Optimized Coordinated Checkpoint/Rollback
Protocol using a Dataflow Graph Model

Xavier Besseron and Thierry Gautier

{xavier.besseron | thierry.gautier}@imag.fr

Laboratoire d’Informatique de Grenoble
MOAIS Project

IHSTIFUT HATIONAL
BE BECNERCNE EN
' W INFORMATIOUE ET
BN AUTOMATIOUE
LI G INRIA

APRETAF Workshop, January 2009

Xavier Besseron and Thierry Gautier

Fault-Tolerance using Dataflow Graph

0 Context

e Fault-tolerance

e Data Flow Graph model in Kaapi
e Coordinated Checkpointing in Kaapi
@ simulations

Q Perspectives

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 2/33

Context

Outline

0 Context

Xavier Besseron and Thierry Gautier Dataflow Graph 3/33

Grid computing

What are grids?

@ Clusters are computers connected by a LAN
@ Grids are clusters connected by a WAN

@ Heterogeneous (processors, networks, ...)
@ Dynamic (failures, reservations, ...)

Aladdin — Grid’5000

@ French experimental grid platform
@ More than 4800 cores

@ 9 sites in France
°
°

1 site in Brazil
1 site in Luxembourg

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 4/33

Context

Fault-tolerance

R paravent
1 G
-
i s
J
08 i o
z $
H ;
H P
£ 06
s i
5 i
E H
§ oap
02 f
B —s— 1-day execution time
E 5-days execution time
e+ 10-days execution time
0

0 1000 2000 3000 4000 5000
Number of processors

Why fault-tolerance?

@ Fault probability is high on a grid
@ Split a large computation in shorter separated computations
@ Dynamic reconfiguration

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 5/33

Fault-tolerance

Outline

e Fault-tolerance

Xavier Besseron and Thierry Gautier Dataflow Graph 6/ 33

Fault-tolerance

Fault-tolerance survey [Elnozahy02]

Duplication-based protocols [Avizienis76][Wiesmann99]
Application execution is duplicated, spatially or temporally.

Log-based protocols [Alvisi98]

@ Assume that the state of the system evolves according to
non-deterministic events

@ Non-deterministic events are logged in order to rollback from a
previous saved checkpoint

Checkpoint/rollback protocols

Periodically save the local process state of the applications.

@ Uncoordinated checkpointing [Randell75]
@ Coordinated checkpointing [Chandy85]
@ Communication-induced checkpointing [Baldoni97]

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 7/ 33

Fault-tolerance

Checkpoint/rollback protocols

Why checkpoint/rollback protocol?

@ Duplication protocols require too much resources [Wiesmann99]
and a computation interruption can be tolerated

@ Logging protocols require too much resources (memory and
bandwidth) with large communication applications [Elnozahy04]

Why coordinated checkpointing?

Coordinated checkpointing advantages:
@ No domino effect [EInozahy02]

@ Low overhead towards application
communications [Bouteiller03][Zheng04]

@ Coordination overhead can be amortized using a suitable
checkpoint period [Elnozahy04]

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 8/33

Fault-tolerance

Application state

Global state

The global state of an application is composed of:
@ the local state of all its processes;
@ the state of all its communication channels.

v

Coherent global state

A coherent global state is a state than can happen during a correct
execution of the application.

Coherent global state Incoherent global state

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 9/33

Classical coordinated checkpoint/rollback protocol

Two steps:

Checkpoint step, during failure-free execution

Coordinate all processes to checkpoint a coherent global state:
@ Coordinate all the processes
@ Flush communication channels between all processes
@ Save the processes state

Rollback step, to recover after a failure

Global restart:
@ Replace failed processes by new ones
@ All processes restart from their last checkpoint
@ Restart time is, in worst case, the checkpoint period

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 10/ 33

Challenging problems

How to improve performances of coordinated checkpoint/protocols?

@ Reduce the synchronization cost [Koo87]
@ Speed-up restart [Bouteiller03][Zheng04]
@ Reduce lost computation time in case of fault

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 11/33

Outline

9 Data Flow Graph model in Kaapi

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 12/ 33

Applications: simulation of physical phenomena

Characteristics

@ lterative decomposition domain applications
@ Large amount of data

4

Parallelization: static-scheduling

@ lterative applications = only schedule the loop “kernel”
@ Large data = preserve locality

H

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 13/33

DFG

Applications: simulation of physical phenomena

Characteristics

@ lterative decomposition domain applications
@ Large amount of data

4

Parallelization: static-scheduling

@ lterative applications = only schedule the loop “kernel”
@ Large data = preserve locality

N

Domain

b o v e e i e e i e P S S 0 0 3 0

dEbddSES

ssssssssss e b s

e T YT T B

= A

Lt L L L L 2 3 N 0 e W

v lterations

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 13/33

DFG

Data Flow Graph

@ Partition the
one-iteration graph

@ Generate
communication tasks

@ Distribute each
sub-graph on all the
processes

@ Repeat the sub-graphs
to iterate

«—

Communication

1
!
I
I
l
l
l
l
l
!
1
1
1
.
!
l
I
l
l
I
1
-
1
1
1
!
!
l
—-
l
l |
! |
! .
Receive task
1
! <
i (O pata
I
| Dependency
I
l

<«

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 14/ 33

DFG

Keypoint: abstract representation

The Data Flow Graph

@ A task is the computational unit
@ A process is composed of a (dynamic) sequence of tasks

@ At any time, Kaapi allows to discover not yet executed tasks and
their dependencies

@ This abstract representation shows the future of the execution

The data flow graph representation is causally connected to the
application execution.

Usage: analyze and transform the application state and behavior

@ Schedule tasks (at any time)
@ Checkpoint application state

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

15/33

Outline

0 Coordinated Checkpointing in Kaapi

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 16/ 33

CCK

Checkpoint step

Classical protocol checkpoint

Coordinate all processes to checkpoint a coherent global state:
@ Coordinate all the processes
@ Flush communication channels between all processes
@ Save the processes state

CCK: differences with the classical protocol

Optimize the checkpoint step using the abstract representation of the
execution (data flow graph):

@ Partial flush: only between processes which communicates
@ Increment checkpoint: save only modified data

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 17/ 33

Recovery: classical protocol vs CCK

Classical protocol restart

Global restart:
@ Replace failed processes by new ones
@ All processes restart from their last checkpoint
@ Restart time is, in worst case, the checkpoint period

CCK protocol restart

Partial restart:
@ Detect lost communications for the failed processes

@ Find the strictly required computation set to make the global
state coherent

@ Schedule statically this task set

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 18/ 33

CCK

After a checkpoint

1 1 1 1
I Non-failed process | Non-failed process 1 Non-failed process 1
1 1 1 1
1 1 1 1
! ! ! ! O Send task
1 1 1 1
1 1 A 1)
| | e | IZ Receive task
1 1 1 1
! ! ! ! O Non-executed task
1 1 1 1
1 1 1 1
1 1 1 1
1 1 5 1
1 —-1= == 1
1 1 1 1
1 1 1 1
| | 1 | () Data
1 1 1 1
1 1 1 1
1 [[1
| 2 6 |
1 1 ! 1 N d
\ \ \ ‘ \ <« Dependency
1 1 1 1
| -
1 1 1 1 Communication
1 1 1 1 «-=
1 1 1 1
1 3 1 1
1 1= 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Xavier Besseron and Thierry Gautier olerance using Dataflow Graph 19/33

CCK

A process failed

Failed process

1 1
1 Non-failed process 1
1 1
1 1
1 1
1 1
[A
1 |
1 1
1 1
1 1
1 1
1 1
il 5
= -2
1 1
1 1
1 1
1 1
1 1
[[
2 _8
1 !
1 1
1 1
1 1
1 1
1 1
3 1
1= 1
1 1
1 1 1
1 1 1
1 1
1 1
1 1
1 1
1 1
1 1

Xavier Besseron and Thierry Gautier

Non-failed process

CXOINIA

0

Send task
Receive task
Non-executed task

Executed task

Data

Dependency

Communication

olerance using Dataflow Graph

19/33

CCK

Incoherent application state

Failed process

Non-failed process

|
T
|
e | o > R ¢ » E e I N

e A Ve

Xavier Besseron and Thierry Gautier

Non-failed process

(@@ONNND

t

Send task

Receive task
Non-executed task
Executed task
Task to re-execute

Data

Dependency

Communication

olerance using Dataflow Graph

19/33

CCK

Lost communications

Failed process

Non-failed process

|
e | o > R ¢ » E e I N

Xavier Besseron and Thierry Gautier

Non-failed process

(@@ONNND

t

Send task

Receive task
Non-executed task
Executed task
Task to re-execute

Data

Dependency

Communication

olerance using Dataflow Graph

19/33

CCK

Communications to replay

Failed process

Non-failed process

Non-failed process

Send task

Receive task

Non-executed task

Executed task

Task to re-execute

(@@ONNND

Data

Dependency

t

Communication

e [o> R 1 ¢) B

Xavier Besseron and Thierry Gautier olerance using Dataflow Graph 19/33

CCK

Tasks to re-execute

Failed process

Non-failed process

T.OJW% e

Non-failed process

e [o> R 14) B

T T T T T T T T T T T TR

Xavier Besseron and Thierry Gautier

(@@ONNND

t

Send task

Receive task
Non-executed task
Executed task
Task to re-execute

Data

Dependency

Communication

olerance using Dataflow Graph

19/33

CCK

Recovery: classical protocol vs CCK

Classical protocol restart

Past of the
L execution Processes
Failure _|_ | _ _ _|_ - 1N 1______] R I B
Next

Execution

y
CCK protocol restart

Past of the

Last execution Processes
heckpoint

Failure _|_ | _ _ _|_ J- o 1N I ______ S I R
Next

Execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

CCK

Recovery: classical protocol vs CCK

Classical protocol restart

Past of the
L execution Processes
std
recovely
Failure _|_ | || | | N | _ ____ _
Next
Execution
y
CCK protocol restart
Past of the
Last execution Processes
heckpoint
cck
recovefy
Failure _|_ | _ _ _|_ J_ _N_ 1N _ _____J R N D
Next
Execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

CCK

Recovery: classical protocol vs CCK

Classical protocol restart

Past of the
Last execution Processes
checkpoint

Endof _|_ -
recovery
Execution
4
CCK protocol restart
Past of the
Last execution Processes

checkpoint

Endof _ |_
recovery

Execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

CCK

Recovery: classical protocol vs CCK

Classical protocol restart

Past of the
Last execution Processes
checkpoint

Endof _|_ -
recovery
Execution
4
CCK protocol restart
Past of the
Last execution Processes

checkpoint

End of _|_
recovery

Execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 20/ 33

Recovery: Cost analysis

Classical protocol restart

Required work to recover: W very = O(N - 7)
Restart time on N processes: TS, = O(7)
CCK protocol restart
Required work to recover: W very = O(Niaiea - T + € application,r)

Najted - T + € application, ™)

Restart time on N processes: TS O(N

restart —

We have to add the CCK-recovery overhead:

O(N - K) messages + O(|G|) in time + data distribution cost

K'is an application dependent constant that represent the neighbor number

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 21/33

Simulations kpoint period Prot

Outline

@ simulations

Xavier Besseron and Thierry Gautier Dataflow Graph 22/33

Simulations Checkpoint period Process number Local re-ordering

Simulations: case study

Application

@ Jacobi method on a 3D-domain

@ 2,048°% domain (64 GB)

@ Split in 642 subdomains (32 KB each)
@ Subdomain update computed in 10 ms

Scenario

@ One process failed

@ Simulation of the restart in worst case

@ = % of tasks to re-execute (W e,/ Wi ery)
@ = Involved processes

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 23/33

Simulations Checkpoint period P mber

CCK restart: checkpoint period influence

@ 1,024 processors, ie 256 subdomains (64 MB) per process
@ one iteration last about 2.5 seconds

% with respect to the classical protocc

100

80

60

40

20

tasks to re—execute

; ; irlnvolved processes

0 100 200 300 400 500

Checkpoint period (in s)

For a 60-seconds period, the estimated restart time is:
@ 60 seconds with the classical protocol
@ 3.6 seconds with CCK (if totally parallelized)

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

600

24/ 33

Simulations Checkpoint period Process number Local re-ordering

CCK restart: process number influence

g 9000
§ 8000
3 7000 odes
a —=a— period=5s
B 6000 period =10 s
= 5000 ++wanee period =25 s
S 4000 B T . R +w period =50 s
£ - period =100 s
5 3000 o . classical protocol
5 2000
£ 1000
5 o TR H : o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Process number

0 .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Process number

j=3

S

2 100

8

g 80 s —=a— period=5s
S period =10 s
[} 60 ~awee period=25s
£ O s period =50 s
2 40 : period = 100 s
° classical protocol
2 20

[}

§ duid A h

H

N

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 25/ 33

Simulations

Local re-ordering

Default execution order

Process 1

Xavier Besseron and Thierry Gautier

Checkpoint period Process number Local re-ordering

Fault-Tolerance using Dataflow Graph

26/ 33

Simulations

Local re-ordering

Default execution order

Process 1

(e I o S e N e S e N e Y i [e N i [e M o S
><J><J><J < J><J < J > [>< > ><]

Xavier Besseron and Thierry Gautier

Checkpoint period Process number Local re-ordering

Process 2

Fault-Tolerance using Dataflow Graph

26/ 33

Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

Default execution order

Process 1 Process 2

ll !iiii i
SeeEye iﬁ

R <]

iﬁi

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Simulations >heckpoint period Pr number Local re-ordering

Local re-ordering

Default execution order

Process 2

Process 1

|

é
%

- CEES TR C

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

26/ 33

Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering
Process 2
lo><Jo<Je><J><J I J < J > ><] ><] ><]
S
CJ) CO CJO CO CO CJO CO CJ CO CJ C2
[><J <] <] ><] ><J < T < < I I >< [><]
e
[(J CJO CO CO CJO CQ CJO CO CQO CJ CJ CJ
[><J <] <] ><J ><J <[< < I I >< [><]
i
[J CJO CO CO CJO CQ CJO CO CO CJ CJ CJ
[><Jo<Jo<J><] ><J><J < < [>< I >< [><]
ofoReRo) o‘o‘o oReReRe)
[J CJ CJ CJ) CJ CJO CJ CJ CJ
[><Jo<Jo<J <] <] < J>< <] >< [>< [>
ofoNe) 5060

cJ cJ
Co CO CO o COQ CO .2
l><Jo<Jo<JoJ><Jo<J>o<Jo<[>

Process 1

vl

s,

oo
o
o

cCo CQ CJ
<Jo><J><]

o
s
s

SRR CEE) TS CER ERL TR T

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

26/ 33

Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Process 1 Process 2

AR
Nwéwiééééé
LepiiiEieiie
S IIL

]
< <
-“" SR SR -‘- R SR R R
><JoJoJo<J>JoJoJo<Jo<J><J>

<l

Y.
feereeeeeeey

$5335441003

‘Hl#

V

--+-e-+-e-+-e-

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

26/ 33

Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Process 1

TTETTTTETALS
EEREERLERRN
EERERRERALY

Process 2

: freeeets
i&ﬁﬁ

0)

--+-e-+-e-+-e-

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Simulations

Local re-ordering

mber Local re-ordering

With local re-ordering

Process 1
JJ< I FJ><T>< 1>
OO0 000 QQ
<< << I <IN
T
2R 22 2 AR

1115

Process 2

Ocl

S,
>,
-0

N

U\
e o‘:‘o X
2 2 R

e e e
o
o

Co CO CJO CoO CO CJ
& TN <] <
cJ CJ CIO\C2 CJ) CJ CJ CJ
<N
ONONO)

() cJ cJ cJ cJ
[><Jo<Jo<Jo<]o<[o<]>< >
o‘o‘o oReReReRe
[><Jo<]o><Jo<]><Jo<] <[>

X
ot

LTS CEP) TS SRRV ERE SRR T
IS
O SER
K- oh

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering

Process 2

Process 1

LR 5 b N
@)
CJ
@)

o) o)

<<
““"“ T “‘“&

€O CO Co CO Co .o .3 C3 9 O\
<J><] 4:4: <<<oNN

& o‘o ofle
[><JIo<o><[>>

SRR CEE) TS CER ERL TR T

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 26/ 33

Simulations Checkpoint period Pro number Local re-ordering

Local re-ordering

With local re-ordering

Process 2
><7

44444444

HITHL
$4LIEEER4E:
ciriiinie

]

<
-*‘" SR SR -‘- R SR R R
><Jo<Jo<Jo<J>JoJoJo<Jo<J><J>

Process 1

teetiieeeeee
1144881444
4148410841,

V

--+-e-+-e-4\--e-

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

26/ 33

Simulations Checkpoint period Pro number Local re-ordering

Local re-ordering

With local re-ordering

Process 1

L}
------------------- D o T o S |
[><] <>l §>§>4>4>4>4»4 S 7 << I I I I I IS S]]

TN 33
e CO CO CJ CY CJ CJ CQ CIO CAL 0 LD CJ CJ CJ CJ Clubembwembn? CJ CJ CJ
S g <G> J > >J >N ‘45 FJ>I>J > 5wy Io<Jo<J]IS >
QCCCQQQ‘ 1 0000000
Q CJ CJ CJ CN\ -------"--- co CJ
l><J><Jo<JS><J>JT>AIN<I>TI><T T S [T S ISISGI SIS TSI TSI TS
Teey REEEIEE4E44:
cJ A V) CJ C] [J CJ CO OO CJ CJ CJ CJ CJ
><J><J>J><J><J><J><J< NI ><J > v, o< oA <] ><J<J><J><J><J><J><
SO L
O CQ CJ COQ CO CJ CJ CJ CO §) CIO CA ' [0 CJO G CJO CJO CO CJ CJ cJ]
l><J<J><J><><J><J><J><J < NI ><] = I >F < J < J><J < I T I [>T
O o CO CO o CJ CJ o 0 C0 § CA 1 [J o CO CO Co CO CI .2 cJ
l>Jo<JoJo<J>Jo<Jo<Jo<Jo<JI><N<] A, IoAo<Jo<Jo<J><J><J><J><J><J><J><]
CCCCCQQQQQC‘ O 000000 O
-------h‘----------

Checkpoint

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

26/ 33

Number of tasks to re-execute

60

50

40

30

Simulations

CCK restart: local re- orderlng influence

point period Pr

number

Local re-ordering

| Q-':CK without Ioca_{l re—ordering e |
e ¢ CCK with local re-ordering -
. classical pratocol
/chec__kpoint : /cheqkpoint /chec__kpoint /che(;kpoint /cheqkpoint
..-.-....-.-.4

Fault date (in seconds)

Xavier Besseron and Thierry Gautier

Fault-Tolerance using Dataflow Graph

27/ 33

Perspectives

Outline

Q Perspectives

Xavier Besseron and Thierry Gautier Dataflow Graph 28/ 33

Perspectives

Performance guarantees for failure-free executions

The goal is to optimize the protocol parameters :
@ Interval delay between checkpoint events
@ Checkpoint server number and mapping

| \

Dynamic reconfiguration

Adding or removing nodes requires to re-schedule statically
@ Checkpoint to get a coherent global state
@ Schedule statically for the new node number
@ Resume the execution

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 29/33

Perspectives

Thanks for your attention

Questions?

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

Kaapi parallel programming model

The application is described as a data flow graph.

API

@ Global address space
@ Independent of the number of processors
@ Data (Shared<. . .>): declares an object in the global memory

@ Tasks (Fork<...>): creates a new task that may be executed in
concurrence with other tasks

@ Access mode: given by the task: Read, Write, Exclusive,
Concurrent write

Shared<Matrix> A;
Shared<double> B; A —> B
Fork<Task> () (A,B);

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph

31/33

Optimized CCK restart

Failed process

Non-failed process

T to_re-execie (optimised)

|
e | o > R ¢ » E e I N

T T T T T T T T T T T TR

Xavier Besseron and Thierry Gautier

Non-failed process

0000

t

2
[

Send task

Receive task
Non-executed task
Executed task
Task to re-execute
Data

Data in memory

Dependency

Communication

olerance using Dataflow Graph

32/ 33

First experiments: 3D-domain decomposition

Preliminary results, Kaapi vs MPICH:

Mean time for an iteration (s)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

16

Xavier Besseron and Thierry Gautier

32

64 64+32
Number of nodes

u— Kaapi

. 3 MPICH/
{2 clusters |

64+64

Fault-Tolerance using Dataflow Graph

	Context
	Fault-tolerance
	Data Flow Graph model in Kaapi
	Coordinated Checkpointing in Kaapi
	Simulations
	Checkpoint period
	Process number
	Local re-ordering

	Perspectives
	Appendix

