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Motivation

Large-scale distributed platforms result from the collaboration of
many users:

I Multiple applications execute concurrently on heterogeneous
platforms and compete for CPU and network resources.

I Sharing resources amongst users should somehow be fair.
I Large scale platform require distributed scheduling.

In a grid or Volunteer Computing context, sharing is generally done
in the “low” layers (network, OS).

1 We analyze the behavior of K non-cooperative schedulers that
use the optimal strategy to maximize their own utility while
fair sharing is ensured at a system level ignoring applications
characteristics [INFOCOM’07].

2 We use Lagrangian optimization and distributed gradient de-
scent to propose a fair and distributed scheduling algorithm for
this framework [JPDC’13?].
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Master-Worker Platform

P0

P1 PNPn

W1 Wn WN

BN

Bn

B1

I N processors with processing capa-
bilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
Mb.s−1)

Hypotheses :

I Multi-port

I No admission policy
but an ideal local fair
sharing of resources
among the various re-
quests
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Communications to Pi do not interfere
with communications to Pj .
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Master-Worker Platform

P0

P1 PNPn

W1 Wn WN

BN

Bn

B1

I N processors with processing capa-
bilities Wn (in Mflop.s−1)

I using links with capacity Bn (in
Mb.s−1)

Hypotheses :

I Multi-port

I No admission policy
but an ideal local fair
sharing of resources
among the various re-
quests

Definition.

We denote by platform-system a triplet (N,B,W ) where N is the
number of machines, and B and W the vectors of size N containing
the link capacities and the computational powers of the machines.
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Applications

I Multiple applications (A1, . . . , AK):

A3A2A1

I each consisting in a large number of same-size independent tasks
I Different communication and computation demands for different

applications. For each task of Ak:
I processing cost wk (MFlops)
I communication cost bk (MBytes)

I Master holds all tasks initially, communication for input data
only (no result message).

I Such applications are typical Desktop Grid or Volunteer Com-
puting applications (SETI@home, Einstein@Home, . . . )
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Applications
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A3A2A1

I each consisting in a large number of same-size independent tasks
I Different communication and computation demands for different

applications. For each task of Ak:
I processing cost wk (MFlops)
I communication cost bk (MBytes)

I Master holds all tasks initially, communication for input data
only (no result message).

I Such applications are typical Desktop Grid or Volunteer Com-
puting applications (SETI@home, Einstein@Home, . . . )

Definition.

We define an application-system as a triplet (K, b, w) where K is
the number of applications, and b and w the vectors of size K
representing the size and the amount of computation associated to
the different applications.
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Steady-State scheduling

In the following our K applications run on our N workers and com-
pete for network and CPU access:

Definition.

A system S is a sextuplet (K, b, w,N,B,W ), with K,b,w,N ,B,W
defined as for a user-system and a platform-system.

I Task regularity ; steady-state scheduling.

I Maximize throughput (average number of tasks processed per
unit of time)

ρk = lim
t→∞

donek(t)

t
.

Similarly: ρn,k is the average number of tasks of type k per-
formed per time-unit on the processor Pn.

ρk =
∑

n ρn,k.

I ρk is the utility of application k.
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Constraints

The scheduler of each application thus aims at maximizing its own
throughput, i.e. ρk .

However, as applications use the same set of resources, we have the
following general constraints:

Computation ∀n ∈ J0, NK :
K∑
k=1

ρn,k · wk 6Wn

Communication ∀n ∈ J1, NK :
K∑
k=1

ρn,k · bk 6 Bn

Applications should decide:

I which worker to use,

I when to send data from the master to a worker,

I when to use a worker for computation.
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Optimal strategy for a single application

Single application

This problem reduces to maximizing
∑N

n=1 ρn,1 while:
∀n ∈ JA,NK : ρn,1 · w1 6Wn

∀n ∈ J1, NK : ρn,1 · b1 6 Bn

∀n, ρn,1 > 0.

The optimal solution to this linear program is obtained by setting

∀n, ρn,1 = min

(
Wn

w1
,
Bn
b1

)
In other words

The master process should saturate each worker by sending it as
many tasks as possible.
A simple acknowledgment mechanism enables the master process to
ensure that it is not over-flooding the workers, while always con-
verging to the optimal throughput.
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A Non-Cooperative Game

We suppose a purely non-cooperative game where no scheduler de-
cides to “ally” to any other (i.e. no coalition is formed).

As the players constantly adapt to each others’ actions, they may
(or not) reach some equilibrium, known in game theory as Nash
equilibrium [Nash51].

ρ
(nc)
n,k denotes the rates achieved at such stable states (if any).
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A simple example

Two computers 1 and 2: B1 = 1,
W1 = 2, B2 = 2, W2 = 1.
Two applications: b1 = 1, w1 =
2, b2 = 2 and w2 = 1.
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Characterizing the Nash Equilibrium: proof idea
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Characterizing the Nash Equilibrium: proof idea
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Characterizing the Nash Equilibrium: proof idea

We assume c1 6 c2 6 · · · 6 cK . Let us denote by Wn the set of play-
ers that are computation-saturated and by Bn the set of players that are
communication-saturated on a given arbitrary worker n.

1 If
∑

k
Cn
ck

6 K then Wn = ∅ and ∀k, ρ(nc)
n,k =

Bn
K.bk

.

2 Else, if
∑

k
ck
Cn

6 K then Bn = ∅ and ∀k, ρ(nc)
n,k =

Wn

K.wk
.

3 Else, Bn and Wn are non-empty and there exists an integer m ∈
J1;K − 1K such that

cm
Cn

<
m−

∑m
k=1

ck
Cn

K −m−
∑K

k=m+1
Cn
ck

<
cm+1

Cn
.

Then, we have Wn = {1, . . . ,m} and Bn = {m+ 1, . . . ,K} and
ρ

(nc)
n,k = Bn

bk

|Wn|−
∑

p∈Wn

cp
Cn

|Wn||Bn|−
∑

p∈Wn
cp

∑
p∈Bn

1
cp

if k ∈ Bn

ρ
(nc)
n,k = Wn

wk

|Bn|−
∑

p∈Bn
Cn
cp

|Wn||Bn|−
∑

p∈Wn
cp

∑
p∈Bn

1
cp

if k ∈ Wn
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Characterizing the Nash Equilibrium

Theorem 1.

For a given system (N,B,W,K, b, w) there exists exactly one Nash
Equilibrium and it can be analytically computed.

Proof.

Under the non-cooperative assumption, on a given worker, an appli-
cation is either communication-saturated or computation-saturated.
Puting schedules in some canonical form enables to determine for
each processor, which applications are communication-saturated and
which ones are computation-saturated and then to derive the corre-
sponding rates.
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Pareto Optimality

Definition: Pareto optimality.

An allocation is said to be Pareto-optimal if it is impossible to strictly
increase the throughput of an application without strictly decreasing
the one of another.

When is our Nash Equilibrium Pareto-optimal ?

Theorem 2.

The allocation at the Nash equilibrium is Pareto inefficient if and
only if there exists two workers, namely n1 and n2 such that all
applications are communication-saturated on n1 and computation-

saturated on n2 (i.e.
∑

k
Bn1
Wn1

wk
bk

6 K and
∑

k
bk
wk

Wn2
Bn2

6 K).

Corrolary: on a single-processor system, the allocation at the Nash
equilibrium is Pareto optimal.
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Braess-like Paradox

Pareto-inefficient equilibria can exhibit unexpected behavior.

Definition: Braess Paradox [Braess68].

There is a Braess Paradox if there exists two systems ini and aug
such that

ini < aug and ρ(nc)(ini) > ρ(nc)(aug).

Theorem 3.

In the non-cooperative multi-port scheduling problem, Braess like
paradoxes cannot occur.

Proof.

I Defining an equivalence relation on sub-systems.

I Defining an order relation on equivalent sub-systems.

A. Legrand (CNRS-LIG) INRIA-MESCAL Non-Cooperative Scheduling Non-cooperative Scheduling 16 / 42



Braess-like Paradox

Pareto-inefficient equilibria can exhibit unexpected behavior.

Definition: Braess Paradox [Braess68].

There is a Braess Paradox if there exists two systems ini and aug
such that

ini < aug and ρ(nc)(ini) > ρ(nc)(aug).

Theorem 3.

In the non-cooperative multi-port scheduling problem, Braess like
paradoxes cannot occur.

Proof.

I Defining an equivalence relation on sub-systems.

I Defining an order relation on equivalent sub-systems.

A. Legrand (CNRS-LIG) INRIA-MESCAL Non-Cooperative Scheduling Non-cooperative Scheduling 16 / 42



Measuring Pareto-Inefficiency
Price of Anarchy

Definition [Koutsoupias.Papadimitriou’98] Price of Anarchy:

φΣ = max
S

∑
k ρ

(Σ)
k (S)∑

k ρ
(nc)
k (S)

> 1.

More generally:

If (S) =
f
(
ρ

(f)
1 (S), . . . , ρ

(f)
K (S)

)
f
(
(ρ

(nc)
1 (S), . . . , ρ

(nc)
K (S)

) > 1.

Problem measures the “distance” to a particular point...
Illustration 1 machine (B1 = W1 = 1) and K applications b =

( 1
M , 1...1) and w = ( 1

M , 1...1).

Utility Set

Nash Equilibrium

Profit Allocation

Max-min Allocation

ρ1

00

1
K−1

ρk

M

1

IΣ(SM,K) =
M

M
K + K−1

K

−−−−→
M→∞

K

Utility set and allocations
SM,K (K = 3,M = 2).
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Measuring Pareto-Inefficiency
Selfishness Degradation Factor

Rationale measure the “distance” to the Pareto set.

φ = max
S

I(S) = exp(d∞(log(ρ
(nc)
n,∗ (S), log(P(S)))

= max
S

min
ρ∈P(S)

max
k

max

ρ(nc)
n,k (S)

ρk
,

ρk

ρ
(nc)
n,k (S)


Illustration
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 0.01

 0.1

 1

Degradation Factor is related to ε-approximation of Pareto-curves
[Papadimitriou.Yannakakis’00].

In our context, Selfishness Degradation Factor is at least 2.
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Pareto Optimality and Monotonicity of Performance
Measures
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Most classical performance measures decrease with resource
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Recap

Conclusion

I Applying fair and optimal sharing on each resource does
not ensure any fairness nor efficiency when users do not
cooperate.

I Being “locally Pareto optimal” (i.e on each single machine)
does not help being Pareto optimal.

I Even with Pareto optimal situations, classical performance
measures can be non monotonic.

; either applications cooperate or new complex and global
access policies should be designed

Other Future Work

I Measuring Pareto-inefficiency is an open question.
I In the one-port communication model, Braess-like paradoxes

seem to arise.
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Platform Model

Wi

Wj

Bi→j

I General platform graph G = (N,E,W,B)

I Speed of Pn ∈ N : Wn (in MFlops/s)

I Bandwidth of (Pi → Pj): Bi,j (in MB/s)

I Linear-cost communication and computa-
tion model: X/Bi,j time units to send a
message of size X from Pi to Pj .

I Communications and computations can be
overlapped.

I Multi-port communication model.
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Application Model

Multiple applications:

I A set A of K applications A1, . . . , AK

I Each consisting in a large number of same-size independent
tasks ; each application is defined by a communication cost
wk (in MFlops) and a communication cost bk (in MB)

I Different communication and computation demands for differ-
ent applications

A3A2A1
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Hierarchical Deployment

Pm(3)

Pm(2)

Pm(1)

I Each application originates from a master
node Pm(k) that initially holds all the input
data necessary for each application Ak

I Communication are only required outwards
from the master nodes: the amount of data
returned by the worker is negligible

I Each application Ak is deployed on the
platform as a tree

Therefore if an application k wants to use a
node Pn, all its data will use a single path from
Pm(k) to Pn denoted by (Pm(k) ; Pn)

All deployment trees may be different
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Steady-State Scheduling and Utility

I All tasks of a given application are identical and independent
; we do not really need to care about where and when

I We only need to focus on average values in steady-state
I Steady-state values:

I Variables: average number of tasks of type k processed by pro-
cessor n per time unit: ρn,k

I Throughput of application k : ρk =
∑
n∈N

ρn,k

I Variables need to respect the following constraints

∀n,
∑
k

ρn,kwk 6Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

ρn,kbk 6 Bi,j

We would like to maximize all throughputs ρk.

“Defining” fairness is one way to go from a multi-criteria problem
to a more classical mono-criteria problem.
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Utility Function

In a general context, each application is characterized by a utility
function uk defined on (ρn,k)16k6K,16n6N .

In our context, the utility is simply defined by

uk(ρ) =
∑
n

ρn,k = ρk

But we could perfectly imagine other utility functions:

uk

ρk

uk

ρk

uk

ρk

uk

ρk

linear Voice over IP threshold price-accounting
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Utility Set and Fairness

How can fair be defined? Does it always mean “give the same thing
to everyone”? How can efficiency be defined?

ρ
(1)
· c(1) + ρ

(2)
· c(2) 6 Wu

ρ
(1)
· b(1) + ρ

(2)
· b(2) 6 Bu

ρ
(1)
> 0
ρ

(2)
> 0

ρ1

ρ2

ρ1

ρ2

Conflict Synergy

ρ1

ρ2

ρ1

ρ2

Independancy Fairness

Fairness can be seen as the trade-off between individual satisfaction
and global satisfaction.
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Defining Fairness for our framework

I Types d’équité:

ρ1

ρ2

ρ1

ρ2

ρ1

ρ2

Max min Social welfare Proportional
mink ρk

∑
k ρk

∏
k ρk

I A few problems with max-min fairness:

I Not “efficient” when applications are very different
I Seems to be hard to reach on such platforms [TPDS’07]

I Let’s try proportional fairness!

maximize

(∑
k∈K

log ρk

)
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A new optimization problem

Maximize
∑
k

log

(∑
n

ρn,k

)
under the constraints:

∀n,
∑
k

ρn,kwk 6Wn

∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

ρn,kbk 6 Bi,j

Can be solved in polynomial time e.g., with semi-definite program-
ming. It is very centralized though.

Can we solve it in a distributed way?
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Lagrangian Optimization: Basics

I Designed to solve non linear optimization problems:
I Let ρ→ f(ρ) be a function to maximize.
I Let (Ci(ρ) > 0)i∈[1..n] be a set of n constraints.
I We wish to solve:

(P )

{
maximize f(ρ)

∀i ∈ [1..n], Ci(ρ) > 0, and ρ > 0

I The Lagrangian function: L(ρ, λ) = f(ρ)−
∑

i∈[1..n]

λiCi(ρ).

I Under mild assumptions, there is no duality gap [Bertsekas-Tsitsiklis]:

max
ρ>0

min
λ>0
L(ρ, λ)︸ ︷︷ ︸

Primal problem (P )

= min
λ>0

max
ρ>0
L(ρ, λ)︸ ︷︷ ︸

Dual problem (D)

def
= min

λ>0
d(λ)
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Dual problem (D)

def
= min
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d(λ)

So what?..

I Two coupled problems with simple constraints.

I L is concave in ρ and convex in λ

I The structure of constraints is transposed to (D)
and a gradient descent algorithm is a natural way
to solve these two problems.

I This technique has been used successfully for
network resource sharing [Kelly.98], TCP anal-
ysis [Low.03], flow control in multi-path net-
work [Hang.et.al.03], . . .
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Trying to use Lagrangian optimization

I What does the Lagrangian function look like ?

L(ρ, λ, µ) =
∑
k∈K

log

(∑
i

ρi,k

)
+
∑
i

λi

(
Wi −

∑
k

ρi,kwk

)

+
∑

(Pi→Pj)

µi,j

Bi,j −∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

ρn,kbk



I Remember, we want to compute min
λ,µ>0

max
ρ>0
L(ρ, λ, µ).

L is concave-convex; simple “alternate” gradient descent
(I’m skipping a few details here to keep it simple and just present the general idea)

Update equations:


ρi,k ← ρi,k + γ ∂L

∂ρi,k

λi ← λi − γ ∂L∂λi
µi,j ← µi,j − γ ∂L

∂µi,j
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Toward a Distributed Algorithm...

I ρi,k is “private” to the agent of application k running on node i

I λi is attached to node i and µi,j is attached to (Pi → Pj)

λi
and µi,j are called shadow variables or shadow prices. They
can naturally thought of as the price to pay to use the cor-
responding resource.

I A gradient descent algorithm on the primal-dual problem can
thus be seen as a bargain between applications and resources.

I We need to find an efficient way to implement this bargain,
i.e. to compute the update. To this end, the following quanti-
ties are useful and easy to compute via recursive propagation:

σnk =
∑

p such that n∈(Pm(k);Pp)

ρp,k

{
aggregate throughput

of a subtree.

ηnk =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j

{
aggregate communication

price
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Toward a Distributed Algorithm...

Prices and rates can thus be propagated and aggregated to perform
the following updates:

pik(t+ 1)← bkη
i
k(t) + wkλi(t)

ρk(t+ 1)← σ
m(k)
k (t+ 1)

ρi,k(t+ 1)←
[
ρi,k(t) + γρ(U

′
k(ρk(t))− pik(t))

]+
λi(t+ 1)←

[
λi(t) + γλ

(∑
k

wkρi,k −Wi

)]+

µi,j(t+ 1)←

[
µi,j(t) + γµ

(∑
k

bkσ
i
k −Bi,j

)]+

I This algorithm is fully distributed and converges to the optimal
solution provided a good choice of γρ, γλ and γµ is done.

I This algorithm should seamlessly adapts to application/node
arrival and to load variations.
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Illustration of convergence on a toy platform
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Wrap up

There are three main steps to come up with such an algorithm:

1 Modeling: concave non-linear maximization problem

2 Partial derivatives: differentiate L
3 Algorithm design: ascent on primal and descent on dual ex-

ploiting the structure of derivatives

The key ingredients are:

I the separability of the objective function

I the structure of the constraints

“Technical” issues for convergence:

I Beware of divisions by 0

I Strict convexity of the objective function (;proximal variables ρ̃)

max
ρ̃>0

max
ρ>0

min
λ>0

L(ρ̃, ρ, λ),

I Nested structure needs to be broken in practice!!!
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And in practice ?

In 2006, we stumbled on [Hang.et.al.03]: “Optimal Flow Control
and Routing in Multi-path Networks”, where we learnt about these
techniques

Effectiveness of the approach was illustrated on a few simple cases
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And in practice ?

In 2006, we stumbled on [Hang.et.al.03]: “Optimal Flow Control
and Routing in Multi-path Networks”, where we learnt about these
techniques

Using the same formulas did not work out well...
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Experimental Setting

I SimGrid based simulation

I Check correctness with semi-definite programming
I Adjusting 4 different steps at a time seems tricky:

I use designed experiments and Analysis of Variance to assess the
effectiveness of step modification

I Use the same 30 platforms for each step configuration and dis-
tinguish platform variability from algorithm variability

A typical experiment

γρ γρ̃ γµ γλ
low (-1) 0.001 0.001 1.00e-15 1.00e-15
high (1) 0.1 0.1 1.00e-13 1.00e-13

(a) Parameters for factorial design

Df Sum Sq Mean Sq F value Pr(>F)
ρ 1 634854.4356 634854.4356 75.1771 0.0000 ***
ρ̃ 1 79293.1822 79293.1822 9.3896 0.0023 **
λ 1 39882.0712 39882.0712 4.7227 0.0303 *
µ 1 32497.4344 32497.4344 3.8482 0.0504 .
platform 29 470172.3060 16212.8381 1.9199 0.0032 **
ρ : ρ̃ 1 67441.2012 67441.2012 7.9861 0.0049 **
ρ : λ 1 27584.2533 27584.2533 3.2664 0.0714 .
ρ̃ : λ 1 330.0890 330.0890 0.0391 0.8434
ρ : µ 1 38450.8702 38450.8702 4.5532 0.0334 *
ρ̃ : µ 1 31651.5862 31651.5862 3.7481 0.0535 .
λ : µ 1 14136.1931 14136.1931 1.6740 0.1964
ρ : ρ̃ : λ 1 1489.7248 1489.7248 0.1764 0.6747
ρ : ρ̃ : µ 1 35856.2101 35856.2101 4.2460 0.0399 *
ρ : λ : µ 1 16345.9826 16345.9826 1.9356 0.1649
ρ̃ : λ : µ 1 16.1140 16.1140 0.0019 0.9652
ρ : ρ̃ : λ : µ 1 158.4895 158.4895 0.0188 0.8911
Residuals 435 3673480.0717 8444.7818

(c) ANOVA results: * means that
parameter is significant
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(b) Main effects plot
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Conclusion of the investigation

Here is what we found out:

I The algorithm works great when using identical applications,
even with 100 nodes

I It is a complete failure otherwise
I This unstability has several causes but not the ones usually

mentionned in the litterature

1 Unstable equilibrium: ∆λn Primal

Dual

Rescale so that αβ < 1 !!!

2 Slow convergence: use quasi-Newton scheme
3 Division by small values and discontinuities:

[x(t)]+ = max(0, x(t)).

Use exponential decrease instead.

I Combining these three techniques provides a distributed algo-
rithm that converges even for platforms with 500 nodes.
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Open remarks

I Similitude between fair steady-state scheduling and flow control
in multi-path networks motivated the Lagrangian approach.

All the convergence issues would have been overlooked if we
had been less stubborn

I Theory vs. “Practice”

Theory difficulty lies in non strict convexity.
Practice scaling and borders are the most important issues.

Using designed experiments we can find “robust” step sizes

I The exponential decay reminds of a barrier function ; interior
point methods ? I still lack perspective on these problems but
such optimization techniques are still ongoing research.
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