
Performance Prediction of Task-Based Runtimes

1: A. Legrand J.-F. Méhaut L. Stanisic B. Videau
2: E. Agullo A. Guermouche S. Thibault

3: A. Buttari F. Lopez

1: CNRS/Inria/University of Grenoble, France

2: University of Bordeaux/Inria, France

3: CNRS/University Paul Sabatier, Toulouse, France

JLESC, Barcelona
June 29, 2015

1 / 19

Context

Larger and larger scale hybrid machines

; Different programming approaches (e.g., in linear algebra applications)
“Rigid, hand tuned”

SuperLU

Task-based and Dynamic

MUMPS
Analysis and Comparison of Two Distributed Memory Sparse Solvers

Amestoy, Du�, L'excellent, Li. ACM Trans. on Math. Software, Vol. 27, No. 4, 2001.

Deep need for performance prediction through simulation

Save experimental time, baseline comparison, reproducibility, extrapolation
Rigid (deterministic control flow) applications ; trace replay. . .
. . . but for dynamic applications, the scheduling has to be emulated

2 / 19

http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf
http://crd-legacy.lbl.gov/~xiaoye/p388-amestoy.pdf

Close Related Work

Sparse linear algebra (LBNL + UCSD)

IBM Power 5 Cray TX4

Performance Modeling Tools for Parallel Sparse Linear Algebra Computations. Cicotti, Li, Baden.
ParCo 2009Distributed setting (SuperLU/MPI), ad hoc model of SuperLU

Fine/Coarse grain simulation (memory, cpu, comm), linear interpolations
Error difficult to control; Difficult evolution (no recent result AFAIK)

Dense linear algebra (UTK)

Parallel simulation of superscalar scheduling, Haugen, Kurzak, YarKhan, Dongarra. ICPP 2014.

Ad hoc simulator, works for OmpSs, StarPU, and QUARK
Good results for a homogeneous machine with no communication
Quite di�cult to evolve beyond this study (IMHO)

3 / 19

http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf

Close Related Work

Sparse linear algebra (LBNL + UCSD)
Performance Modeling Tools for Parallel Sparse Linear Algebra Computations. Cicotti, Li, Baden.

ParCo 2009Distributed setting (SuperLU/MPI), ad hoc model of SuperLU
Fine/Coarse grain simulation (memory, cpu, comm), linear interpolations
Error difficult to control; Difficult evolution (no recent result AFAIK)

Dense linear algebra (UTK)

Real life Simulation

QR factorization, 3960× 3960, AMD Opteron 6180SE (4× 12 Cores)

Parallel simulation of superscalar scheduling, Haugen, Kurzak, YarKhan, Dongarra. ICPP 2014.

Ad hoc simulator, works for OmpSs, StarPU, and QUARK
Good results for a homogeneous machine with no communication
Quite di�cult to evolve beyond this study (IMHO)

3 / 19

http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf
http://crd.lbl.gov/~xiaoye/parco09.pdf

StarPU and SimGrid

StarPU (Inria Bordeaux)

Dynamic runtime for hybrid architectures (CPU, GPU, MPI)
Opportunistic scheduling of a task graph guided by resource performance
models
Features both dense and sparse applications. FMM ongoing.

SimGrid (Inria Grenoble, Lyon, Nancy . . .)

Scalable Simulation framework for distributed systems
Sound fluid network models accounting for heterogeneity and contention
Modeling with threads rather than only trace replay ; ability to simulate
dynamic applications
Portable, open source and easily extendable

StarPU was ported on top of SimGrid by S. Thibault in 1 day:
Replace synchronization and thread creation by SimGrid’s ones
Very crude platform model

The same approach should be applicable to any task-based runtime
4 / 19

Envisioned Work�ow: StarPU+SimGrid

StarPU

Performance Pro�le

Calibration

Run once!
5 / 19

Envisioned Work�ow: StarPU+SimGrid

StarPU

SimGrid

Simulation

Quickly Simulate Many Times

StarPU

Performance Pro�le

Calibration

Run once!
5 / 19

Implementation Principles

Emulation executing real applications in a synthetic environment, generally
slowing down the whole code

Simulation use a performance model to determine how much time a
process should wait

StarPU applications and runtime are emulated (real scheduler and
dynamic decision guided on StarPU calibration)

All operations related to thread synchronization, actual computations,
memory allocation and data transfer are simulated (need for a good
kernel and communication model) and faked

Actual computation results are irrelevant and have no impact on the
control flow. Only time matters
In SimGrid, all threads run in mutual exclusion (polling)

The control part of StarPU is modi�ed to dynamically inject
computation and communication tasks into the simulator

6 / 19

Outline

1 Evaluating Dense Linear Algebra Applications

2 Evaluating Sparse Linear Algebra Applications

3 Conclusion and Perspectives

Outline

1 Evaluating Dense Linear Algebra Applications

2 Evaluating Sparse Linear Algebra Applications

3 Conclusion and Perspectives

Dense Linear Algebra Applications

Started with regular dense kernels and a �xed tile size
Used two di�erent matrix decomposition algorithms:

1 Cholesky
2 LU

Used a wide diversity of machines

Name Processor #Cores Memory GPUs

hannibal X5550 2× 4 2× 24GB 3×QuadroFX5800
attila X5650 2× 6 2× 24GB 3×TeslaC2050
mirage X5650 2× 6 2× 18GB 3×TeslaM2070
conan E5-2650 2× 8 2× 32GB 3×TeslaM2075
frogkepler E5-2670 2× 8 2× 16GB 2×K20
pilipili2 E5-2630 2× 6 2× 32GB 2×K40
idgraf X5650 2× 6 2× 36GB 8×TeslaC2050
idchire E5-4640 24× 8 24× 31GB /

Table: Machines used for the dense linear algebra experiments.

7 / 19

The path to reliable predictions

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (improved)

SimGrid (initial)

Native

Hannibal LU QuadroFX5800

0

250

500

750

20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (smart)

SimGrid (improved)

SimGrid (initial)

Native

Getting excellent results (e.g., Cholesky on Conan) sometimes do not
requires much e�orts

But modeling communication heterogeneity, contention, memory
operation (and even sometimes hardware/driver peculiarity) is essential

Try to be as exhaustive as possible. . .

8 / 19

Overview of Simulation Accuracy

hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 mirage: 3 TeslaM2070

0

1000

2000

3000

4000

0

1000

2000

3000

4000

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
Fl

op
/s

Experimental
Condition

SimGrid
Native

Checking predictive capability of the simulation

conan: 3 TeslaM2075 frogkepler: 2 K20 pilipili2: 2 K40

0

1000

2000

3000

4000

0

1000

2000

3000

4000

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
Fl

op
/s

Experimental
Condition

SimGrid
Native

9 / 19

Beyond Simple Graphs

Comparing Di�erent Schedulers

Cholesky on Attila

DMDA DMDAR DMDAS

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
Fl

op
/s

Experimental
Condition

SimGrid
Native

Investigating Details

10 / 19

Outline

1 Evaluating Dense Linear Algebra Applications

2 Evaluating Sparse Linear Algebra Applications

3 Conclusion and Perspectives

Simulating Sparse Solvers

qrm_starpu

QR MUMPS multi-frontal factorization on top of StarPU

Tree parallelism: nodes in
separate branches can be treated
independently

Node parallelism: large nodes
can be treated by multiple
process

No GPU support (ongoing) in this study, only multi-core

Porting qrm_starpu on top of SimGrid

Changing main for the subroutine

Changing compilation process

Careful kernel modeling as matrix dimension keeps changing

11 / 19

Example for Modeling Kernels: GEQRT

GEQRT(Panel) duration:

TGEQRT = a+ 2b(NB2 ×MB)− 2c(NB3 × BK) +
4d

3
NB

3

We can do a linear regression based on ad hoc calibration

GEQRT Duration

NB3 1.50× 10−5 (1.30× 10−5, 1.70× 10−5) ∗∗∗

NB2 ∗MB 5.49× 10−7 (5.46× 10−7, 5.51× 10−7) ∗∗∗

NB3 ∗ BK −5.52× 10−7 (−5.57× 10−7, −5.48× 10−7) ∗∗∗

Constant −2.49× 101 (−2.83× 101, −2.14× 101) ∗∗∗

Observations 493
R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

12 / 19

Comparing Kernel Duration Distributions

Do_subtree INIT GEQRT GEMQRT ASM

1. #Flops #Zeros NB NB #Coe�
2. #Nodes #Assemble MB MB /
3. / / BK BK /

R2 0.99 0.99 0.99 0.99 0.86

Native, Do_subtree Native, INIT Native, GEQRT Native, GEMQRT Native, ASM Native, CLEAN

SimGrid, Do_subtree SimGrid, INIT SimGrid, GEQRT SimGrid, GEMQRT SimGrid, ASM SimGrid, CLEAN

0

2

4

6

0

5

10

15

20

0

50

100

150

200

0

2000

4000

0

50

100

150

200

250

0

10

20

0

2

4

6

0

5

10

15

0

100

200

0

2000

4000

6000

0

100

200

300

0

10

20

30

0 50 100 0 250 500 750 0 25 50 75 100 0 20 40 60 0 10 20 30 0 25 50 75

50 100 0 250 500 750 0 25 50 75 0 20 40 60 0 10 20 0 25 50 75
Kernel Duration [ms]

N
um

be
r

of
 O

cc
ur

an
ce

s Kernel

Do_subtree

INIT

GEQRT

GEMQRT

ASM

CLEAN

13 / 19

Overview of Simulation Accuracy

0

10

20

30

40

50

0

200

400

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Fourmi machine with 8 cores

0

10

20

30

40

0

100

200

300

400

500

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Riri machine with 10 cores

Results in a nutshell

Most of the time, simulation is
slightly optimistic

With bigger and architecturally
more complex machines, error
increases

0

5

10

15

20

0

50

100

150

200

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Riri machine with 40 cores

14 / 19

Studying Memory Consumption

Minimizing memory footprint is very important for such applications
Remember scheduling is dynamic so consecutive Native experiments
have di�erent output

Experiment number 1

Experiment number 2

Experiment number 3

Experiment number 4

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 10,000 20,000 30,000 40,000
Time [ms]

A
llo

ca
te

d
M

em
or

y
[G

iB
]

15 / 19

Studying Memory Consumption

Minimizing memory footprint is very important for such applications
Remember scheduling is dynamic so consecutive Native experiments
have di�erent output

Native 1

SimGrid

Native 2

Native 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 10,000 20,000 30,000 40,000
Time [ms]

A
llo

ca
te

d
M

em
or

y
[G

iB
]

15 / 19

Extrapolating to Larger Machines

Predicting performance in idealized context
Studying the parallelization limits of the problem

Extrapolation

0

30

60

90

4 10 20 40 100 400
Number of Threads

D
ur

at
io

n
[s

]

Type

Native

SimGrid

Measured Time

Overall Makespan

Idle Time per Thread

16 / 19

Outline

1 Evaluating Dense Linear Algebra Applications

2 Evaluating Sparse Linear Algebra Applications

3 Conclusion and Perspectives

Achievements

Works great for hybrid setups with both dense and sparse linear
algebra StarPU applications

The simulator is used to investigate scheduling aspects that could not
be studied with a classical approach

Anyone can check and try to reproduce this work

http://starpu-simgrid.gforge.inria.fr/

This approach allows to:
1 Quickly and accurately evaluate the impact of various

scheduling/application parameters:
QR TF17 on riri (40 cores) RAM Time
RL 58.0GB 157.0s
Simulation 1.5GB 57.0s

2 Test different scheduling alternatives
3 Evaluate memory footprint
4 Debug applications on a commodity laptop in a reproducible way
5 Detect problems with real experiments using reliable comparison

17 / 19

http://starpu-simgrid.gforge.inria.fr/

There Are Situations Where We're Completely Wrong

Some are due to bad behavior of the application/runtime in RL

Some are due to a bad modeling of the platform (e.g., large NUMA)

●●●
●●●

●●
● ●●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●●

●

0

500

1000

1500

2000

148 16 24 32 48 64 96 128 192
Number of cores

G
Fl

op
/s

Experimental
Condition

SimGrid
Native (balanced)
Native (unbalanced)

18 / 19

Ongoing Work and Perspectives

Ongoing Work

Simulate StarPU-MPI applications

Simulate advanced implementations of qrm_starpu using:

2D partitioning and memory aware scheduling
GPUs for executing tasks

Modeling and Simulation Perspectives

Large NUMA architectures (with StarPU-MPI?)

Kernel interferences (cache/memory contention)

Predicting performance of next generation machines

Analysis and Visualization Perspectives

Trace comparison

Applicative/spatial/temporal aggregation

Building on application models
19 / 19

	Evaluating Dense Linear Algebra Applications
	Evaluating Sparse Linear Algebra Applications
	Conclusion and Perspectives

