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Grid computing

What are grids?

@ Clusters are computers connected by a LAN
@ Grids are clusters connected by a WAN

@ Heterogeneous (processors, networks, ...)
@ Dynamic (failures, reservations, ...)

Aladdin — Grid’5000

@ French experimental grid platform
@ More than 4800 cores

@ 9 sites in France
°
°

1 site in Brazil
1 site in Luxembourg
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Context

Fault-tolerance
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Why fault-tolerance?

@ Fault probability is high on a grid
@ Split a large computation in shorter separated computations
@ Dynamic reconfiguration

Xavier Besseron and Thierry Gautier Fault-Tolerance using Dataflow Graph 5/33



Fault-tolerance

Outline

e Fault-tolerance

Xavier Besseron and Thierry Gautier Dataflow Graph 6/ 33




Fault-tolerance

Fault-tolerance survey [Elnozahy02]

Duplication-based protocols [Avizienis76][Wiesmann99]
Application execution is duplicated, spatially or temporally.

Log-based protocols [Alvisi98]

@ Assume that the state of the system evolves according to
non-deterministic events

@ Non-deterministic events are logged in order to rollback from a
previous saved checkpoint

Checkpoint/rollback protocols

Periodically save the local process state of the applications.

@ Uncoordinated checkpointing [Randell75]
@ Coordinated checkpointing [Chandy85]
@ Communication-induced checkpointing [Baldoni97]
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Fault-tolerance

Checkpoint/rollback protocols

Why checkpoint/rollback protocol?

@ Duplication protocols require too much resources [Wiesmann99]
and a computation interruption can be tolerated

@ Logging protocols require too much resources (memory and
bandwidth) with large communication applications [Elnozahy04]

Why coordinated checkpointing?

Coordinated checkpointing advantages:
@ No domino effect [EInozahy02]

@ Low overhead towards application
communications [Bouteiller03][Zheng04]

@ Coordination overhead can be amortized using a suitable
checkpoint period [Elnozahy04]
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Fault-tolerance

Application state

Global state

The global state of an application is composed of:
@ the local state of all its processes;
@ the state of all its communication channels.

v

Coherent global state

A coherent global state is a state than can happen during a correct
execution of the application.

Coherent global state Incoherent global state
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Classical coordinated checkpoint/rollback protocol

Two steps:

Checkpoint step, during failure-free execution

Coordinate all processes to checkpoint a coherent global state:
@ Coordinate all the processes
@ Flush communication channels between all processes
@ Save the processes state

Rollback step, to recover after a failure

Global restart:
@ Replace failed processes by new ones
@ All processes restart from their last checkpoint
@ Restart time is, in worst case, the checkpoint period
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Challenging problems

How to improve performances of coordinated checkpoint/protocols?

@ Reduce the synchronization cost [Koo87]
@ Speed-up restart [Bouteiller03][Zheng04]
@ Reduce lost computation time in case of fault
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9 Data Flow Graph model in Kaapi
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Applications: simulation of physical phenomena

Characteristics

@ lterative decomposition domain applications
@ Large amount of data

4

Parallelization: static-scheduling

@ lterative applications = only schedule the loop “kernel”
@ Large data = preserve locality

H
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DFG

Data Flow Graph

@ Partition the
one-iteration graph

@ Generate
communication tasks

@ Distribute each
sub-graph on all the
processes

@ Repeat the sub-graphs
to iterate
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DFG

Keypoint: abstract representation

The Data Flow Graph

@ A task is the computational unit
@ A process is composed of a (dynamic) sequence of tasks

@ At any time, Kaapi allows to discover not yet executed tasks and
their dependencies

@ This abstract representation shows the future of the execution

The data flow graph representation is causally connected to the
application execution.

Usage: analyze and transform the application state and behavior

@ Schedule tasks (at any time)
@ Checkpoint application state
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0 Coordinated Checkpointing in Kaapi
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CCK

Checkpoint step

Classical protocol checkpoint

Coordinate all processes to checkpoint a coherent global state:
@ Coordinate all the processes
@ Flush communication channels between all processes
@ Save the processes state

CCK: differences with the classical protocol

Optimize the checkpoint step using the abstract representation of the
execution (data flow graph):

@ Partial flush: only between processes which communicates
@ Increment checkpoint: save only modified data
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Recovery: classical protocol vs CCK

Classical protocol restart

Global restart:
@ Replace failed processes by new ones
@ All processes restart from their last checkpoint
@ Restart time is, in worst case, the checkpoint period

CCK protocol restart

Partial restart:
@ Detect lost communications for the failed processes

@ Find the strictly required computation set to make the global
state coherent

@ Schedule statically this task set
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CCK

After a checkpoint
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CCK

A process failed

Failed process
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CCK

Incoherent application state
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CCK

Lost communications
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Non-failed process
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CCK

Communications to replay
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CCK

Tasks to re-execute

Failed process
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CCK

Recovery: classical protocol vs CCK

Classical protocol restart
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CCK
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Recovery: Cost analysis

Classical protocol restart

Required work to recover: W very = O(N - 7)
Restart time on N processes: TS, = O(7)
CCK protocol restart
Required work to recover: W very = O(Niaiea - T + € application,r )

Najted - T + € application, ™ )

Restart time on N processes: TS O( N

restart —

We have to add the CCK-recovery overhead:

O(N - K) messages + O(|G|) in time + data distribution cost

K'is an application dependent constant that represent the neighbor number
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Simulations Checkpoint period Process number Local re-ordering

Simulations: case study

Application

@ Jacobi method on a 3D-domain

@ 2,048°% domain (64 GB)

@ Split in 642 subdomains (32 KB each)
@ Subdomain update computed in 10 ms

Scenario

@ One process failed

@ Simulation of the restart in worst case

@ = % of tasks to re-execute (W e,/ Wi ery)
@ = Involved processes
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Simulations Checkpoint period P mber

CCK restart: checkpoint period influence

@ 1,024 processors, ie 256 subdomains (64 MB) per process
@ one iteration last about 2.5 seconds

% with respect to the classical protocc
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For a 60-seconds period, the estimated restart time is:
@ 60 seconds with the classical protocol
@ 3.6 seconds with CCK (if totally parallelized)
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Simulations Checkpoint period Process number Local re-ordering

CCK restart: process number influence
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Simulations

Local re-ordering

Default execution order

Process 1

Xavier Besseron and Thierry Gautier

Checkpoint period Process number Local re-ordering

Fault-Tolerance using Dataflow Graph

26/ 33



Simulations

Local re-ordering
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Simulations Checkpoint period Process number Local re-ordering

Local re-ordering
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Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering
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Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering
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Simulations Checkpoint period Process number Local re-ordering

Local re-ordering

With local re-ordering
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Simulations
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Local re-ordering
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Simulations Checkpoint period Pro number Local re-ordering

Local re-ordering
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Simulations Checkpoint period Pro number Local re-ordering

Local re-ordering

With local re-ordering
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Perspectives

Performance guarantees for failure-free executions

The goal is to optimize the protocol parameters :
@ Interval delay between checkpoint events
@ Checkpoint server number and mapping

| \

Dynamic reconfiguration

Adding or removing nodes requires to re-schedule statically
@ Checkpoint to get a coherent global state
@ Schedule statically for the new node number
@ Resume the execution
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Perspectives

Thanks for your attention

Questions?
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Kaapi parallel programming model

The application is described as a data flow graph.

API

@ Global address space
@ Independent of the number of processors
@ Data (Shared<. . .>): declares an object in the global memory

@ Tasks (Fork<...>): creates a new task that may be executed in
concurrence with other tasks

@ Access mode: given by the task: Read, Write, Exclusive,
Concurrent write

Shared<Matrix> A;
Shared<double> B; A —> B
Fork<Task> () (A,B);
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Optimized CCK restart
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First experiments: 3D-domain decomposition

Preliminary results, Kaapi vs MPICH:
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