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Abstract

In this paper, we propose an parallel branch-and-bound algorithm for the
quadratic assignment problem based upon an efficient lower bound calculation
developed by Hahn and Grant [7]. The sequential version of this algorithm is
very easy to achieve with the Bob++ library ! and the results are very encourag-
ing. For the parallel implementation, we ported our Bob+- library to the high
level programming environment Athapascan 2. The performances obtaining with
this algorithm running on one cluster for the some instances of qap (size < 25)
taken from the QAPLIB? are competitive.

Keywords. Optimization, Quadratic Assignment Problem, Ezract Algorithms,
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1 Introduction

These last years, large and unsolved combinatorial optimization problems have been
solved exactly. The first reason of this success is the progression in the research of
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lower bound of quality for these problems and the second reason is the progression of
the calculation power by using grid computing.

The QAP belongs to the class of NP-hard problems and is considered as one of
the most difficult. Because of the extreme difficulty of the problem, exact solution
methods have often been implemented on high-performance computers. In the past
ten years, a number of landmark computational results for the problem have been
obtained using parallel processing hardware.

Two recent developments have resulted in a large improvement in the ability to solve
QAPs exactly. The first is the dual procedure (DP) bound of Hahn and Grant |7,
which derives from a level 1 reformulation linearization techniques (RLT) of the QAP.
The second is the quadratic programming (QP) bound of Anstreicher and Brixius [3].
It is the speed of calculation of this QP bound and its parallel implementation that
makes it effective in solving the most difficult problems to date. These two methods
have made it possible to solve exactly heretofore-unsolved problems of size 30 [4, 8|.

The scope of the work is the design of an parallel branch-and-bound algorithm
based on the Hahn and Grant lower bound [7] procedure (DP) which has roots in the
Hungrian algorithm this that never was done before. We are the first to propose it.
This work allows us not only to resolve large instances of QAP but also to verify the
results of Anstreicher and al. Since the publication of their results on the resolution
of the Nugent 30, no verification is done.

The paper is organized as follows. In the second section, we give a brief description
of the problem (definition, formulations and the different resolution approaches). We
focus on the most critical formulation level 1 RLT of Adams and Johnson|2]. In the
third section, we present the used branch-and-bound method and some lower bounds.
In section four, we review the Hahn and Grant procedure (DP) derived from the
formulation level 1 RLT. Section five consists to present our algorithm and different
components used for solving the QAP on clutser. The current version of the code
can execute itself on grid computing. The performance of the proposed algorithm
on cluster is presented in section six. A set of problem instances is considered and
benchmark results are given. Finally, concluding remarks are given in section 7.

1.1 Quadratic Assignment Problem:

The QAP was formulated by Koopmans and Beckmann (1957)[9] as the task to
find for three n x n matrices A = (ay), B = (bj;) and C = (¢;;) a permutation 7 of
{1,...,n} that minimizes

Min Z @ik br(iyn (k) + Z Cir(i)-

ik=1 i=1
The QAP can be used to formulate a variety of interesting problems in location
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theory, manufacturing, data analysis, and other areas. Unfortunately, the problem is
typically for its size extraordinarily difficult to solve.

Linearization: When dealing with QAPs, it seems that the quadratic form in its
objective function hopelessly destroys every attempt to efficiently solve the problem.
One of the first ideas to avoid this inconvenient feature of the problem was probably
the so called linearization of the QQAP. That is, getting rid of the quadratic form in
the QAP objective function by finding an equivalent linear formulation. A more or
less complete list of references to various QAP linearizations can be found in [10].
Moreover, some of them are described in detail in [6]. Here, we present only the
level 1 formulation of Adams and Johnson [2].

In 1990, Sherali and Adams|[11] proposed a general strategy for linearizing 0-1
quadratic programming problems. When applied to the QAP, Adams and Johnson|2]
proposed a new formulation for the QAP called level 1 formulation RLT. They define
a new variable y;;x = T;;Tp -

(QAP HYMind > > > Cimliju+ Y Y Cijij

i=1 j—1 k=1k#i l=114j =1 j=1

Y Yijkt = Yigig = i = 0,1 V(i, g, 1), 1 #j (1)
k=1k+i

D ikt = Yijig = Tig = 0,1 V(i 5, k), k#1 (2)
I=11£]

Yijkl = Ylij V(i 5, k1), k=i, #j (3)

Zyijz'j =1 Vi=1,..,n (5)

Yijkl 20 V(Z,],k,l),k#l,l?éj (6)

In general, QAP linearizations based on MILP models present a huge number of
variables and constraints, however they lead to the achievement of good lower bounds.
The optimal solution for an MILP formulation is a lower bound for the corresponding
QAP and dual solutions for the linear program of the MILP formulation is also a lower
bound for the QAP (though not quite as good). We refer you to the references cited in
Hahn and Grant [7| for discussion of the many lower bounds that fall in this category.

Lower bound: Notable among the bounds based on MILP relaxations is the dual
ascent procedure bound of Hahn and Grant. This bound is based upon a level 1
reformulation linearization technique (RLT) suggested by Adams and Sherali [1]. It is
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characterized by the exploitation of a fact that other researchers of MILP relaxations
relatively ignored, i.e., that certain variables were inexorably tied together. These
variables came in "complementary" pairs that, due to the nature of the constraints,
had to be equal. Hahn and Grant developed a computational method that exploited
this fact, resulting in an iterative sequence that, at each iteration, produced a revised
problem that was completely equivalent to the original problem. At the same time,
this procedure produced a sequence of non-decreasing bounds. The resulting bounds
are competitive in quality, when compared to some to the best bounds, and moreover
are better than those bounds in computational time.

1.2 Branch-and-bound implementation

Among the exact solution methods for the QAP only branch-and-bound algorithms
have proved to be useful.

It is impossible to get an accurate estimate of the work involved in executing brach-
and-bound algorithm without carrying out the actual computations. Therefore, the
only way to achieve an equitable division of the work among the various processes is
to divide the worke as it is generated, i.e., dynamically during execution.

In order to divide the work among the processes some unit of works as well as some
mechanism for dividing these units among the processes have to be defined. The unit
of work can be arbitrary chosen. Examples of units of work are the branching from
a single subproblem |Trienekens 1989, Kindervater and Trienekens 1988|, the optimal
solving of a subproblem [Kindervater 1989|, or the computing of lower bounds to a
subproblem generated by decomposition |Kindervater 1989)].

The basic unit of work in our implementation correspond to branching from a sin-
gle subproblem including the computation of the lower bounds on the subproblems
thus generated. In our code, this unit work correspond to QAPGenChild::operator()-
(Bob@QAPNode *p) method. This method take as argument the subproblem Bob@Q)APN-
ode *p (see Figure 1).

The master takes all important decisions: maintains the single central pool con-
taining the active set and decides which subproblems to branch from and when.

Each time a slave process becomes, it extracts the subproblem (P0) from the pool
(Figure2) according to the selection rule. Using the polytomic branching strategie, the
current subproblem can be separated on many subproblems (pOg, p0s, ..., p0;). Each
new subproblem (p0;)is evaluated by the BobQAP::FvalNode() function. Three situ-
ations presents:

First, the lower bound is smaller than the current best know solution, then the
subproblem (p0;) is added in the pool by BobQAPAlgo::Search(p;). Second, the sub-
problem is a solution, then the master process update the best know solution by the
SetSol() method and third the subproblem is not feasible then it is deleted.
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Figure 1: Unit of work Figure 2: Parallel B&B

In the case where the best solution is updated, the master processe prunes the pool
by applying the elimination rule.

2 Computational results

Our parallel algorithm has been developed in the programming language C++ and
Athapascan . Out experiments will be run on i-cluster2 (104 nodes interconnected by
a Myrinet network. Each node features 2 Itanium-2 processors 64 bits at 900 Mhz,
3 Gigabytes of memory and 72 gigabytes of local disk). This cluster use OAR * for
reserve nodes in two fashions: interactif and passive. The cluster OS is RedHat Linux
Advanced Server release 3.0.

In our preliminary experiments we run our tests using 14 processors. We execute
each instance three times. The best know results and the result obtained by our
algorithm are presented in Tables 1 and 2. The execution times, in second, required
to compute the lower bound for each instance with differents algorithms are presented
in Table 1.

For comparaison, we include, the level 1 RLT interior point calculation of Resende
et.al.[?] and the level 1 RLT bounds of Hahn and Grant[7] . For each problem, we

‘http://ita.imag.fr
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give the lower bound value in the root and the time required to the calculation. For
the Hahn and Grant results, the bounds are obtained after 2000 iteration on a SPARC
10 workstation with a 75 MHz SuperSparc processor.

The figure 4 and Table 2 show the performances of our parallel branch-and-bound
algorithm. Notice that we have very good performances. For some instances as the
Nugent 18 and Nugent 20, we obtain super efficient greater than 100%.

Instance | opt | Resende et.al. | Hahn-and-Grant Our Algo
bound ‘ time (s) | bound ‘ time (s) ‘ iteration
nugl2 578 523 523 82.5 512 0.393 148
nuglb | 1150 1041 1039 325.3 1003 | 1.563 238
nug20 | 2570 2182 2179 | 14571 | 2142 | 6.585 300

Table 1: Lower bounds calculations.

Instance | Nugl8 Nug20 Nug21 Nug22

NP=1 27.12 294.23 604.45 479.85
NP=7 3.77 42.145 86.765 69.07
NP=14 | 1.69 20.845 43.57 34.725
S(14) 16.04 14.11 13.87 13.81
e(14) 114.57 100.78 99.07 98.64

Table 2: Performances of parallel BESB algorithm

3 Conclusion

In this paper, we presented an parallel branch-and-bound algorithm for solving the
quadratic assignment problem on cluster. This algorithm is based on the Hahn and
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Grant lower bound procedure (DP). Our algorithm was compared with the most actual
algorithms: Hahn-and-Grant and the Ansetreicher-and-al. algorithms.

The algorithm proposed presented good speedups that encourages us to pass from
cluster to grid.

The passage from cluster to grid is done without rewriting the code with Athapas-
can, and therefore very easy. Let us note that the experiences showed coming from
the project e-Toile with more than 80 machines showed an effectiveness between 70%
and 80%. The tests on grid are in realization course for some large instances.

Actually, we are working on the improving the lower bound and optimizing the data
structures. We study the implementation of the lower bound based on the level 2 RLT
of Hightower and Hahn. The preliminary sequential results are very encouraging. We
think that this bound can reduce substantially the number of nodes on the branch-
and-bound tree that need to be scanned. Though the solution time for computing
those bounds is significantly greater than the time needed to compute the classical
lower bounds.

An other way to explore is the parallelism on high level of the branch-and-bound
algorithm. For each subproblm, we try to compute the lower bound in parallele while
separating dual procedure on many independants tasks.

In analyzing the performance of our Algorithm, we noticed that the Hungarian
method (for solving LAPs) occupies about 46% of the total runtime. The optimization
of the Hungarian method would allow us to significantly reduce the runtime. As the
algorithm is written now, the LAPs are always solved starting with the original costs,
even though one LAP differs from another by a single column of costs. If we can
take into account information from solving one LAP to aid in solving another, much
processing time can be saved.

Another important point to be tackled is the fault tolerance of parallel algorithms
executed on cluster or grid. This is important mainly due to our long execution time
applications. This problem is included in the version 3 of Athapascan.
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