

Presented By NEHME Mohamad-Jaafar

ERODS Team

Directed By QUEMA Vivien

Co-Directed By BEYDOUN Kamal and PALIX Nicolas

State-Machine Replication (SMR)

Need for SMR

Storing data on replicas hosted on Data Centers (DCs)

- Fault Tolerance
- High availability
 - Being responsive to a lot of clients

- Strong consistency
 - Deterministic and atomic execution of commands
 - Same order of commands (Write/Read)

State Machine Replication Total Order Broadcast

Protocol Characteristics
 State Of The Art
 My PhD Goal

Total Order Broadcast (TOB)

Ensuring strong consistency > Broadcast and execute in order Correct/Faulty Processes Crash, omission, timing or **Byzantine failures [Classification]** Uniform TOB > Uniform agreement > r delivers $m \rightarrow$ correct rs deliver m Strong uniform total order > r delivers m, m' \rightarrow rs deliver m,m' Propositions in the literature

2413

- Latency
 - Time to broadcast a message
- Throughput
 - Number of messages / time unit
- Comparison of two algorithms [LCR]
 Scalability

State Machine Replication
 Total Order Broadcast
 Protocol Characteristics
 <u>State Of The Art</u>

>My PhD Goal

State Of The Art

Ρ

Fa

C

Classification by Défago et al.

- Fixed-sequencer
- Moving sequencer
- Privilege-based
- Communication history
- Destination agreement

>LCR

FastCast

≻S-SMR

≻P-SMR

Clock-RSM

rotocol	Latency	Throughput	Scalable on DCs
LCR	Mediu m	Optimal	No
astCast	Low	Optimal	No
S-SMR	High	Medium	Possible
-SMR	Mediu m	Medium	Possible
Clock- RSM	<u>High</u>	Low	Yes

© M. J. NEHME 2015

© M. J. NEHME 2015

My PhD Goal

Can we scale with multiple DCs preserving low latency and optimal throughput?

Problems to address

- Sharing network infrastructure at WAN/LAN level
- Scale with multi-core systems

Research aim

- > New design(s) for UTOB protocols
- Optimizing performance among DCs

© M. J. NEHME 2015

References

[Class.] Xavier Défago, , André Schiper, and Peter Urban. "Comparative performance analysis of ordering strategies in atomic broadcast algorithms". IEICE Trans. 2003 Inf. Syst. E86-D, 12, 2698–2709

[LCR] Rachid. Guerraoui, Ron R. Levy, Bastian Pochon, and Vivien Quéma, "Throughput optimal total order broadcast for cluster environments". ACM Trans. Comput. Syst., vol. 28, no. 2, pp. 5:1–5:32, Jul. 2010.

[FastCast] Gautier Berthou and Vivien Quéma. "FastCast: a Throughput- and Latency-efficient Total Order Broadcast Protocol". Middleware 2013 Volume 8275, 2013, pp 1-20

[S-SMR] Carlos Eduardo Benevides Bezerra, Fernando Pedone, Robbert van Renesse: "Scalable State-Machine Replication". DSN 2014: 331-342

[P-SMR] Parisa Jalili Marandi, Carlos Eduardo Benevides Bezerra, Fernando Pedone: "Rethinking State-Machine Replication for Parallelism". ICDCS 2014: 368-377

[Clock-RSM] Jiaqing Du, Daniele Sciascia, Sameh Elnikety, Willy Zwaenepoel, Fernando Pedone: "Clock-RSM: Low-Latency Inter-datacenter State Machine Replication Using Loosely Synchronized Physical Clocks." DSN 2014: 343-354