derived API for embed-
ded systems, OpenGL ES [5].

In opposite to immediate-mode rendering, retained-mode
APIs [34, 32] manage a scene description the application creates
and then updates at each frame (often in the form of a hierarchical
scene graph). This model is today commonly used by scene graph
libraries on top of OpenGL.

2.2 Parallel Rendering

Different approaches have been proposed for cluster based parallel
rendering [6]. Sort-last parallelism [18] relies on hardware or soft-
ware compositors to combine pixels computed on different graphics
cards [14, 31]. This approach has also been used for load balancing
on display walls [28].

Sort-first approaches distribute graphics primitives to several
rendering nodes. Sorting is generally based on each node’s view
frustum. Pixels are either directly displayed or sort-last techniques
are used to recombined them. Chromium [10] proposes an OpenGL
based protocol that enables sort-first parallel rendering. Legacy
OpenGL applications can be executed on a display wall without
recompilation. Chromium intercepts primitives issued by the appli-
cation and sends them to the rendering hosts. It relies on advanced
caching, compression and state tracking mechanisms to save net-
work bandwidth. Chromium also proposes a set of OpenGL ex-
tensions for ordering several primitive streams in order to enable a
parallel primitive generation, but at the price of the OpenGL com-
patibility.

Other approaches work at a higher level. Scene graphs rely on a
partial graph duplication on rendering nodes and coherency proto-
cols [27], to balance network traffic, duplication of data and compu-
tations. However, the user control over the parallelization scheme
implemented is usually limited. Scalable scientific visualization of-
ten requires a finer control on data movements and to combine dif-
ferent parallelization schemes to be efficient.

2.3 Shader-Based Visualization

Procedural shaders have been extensively used in offline software-
based rendering [9] to specify the visual appearance of graphics
objects. Initially hardware systems only supported fixed functional-
ities that were programmed through a set of parameters or switches.
New generations of graphics cards are now able to execute full pro-
grammable shaders [22, 24]. Recent models [12] support high-level
shaders [15, 26] with method calls, loops, conditionals, and full 32-
bit floating point precision for computation and textures/buffers.

Shaders provide additional flexibility and precision allowing
graphics cards to execute algorithms that only the CPU could ex-
ecute before. Such algorithms include high-quality lighting models
(per-pixel evaluation, shadows), tone shading [8], or volume render-
ing [25]. For instance, obtaining colors from raw data by applying
a transfer function can now be done within a shader.
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2.4 Summary

Using recent OpenGL buffer objects and hardware shaders, appli-
cations can efficiently take advantage of advanced graphic cards
features. However, the OpenGL state machine and the numerous
duplicated functionalities that OpenGL still supports significantly
increase the complexity and hinder the effectiveness of any imple-
mentation, in particular parallel ones.

Using shaders, parts of the data processing visualization pipeline
is now executed by the graphics card, distributing the load between
the CPU and the GPU. This changes the level of information sent
to the graphics cards, which can receive general datasets instead of
only final colors. Tuning the parameters of the processing imple-
mented by shaders only requires updating a few values instead of
re-uploading the complete dataset. In a distributed context where
graphics primitives are issued on one machine and rendering is per-
formed on a distant one this can drastically change the performance
of the pipeline.

We propose to develop a pure shader based sort-first protocol
dedicated to high performance parallel rendering.

3 FLOWVR RENDER MODEL

In this section we present the FlowVR Render framework and its
different components. A viewer program describes primitives sent
to a renderer program using a specific protocol. Complex parallel
rendering architectures can be built combining various viewers and
renderers mapped on different nodes of a cluster. Filters are used to
implement advanced routing functions on primitives.

3.1 Graphics Primitives

A scene is described as a set of independent primitives. Each prim-
itive contains the description of a batch of polygons and their ren-
dering parameters (see figure 1). To reduce the number of these
parameters, as well as to take advantage of the advanced features
of recent graphics cards, we use shaders to define each primitive’s
appearance.

Large resources such as textures or vertex attributes are often
used by several primitives in the scene. To avoid duplicating these
resources in each primitive, we define resources. A resource can
encapsulate a shader, texture, vertex buffer or index buffer. It is
identified by an unique ID. Each primitive refers to the IDs of all the
resources it uses. Notice that it introduces a one-way dependency
between primitives and resources, but not between primitives.

The framework must ensure that IDs are globally unique even
in a distributed context. Possible methods include using a specific
host, which can introduce a bottleneck for large applications, or
using local information unique to each host. In our implementation
we use 64-bits IDs by appending an atomic counter local to each
host with the IP address of the host.

A name can be specified for each primitive for identification in
error messages, visual selection feedback, or filters based on name
patterns.

Each primitive also stores its bounding box. This information is
required to optimize communications using frustum culling. It is
useful to specify this information in the primitive as it is costly to
recover from the other parameters (especially when using shaders
that can change vertex positions).

Some rendering algorithms require primitives to be processed in
a given order. FlowVR Render provides a mechanism to enforce
this ordering by associating each primitive with an order value.
This number defines a partial ordering between primitives. A prim-
itive with a lower order value must be rendered before a primitive
with a higher value. Primitives with the same value can be rendered
in any order. Different values will mainly be used when render-
ing order can affect the final image like for transparent primitives

Figure 1: Simplified UML schema of a primitive.

or user-interface overlays. For a given order value, renderers can
re-order primitives to improve performance. For instance, primi-
tives can be sorted front-to-back to take advantage of fast Z-culling,
primitives with similar parameters such as textures and shaders can
be gathered to reduce state switching overheads. This approach
enables to easily implement performance optimization compared to
the strict ordering defined by an immediate-mode command stream.
This strict ordering can however still be achieved by assigning a dif-
ferent order value to each primitive.

Global parameters such as camera position, z clipping distances,
or background colors are directly set at the renderer statically or
upon reception of user’s interaction events. A viewer can also
override these parameters using a primitive with the predefined ID
ID CAMERA.

3.2 Communication Protocol

In graphics scenes some data are static, i.e. they do not change be-
tween frames, while others are dynamic. One important optimiza-
tion is to describe static information only once, and then transmit
changes at each frame. To achieve this goal, renderers maintain the
current description of the scene, and viewers describe the changes
to this description. Each change is encapsulated in a chunk. At each
frame, a viewer sends one message containing a list of chunks. A
renderer waits to receive one message. A chunk can correspond
to a:

• Creation of a new resource ;

• Destruction of a resource ;

• Update of a resource ;

• Creation of a new primitive ;

• Destruction of a primitive ;

• Modification of a primitive’s parameter.

This protocol is purely one-way, from viewers to renderers. In
particular, IDs are generated by the viewers and not the render-
ers. This property is useful when the viewers and renderers are
not tightly synchronized (for example storing messages on disk and
replaying them later).

3.3 Filters

Parallel rendering schemes require filtering message streams to dis-
tribute data between several viewers and/or renderers. For that pur-
pose we introduce filters that implement the processings necessary
for advanced routing networks. We define in the following some
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common filters. Complex assemblies of viewers, filters and render-
ers are presented in section 4.

To support scene descriptions distributed on multiple viewer
modules, it is necessary to be able to merge several messages to-
gether. In our model all primitives are independent and use globally
unique IDs. As a consequence this operation consists in a simple
gather, appending messages from all streams together.

For sort-first rendering with a single viewer, a simple broadcast
can be used to send messages to all renderers. For highly dynamic
scenes, messages can be filtered by removing (cull) all changes not
affecting the local view frustum of each renderer. The bounding
box information is readily available to test for intersection with the
frustum, enabling to simply discard hidden primitives, without any
effects on other primitives as they are independent. The only dif-
ficulty concerns resources (textures, vertex data), as they can be
shared by several primitives. A simple algorithm consists in send-
ing all resources referenced by each visible primitive, provided it
wasn’t already sent. For very large textures or meshes, a more com-
plex implementation may only send visible parts of each resource,
but recovering this information is costly.

Thanks to the one-way and retained-mode nature of our model,
another operation that is very efficient and easy to implement is
to allow for different frequencies between viewers and/or render-
ers. In particular, this enables multiple asynchronous visualization
of the scene (two distant displays in a collaborative application, or
a low-performance console view not affecting the performance of
the main display for instance). Another more advanced applica-
tion consists for each viewers in having a specific update frequency
(low-frequency for large objects or remote viewers, high-frequency
for local viewers or interactive updates such as camera manipula-
tion). Filters implementing this strategy simply require either in-
serting empty messages or appending several messages together.

Other operations can be implemented depending on the appli-
cations. It is for instance possible to design filters altering the ap-
pearance of the scene for stylized rendering [16, 17], splitting the
objects for an exploded view [21], or writing the scene’s 3D de-
scription in a file [17]. Compared to the traditional approach of
modifying OpenGL commands, implementing these operations us-
ing our framework is easier as higher-level information is available.
Also only a handful set of chunk types are used, compared to the
hundreds of different OpenGL commands.

4 SYSTEM ARCHITECTURE

Data-flow based architectures, where several data streams are pro-
cessed through a network of filters, have been successfully applied
both in visualization and distributed rendering applications [1, 2,
10]. It can be applied at different stages in the application, from
inputs events to final pixels composing. This section presents the
design of the data-flow network used to transmit graphics primi-
tives.

4.1 General Design

FlowVR Render architecture follows a data-flow graph. The source
nodes of the graph are viewers that produce scene description mes-
sages as described in section 3.2. These messages travel through a
network of filters that are responsible for implementing the neces-
sary operations as described in section 3.3. Once data have been
redistributed and processed by this network, it is used by the desti-
nation nodes, the renderers, to render the scene.

We consider modular visualization applications, where objects
in the same scene are handled by completely different programs.
As FlowVR Render primitves are a-priori independent, merging
several data streams has a small overhead. This architecture pro-
vides two main advantages. First it favors code reuse, allowing to

Figure 2: Sort-first distributed rendering. For small or static objects
a broadcast tree can be used instead of frustum culling filters.

choose the right visualization toolkit or library for each task instead
of reimplementing it in a single environment, and second it permits
to choose a different distribution strategy for each object, allowing
a fine performance tuning.

4.2 Distribution Strategies

Distributed rendering is a typical problem where no generic solu-
tion exists. Several factors (size and time dependency of datasets,
computational power, network speed, number of pixels) are in-
volved in determining the best distribution scheme between sort-
first [18], sort-last, hybrid, or input-event based distribution. Test-
ing different strategies should thus be as simple as possible. More-
over, as the same program can be used in situations requiring differ-
ent distirbution strategies, changing the distribution scheme should
require minimal modifications to the program. Data-flow based ar-
chitectures propose an elegant solution to this issue as changing
of strategy often consists in simply changing the position of each
element, eventually adding some filters. The modular design of
applications in FlowVR Render lets multiple schemes be simulta-
neously executed for different parts of the scene. The rest of this
section will concentrate on the basic patterns implementing each
distribution scheme. Using several schemes in a single application
is then possible by combining these patterns together.

In a multiple display system (cave or display wall for example),
if one viewer is connected to several renderers through frustum-
culling filters as shown in figure 2 we have a sort-first distribution
model. Notice that for better scalability we can use a two-level
culling filter tree: first splitting horizontally then vertically. De-
pending on the size and dynamicity of the primitives, the cull filter
can either simply cull on an primitive level or split each triangle
individually. The first option is often preferred as it is simpler to
implement, especially when the frustum is not static, and the spared
network and GPU bandwidth might not counter-balance the addi-
tional CPU cost of a more precise culling method. To avoid any
network communication of the graphics primitive, the viewer can
also be replicated locally on each rendering node (figure 3).

When using multiple viewers, each one describing a part of the
scene, merge filters are responsible for combining their messages
together (figure 4). This scheme is useful for parallel data extrac-
tion applications, which we will show in section 5.2. It is also nec-
essary for recombining parts of an application that uses different
distribution schemes. In this case, the different streams are merged
together before being forwarded to each renderer.

We now consider remote rendering systems. The renderer can
be placed at the same location as the viewer, pixels being commu-
nicated to the remote site (figure 5(a)). It can alternatively be moved
to the display location. In this case, the graphics primitive descrip-
tions are transmitted instead (figure 5(b)). A more interesting case
is when both are combined (figure 5(c)). In a scene composed of
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Figure 3: Replication: Viewer application is replicated on each ren-
dering node. If the application is non-determinist then communica-
tions will be necessary to keep copies synchronized.

Figure 4: Parallel scene description: To distribute the load in viewers,
several viewers can describe parts of the scene which are then merged
together.

streamlines and volumetric rendering for instance, the streamlines
could be transmitted over the network and rendered with a high res-
olution, while the volume image will be rendered locally and trans-
mitted at a lower resolution. Another combination happens when
the viewer and renderer are distant but the final display is on the
viewer side (figure 5(d)). This scheme corresponds to the render
server system, where rendering is provided as a distant shared re-
source. By using existing image composing tools [14, 20] we can
use several servers in parallel for increased performance.

4.3 Interactions and Scene Management

Having a distributed scene description controlled by unrelated pro-
grams can lead to difficulties in obtaining a coherent manipulation
interface. In monolithic applications, this is often done through the
scene graph structure, where the user can change parameters of the
nodes (visibility, wireframe, ...) and control transformation nodes
with special widgets to move/rotate/scale objects. To implement
this within our framework we face two issues: as the communi-
cation protocol is strictly one-way, how can viewers get the user’s
actions; and as the scene description model forbids dependencies
between primitives, how can we specify that a group of primitives
should be moved through a common transform node.

User inputs depend on the interaction devices (mouse, keyboard,
VR tracking devices, ...). Reading inputs data is done by the render-
ers for mouse/keyboard inputs, or by special tools for other devices.
As the data is small, broadcasting the inputs over the network is
simple [33, 23]. However interactions are often expressed in terms
of objects in the scene (i.e. a user selected object with a specific
ID). As we already have a globally unique ID associated with each
primitive, renderers can output events containing these IDs. View-
ers can then use this information to manage interactions.

As described at the beginning of this section, basic interactions
(moving objects, changing rendering attributes, ...) are often not
handled by the objects themselves but by other components in the
scene (widgets and transform nodes). The same functionality can
be achieved by adding custom filters in the data-flow network to
transparently change the affected parameters. If required, addi-
tional widgets viewer programs can be introduced, adding objects

(a) Pixel-based communication. (b) Graphics primitives communi-

cation.

(c) Different communication levels

for specific viewers.

(d) Render server scheme: send

graphics primitives, get rendered

pixel back.

Figure 5: Remote rendering.

in the scene and retrieving interaction events on these objects, even-
tually sending resulting movements to the transform filters. This ar-
chitecture can be seen as the data-flow based mapping of the equiv-
alent scene-graph hierarchical structure. Thus while the scene de-
scription model does not allow for interdependencies between prim-
itives, we can implement the equivalent functionalities by adding
filters in the network.

4.4 Implementation

FlowVR Render architecture can be implemented using many dif-
ferent communication API, such as TCP connections or CORBA
objects. We chose to use FlowVR [3] as it provides a clean abstrac-
tion to design interactive data-flow applications. At the lowest level
it transparently uses either TCP connections for network commu-
nications or shared-memory for local communications. It also pro-
vides tools to launch and control distributed applications, as well as
generating large filters networks using scripts.

Current implementation of FlowVR Render can be downloaded
from http://flowvr.sf.net/render/.

5 APPLICATIONS

In this section we present experimental results using FlowVR Ren-
der, VTK (version 4.2) and Chromium (version 1.8). VTK and
Chromium have been chosen because they are probably the most
used and advanced tools publicly available today in their category.
We used them without in-depth code tunings and optimizations. A
version of VTK has been tuned for Chromium [19], but it is not
used here as it is not publicly available.

While we present performance comparisons between Chromium
and FlowVR Render, the reader should keep in mind that their con-
ditions of use are different. Chromium supports all OpenGL ap-
plications without modification, while FlowVR Render proposes a
new shader based rendering framework that requires application to
be adapted.

Tests were performed on the GrImage1 platform composed of a
cluster of 16 Dual-Opteron 2.0 GHz having 2 GB of memory each.
Cluster nodes are interconnected by a gigabit Ethernet network.
Each node uses an NVIDIA Geforce 6800 Ultra graphics cards to
drive a 4×4 display-wall with a total resolution of 4096×3072.

1http://www.inrialpes.fr/grimage/
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Figure 6: An example VTK application rendering on the display wall
with FlowVR Render.

Figure 7: Iso-surface extracted from a frame of a time-varying fluid
simulation dataset.

5.1 VTK and FlowVR Render Integration

Several powerful open-source visualization toolkits are available
such as OpenDX [1] or VTK [29]. We developed a library that
transparently replaces VTK rendering classes to use FlowVR Ren-
der instead of OpenGL. VTK uses a small set of rendering classes
to draw images, meshes (with a list of points, lines and trian-
gles) or volumes. The original rendering classes use OpenGL
immediate mode commands or display lists. These are complex
classes to handle all possible combinations of vertex data as well
as legacy OpenGL drivers. The new FlowVR Render classes are
simpler as they often only consist in encapsulating the raw data
into FlowVR Render resources and selecting the right shader. Un-
modified VTK applications can then be rendered on a display-wall
as shown in figure 6. Developing this library only took a couple
of weeks for one programmer, most of which was spent learning
VTK.

5.2 Parallel Iso-surface Extraction

To compare the performance of our framework with Chromium
we implemented a parallel iso-surface extraction application. We
used a 3D fluid simulation dataset of 132× 132× 66 cells for 900
timesteps (one timestep is shown in figure 7). The application in-
teractively extracts and displays an iso-surface (containing approx-
imately 100000 triangles) for each timestep. The iso-surface ex-
traction is parallelized by splitting the dataset into blocks, each one
assigned to a different viewer.

Figure 8 presents Chromium and FlowVR Render performance

(a) Chromium (b) Chromium

(c) FlowVR Render (d) FlowVR Render

Figure 8: Parallel iso-surface extraction with sort-first rendering, us-
ing Chromium (a)-(b) or FlowVR Render (c)-(d). Scalability regard-
ing the number of renderers is presented on the left, while scalability
regarding the number of viewers is shown on the right.

results depending on the number of renderers as well as the num-
ber of iso-surface extraction viewers. FlowVR Render outperforms
Chromium and shows a better scalability, both while increasing the
number of renderers and the number of viewers. FlowVR Render
achieves 12 frames per second with 16 data viewers and 16 ren-
derers to display the result on the 4× 4 display-wall. Chromium
performance is probably affected by the high overhead related to
culling and stream merging operations.

Using pixel shaders can also greatly improve visual quality. For
this application, a classic OpenGL-based lighting is evaluated per
vertex, while it is computed per pixel with shaders. The resulting
surface appears smoother.

5.3 Volume Rendering

The second test pushes further the use of shaders to highlight the
benefits of our approach. For that purpose we focus on sort-first
parallel volume rendering. Notice that usually sort-last approaches
have proved more efficient than sort-first approaches [35]. We show
that using hardware shaders can significantly improve performance
of sort-first algorithms based on the following points:

• Due to the massively parallel nature of todays GPUs, pixel
shaders have access to more important resources, both in
terms of memory bandwidth and computing power [12].

• Shaders are able to apply transfer functions to raw volumetric
data to obtain the final color and opacity. This allows to send
the raw data once, and then only update the transfer function
when it is modified by the user. For time-varying datasets
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Figure 10: Volume rendering on the display wall.

this is also interesting as the raw data can be 4 times smaller
than final colors and opacity data (1 value per voxel versus 4
values).

• Using pre-integrated transfer functions [7] and adaptive sam-
pling steps [25], a shader can create a very high quality image
while using fewer steps through the volume, allowing to use
larger datasets.

By default VTK uses a slice-based 2D texturing approach for
hardware volume rendering. We implemented a new VTK volume
rendering class using shaders. A pixel shader is used to cast a ray
through the volume and accumulate color and opacity using either
blending, additive, or maximum value composing. As this com-
posing is done in temporary registers instead of the frame buffer,
it stays in full 32-bit precision and it saves the bandwidth required
to write and read-back framebuffer values in traditional multi-pass
approaches.

To implement the pre-integrated transfer function, we use a 2D
texture that, given the previous and current density value, stores the
color and opacity produced by integrating all intermediate densi-
ties in the transfer function. This greatly improves visual quality
for high frequency transfer functions and allows for much larger
sampling steps for smoothly varying datasets.

As this application is only limited by the fill-rate of the graph-
ics cards, we used a simple broadcast distribution scheme where
everything is sent to all renderers.

Renderings obtained using the VTK original slice-based 2D
texturing and FlowVR Render-based raycasting shader with and
without preintegration are shown in figure 9. The data set is a
512× 512× 512 Christmas tree [11]. Performance results are pre-
sented in table 1. As a comparison, VTK 2D texturing implementa-
tion achieved 0.18 frames per second on one display. This is mostly
due to the fact that without shaders full-color textures must be used
instead of the raw grayscale texture. In our case this means that
VTK had to reupload the data at each frame as it does not fit inside
the graphics card.

Rendering on the display wall instead of only one display does
not introduce significant overhead as the transfered data is small
for most frames (camera position and transfer function). We even
obtain better performance on the display-wall as coherency between
neighbor pixels is higher. It leads to a more efficient texture caching
inside the graphics cards.

Notice that a higher framerate may be obtained during interac-
tions (when the camera is moving for example), by decreasing the

rendering resolution in addition to the sampling resolution. It per-
mits to obtain fluid movements while keeping a reasonable quality.

6 CONCLUSION

In this paper, we presented a novel parallel and remote rendering
framework using a scene abstraction based on batches of polygons
and shaders. This framework proved to be efficient and scalable
while using simple enough concepts to be easily extensible. Al-
though not directly compatible with existing applications in oppo-
site to Chromium, the porting effort should usually be limited. In
the case of visualization applications using a common toolkit this
effort only has to be made once, with the additional benefit of pro-
viding access to advanced features using shaders.

The iso-surface extraction test application showed that the
FlowVR Render approach outperforms Chromium regarding per-
formance and scalability. The volume rendering application
showed that using shaders and a communication protocol based on
incremental changes significantly reduces the amount of data com-
municated over the network. Using raw data sets instead of final
colors and geometry also reduces the memory requirements on the
graphics card, allowing larger datasets on each node. In particular,
we achieved an interactive rendering of a 512× 512× 512 dataset
on a 4096×3072 display wall.

Notice that the experiments presented focused on direct render-
ing on a display wall. FlowVR Render can also be used for remote
rendering in conjunction with sort-last algorithms.

Future works will address the design of a more complete toolkit
to manage user interactions. We will also extend FlowVR Render
to support a dynamic level-of-detail. Viewers will send several ver-
sions of primitives (either reducing the number of vertices or the
shaders quality), and renderers will adapt the rendering resolution
and quality of the objects depending on the desired performance.
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