Estimation of numerical reproducibility using

stochastic arithmetic

Pacome Eberhart!, Fabienne Jézéquel', Jean-Luc Lamotte'
& Issam Said?

TLIP6, Université Pierre et Marie Curie

2Total & LIP6, Université Pierre et Marie Curie

Retour d’expéRiences sur le Recherche Reproductible (R4)
Orléans, France
3-4 December 2015

ip UPmMC @ 2

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

Numerical reproducibility

Numerical reproducibility failures:

@ from one architecture to another
@ inside the same architecture.

different orders in the sequence of instructions
= different round-off errors

differences in results may be difficult to identify: round-off errors or bug?

Stochastic arithmetic can estimate which digits in the results are different from
one execution to another because of round-off errors.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 2/39

@ Reproducibility failures in a wave propagation code

@ Principles of stochastic arithmetic

© The CADNA library

© Porting CADNA for CPU-GPU simulation

@ The wave propagation code examined with stochastic arithmetic

@ Improving CADNA performance and supporting vectorised codes

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

Reproducibility failures in a wave propagation code

For oil exploration, the 3D acoustic wave equation

1 82u 52
@or = 2 opl=0
bex,y,z

where u is the acoustic pressure, ¢ is the wave velocity and t is the time

is solved using a finite difference scheme
@ time: order 2
@ space: order p (in our case p = 8).

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

2 implementations of the finite difference scheme

U 1 CZAIZ &5 n n n 2 A $2 £
I/k 2uljk I/k + Ahz’ Z aj (U,'_ij + uij+lk + uijk+l> + C° At fljk
I=—p/2
; . AR p/2 p/2 p/2)
n—
Uit = 2uf —uls + A Z au i + Z aufl o+ Z auf +CPAR i
I=—p/2 I=—p/2 I=—p/2

where uj, (resp. f) is the wave (resp. source) field in (i, j, k) coordinates and n" time
step and ac_p,2,p/2 are the finite difference coefficients

@ nearest neighbours first
@ dimension 1, 2 then 3

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 5/39

Reproducibility problems

@ differences from one implementation of the finite difference scheme to
another

@ differences from one execution to another inside a GPU
repeatability problem due to differences in the order of thread executions

@ differences from one architecture to another

In binary 32, for 64 x 64 x 64 space steps and 1000 time iterations:
@ any two results at the same space coordinates have 0 to 7 common digits

@ the average number of common digits is about 4.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 6/39

Results computed at 3 different points

scheme point in the space domain
p1 =(0,19,62) | p» = (50,12,2) | ps = (20,1,46)
AMD Opteron CPU with gcc
1 -1.110479E+0 5.454238E+1 6.141038E+2
2 -1.110426E+0 5.454199E+1 6.141035E+2
NVIDIA C2050 GPU with CUDA
1 -1.110204E+0 5.454224E+1 6.141046E+2
2 -1.109869E+0 5.454244E+1 6.141047E+2
NVIDIA K20c GPU with OpenCL
1 -1.109953E+0 5.454218E+1 6.141044E+2
2 -1.111517E+0 5.454185E+1 6.141024E+2
AMD Radeon GPU with OpenCL
1 -1.109940E+0 5.454317E+1 6.141038E+2
2 -1.110111E+0 5.454170E+1 6.141044E+2
AMD Trinity APU with OpenCL
1 -1.110023E+0 5.454169E+1 6.141062E+2
2 -1.110113E+0 5.454261E+1 6.141049E+2

Pacéme Eberhart

Est. of numerical repro. using stochastic arith.

3-4 Dec. 2015

7139

Rounding mode

Let FF be the set of real numbers which can be coded exactly on a computer:
the set of floating point numbers.

Every real number x which is not a floating point number is approximated by a
floating point number X € TF.

Let Xmin (resp. Xmax) be the smallest (resp. the greatest) floating point
number:

VX € | Xmin, Xmax[, 3{X™, X"} € F?
such that

X~ <x<XTand [X", Xt [NF=0

To choose the rounding mode is to choose the algorithm that, according to x,
gives X~ or X™.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 8/39

The 4 rounding modes of the IEEE 754 standard

Rounding to zero: x is represented by the floating point number the nearest
to x between x and 0.

Rounding to nearest: x is represented by the floating point number the
nearest to x.

Rounding to plus infinity: x is represented by X™.
Rounding to minus infinity: x is represented by X~.

The rounding operation is performed after each assignment and after every
elementary arithmetic operation.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 9/39

A significant example - |

03%xx2 + 21xx +3675 = 0

@ Rounding to nearest
=-3.81470E-06
There are two conjugate complex roots.
z1 = -.3500000E+01 +i * 0.9765625E-03
z2 = -.3500000E+01 +i * -.9765625E-03

@ Rounding to zero
d=0.
The discriminant is null.
The double real root is -.3500000E+01

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

A significant example - Il

03%xx2 + 21xx +3675 = 0

@ Rounding to plus infinity
d = 3.81470E-06
There are two different real roots.
x1 =-.3500977E+01
x2 = -.3499024E+01

@ Rounding to minus infinity
d=0.
The discriminant is null.
The double real root is -.3500000E+01

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

How to estimate the impact of round-off errors?

The exact result r of an arithmetic operation is approximated by a
floating-point number R~ or R™.

The random rounding mode

Approximation of r by R~ or R with the probability 1/2

The CESTAC method

The same code is run several times with the random rounding mode.
Then different results are obtained.

Briefly, the part that is common to all the different results is assumed to be
reliable and the part that is different in the results is affected by round-off
errors.

Pacoéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 12/39

Round-off error model

Let r € R be the exact result of n elementary arithmetic operations.

On a computer, one obtains the result R € T which is affected by round-off
errors.

R can be modeled, at the first order with respect to 277, by
n
Rr~r+Y gi(d)2P.a
i=1

p is the number of bits used for the representation including the hidden bit,
gi(d) are coefficients depending only on data and «; are the round-off errors.

Remark: we have assumed that exponents and signs of intermediate results
do not depend on «;.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 13/39

Implementation of the CESTAC method

The implementation of the CESTAC method in a code providing a result R
consists in:

@ performing N times this code with the random rounding mode to obtain N
samples R; of R,

@ choosing as the computed result the mean value Rof R, i=1,...,N,
@ estimating the number of exact significant decimal digits of R with

Cg =logyo <W|R|>

a1

where
N

1 1 e
=y A and of == (R-FR).
i=1 i=1

73 is the value of Student’s distribution for N — 1 degrees of freedom and
a probability level S.

In pratice, N =3 and 3 = 95%.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 14/39

Self-validation of the CESTAC method

The CESTAC method is based on a 1st order model.

@ A multiplication of two insignificant results
@ or a division by an insignificant result

may invalidate the 1st order approximation.

Therefore the CESTAC method requires a dynamical control of multiplications
and divisions, during the execution of the code.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 15/39

The concept of computed zero

J. Vignes, 1986

Definition

Using the CESTAC method, a result R is a computed zero, denoted by @.0, if

Vi,Ri=0 or C5<0.

It means that R is a computed result which, because of round-off errors,
cannot be distinguished from 0.

Pacome Eberhart

Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

16/39

The stochastic definitions

Let X and Y be two results computed using the CESTAC method (N-sample),
X is stochastically equal to Y, noted X s= Y, if and only if

X —-Y=0.0.

Definition
Let X and Y be two results computed using the CESTAC method (N-sample).

@ X is stochastically strictly greater than Y, noted X s> Y, if and only if
X>Y and Xs#Y

@ X is stochastically greater than or equal to Y, noted X s> Y, if and only if

X>Y or Xs= Y

Discrete Stochastic Arithmetic (DSA) is defined as the joint use of the
CESTAC method, the computed zero and the stochastic relation definitions.

Pacoéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 17/39

The CADNA library nhttp:/mwww.lips.fricadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.

More precisely, CADNA enables one to:
@ estimate the numerical quality of any result
@ control branching statements
@ perform a dynamic numerical debugging
@ take into account uncertainty on data.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

The CADNA library nhttp:/mwww.lips.fricadna

The CADNA library implements Discrete Stochastic Arithmetic.

CADNA allows to estimate round-off error propagation in any scientific
program written in Fortran or in C++.
More precisely, CADNA enables one to:

@ estimate the numerical quality of any result

@ control branching statements

@ perform a dynamic numerical debugging

@ take into account uncertainty on data.

CADNA provides new numerical types, the stochastic types, which consist of:
@ 3 floating point variables
@ an integer variable to store the accuracy.

All operators and mathematical functions are redefined for these types.
= CADNA requires only a few modifications in user programs.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 18/39

An example proposed by S. Rump

Computation of (10864, 18817) and f(, 5) with f(x, y) = 9x* — y* + 2y2

program ex1
implicit double precision (a—h,o0-z)

x = 10864.d0

y = 18817.d0

write (x,x) 'P(10864,18817) = ', rump(x,y)
x = 1.d0/3.d0

y = 2.d0/3.d0
write (6,100) rump(x,y)

100 format(’'P(1/3,2/3) = ’,e24.15)
end

function rump(x,y)

implicit double precision (a—h,o0-z)
a=9.d0*X*X*X*X

b=yxyxyxy

c=2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

An example proposed by S. Rump (2)

The results:
P(10864,18817) = 2.00000000000000
P(1/3,2/3) = 0.802469135802469E+00

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 20/39

program exl
implicit double precision (a=h,o0-2)

x = 10864.d0
y 18817.d0
write(x,x)’P(10864,18817) = ', rump(x,Vy)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(x,x)’P(10864,18817) = ', rump(x,Vy)

end
function rump(x,Vy)

implicit double precision (a=h,o0-2z2)
a = 9.d0xx*xXx*xX*X

b = yxy*xyxy

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl
use cadna
implicit double precision (a=h,o0-2)

x = 10864.d0
4 18817.d0
write(x,x)’P(10864,18817) = ', rump(x,Vy)
x = 1.d0/3.d0
y = 2.d0/3.d0
write(x,x)’P(10864,18817) = ', rump(x,Vy)

end

function rump(x,Vy)

use cadna

implicit double precision (a=h,o0-2z2)
a = 9.d0xx*xXx*xX*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit double precision (a—h,o-2z)
call cadna_init (-1)

x = 10864.d0

y = 18817.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)
x = 1.d0/3.d0

y = 2.d0/3.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)

end

function rump(x,Vy)

use cadna

implicit double precision (a=h,o0-2z)
a = 9.d0xx*xX*X*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit double precision (a—h,o-2z)
call cadna_init (-1)

x = 10864.d0

y = 18817.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)
x = 1.d0/3.d0

y = 2.d0/3.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)
call cadna_end()

end

function rump(x,Vy)

use cadna

implicit double precision (a=h,o0-2z)
a = 9.d0xx*xX*X*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit double precision (a—-h,o-2z)
call cadna_init (-1)

x = 10864.d0

y = 18817.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)
x = 1.d0/3.d0

y = 2.d0/3.d0

write(x,x)’P(10864,18817) = ', rump(x,Vy)
call cadna_end()

end

function rump(x,Vy)

use cadna

implicit double precision (a=h,o0-2z)
a = 9.d0xx*xX*X*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit type (double_st) (a=h, 0-2)

call cadna_init (-1)

x = 10864.d0

y = 18817.d0

write(x,)’P(10864,18817) ", rump (x,V)
x = 1.d0/3.d0

y = 2.d0/3.d0

write(x,)’P(10864,18817) ", rump (x,V)
call cadna_end()

end

function rump(x,Vy)

use cadna

implicit type (double_st) (a~=h,o0-2)
a = 9.d0xx*xX*xX*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit type (double_st) (a=h, 0-2)

call cadna_init (-1)

x = 10864.d0

y = 18817.d0

write(*,*)’P(10864,18817) ", rump (x,V)
x = 1.d0/3.d0

y = 2.d0/3.d0

write(x,)’ P (10864,18817) = ', rump(x,Vy)
call cadna_end()
end

function rump(x,Vy)

use cadna

implicit type (double_st) (a~=h,o0-2)
a = 9.d0xx*xX*xX*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

program exl

use cadna

implicit type (double_st) (a=h, 0-2)
call cadna_init (-1)

x = 10864.d0

y = 18817.d0
write(x,x)’P(10864,18817)

x = 1.d0/3.d0

y = 2.d0/3.d0
write(x,x)’P(10864,18817) = ’,str (rump(x,V))
call cadna_end()

end

", str (rump (x,vy))

function rump(x,Vy)

use cadna

implicit type (double_st) (a~=h,o0-2)
a = 9.d0xx*xX*xX*X

b = yxy*xy*y

c 2.d0xyxy

rump = a-b+c

return

end

Pacéme Eberhart Est. of numerical repro. using stochastic arith.

3-4 Dec. 2015

The run with CADNA

CADNA software — University P. et M. Curie — LIP6
Self-validation detection: ON

Mathematical instabilities detection: ON

Branching instabilities detection: ON

Intrinsic instabilities detection: ON

Cancellation instabilities detection: ON

P(10864,18817) = @.0
P(1/3,2/3) = 0.802469135802469E+000

CADNA software — University P. et M. Curie — LIP6
There are 2 numerical instabilities

0 UNSTABLE DIVISION(S)

0 UNSTABLE POWER FUNCTION(S)

0 UNSTABLE MULTIPLICATION(S)

0 UNSTABLE BRANCHING(S)

0 UNSTABLE MATHEMATICAL FUNCTION(S)

0 UNSTABLE INTRINSIC FUNCTION(S)

2 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

CADNA on CPU

@ Rounding mode change (until recently): the rnd_switch function
e switches the rounding mode from +oo t0 —oo, or from —oo to +-o00.
e is written in assembly language
@ changes two bits in the FPU Control Word.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 23/39

CADNA on CPU

@ Rounding mode change (until recently): the rnd_switch function

e switches the rounding mode from +oo t0 —oo, or from —oo to +-o00.
e is written in assembly language
e changes two bits in the FPU Control Word.

@ Instability detection:

@ dedicated counters are incremented
e the occurrence of each kind of instability is given at the end of the run.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

CADNA for CPU-GPU simulations

Rounding mode change
An arithmetic operation on GPU can be performed with a specified rounding
mode.

CPU if (RANDOMGPU ())
res.x=_ fmul_ru(a.x,b.x);

if (RANDOM) rnd_switch (); slEe
O o T o 0D 0 556 res.x=__ fmul_rd(a.x,b.x);

if (RANDOMGPU ()) {
if (RANDOM) rnd_switch(); res.y=__fmul_rd(a.y,b.y);
res.y=§.y*b~y; res.z=_ fmul_ru(a.z,b.z);
rnd_switch();
res.z=a.zxb.z;)

else {

res.y=__fmul_ru(a.y,b.vy);
res.z=__ _fmul_rd(a.z,b.z);

}

2 types: float_st for CPU computation and f1oat_gpu_st for GPU

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

Instability detection

@ No counter: would need more memory (shared) and would need a lot of
atomic operations

@ An unsigned char is associated with each result (each bit is associated
with a type of instability).

class float_st {

protected:

float x,vy,z;

private:

mutable unsigned int accuracy;

3-4 Dec. 2015 25/39

Pacoéme Eberhart Est. of numerical repro. using stochastic arith.

Instability detection

@ No counter: would need more memory (shared) and would need a lot of

atomic operations

@ An unsigned char is associated with each result (each bit is associated

with a type of instability).

class float_st {

protected:

float x,vy,z;

private:

mutable unsigned int accuracy;

class float_gpu_st {

public:

float x,vy,z;

public:

mutable unsigned char accuracy;
mutable unsigned char error;
unsigned char padl, pad2; }

Pacoéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 25/39

Instability detection
@ No counter: would need more memory (shared) and would need a lot of
atomic operations
@ An unsigned char is associated with each result (each bit is associated
with a type of instability).

CPU +GPU

class float_st {
protected: class float_gpu_st {
float x,y,z; public:
private: float x,vy,z;
mutable public:
unsigned char accuracy; mutable unsigned char accuracy;
mutable unsigned char error; mutable unsigned char error;
unsigned char padl, pad2; unsigned char padl, pad2; }
}
v

25/39

Pacoéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

Example: matrix multiplication

#include "cadna.h"
#include "cadna_gpu.cu"

__global__ woid matMulKernel (
float_gpu_stx matl,
float_gpu_st* mat2,
float_gpu_st* matRes,

int dim) {

unsigned int x = blockDim.x*blockIdx.x+threadIdx.x;
unsigned int y = blockDim.y*blockIdx.y+threadIdx.y;

cadna_init_gpu();

if (x < dim && y < dim) {
float_gpu_st temp;
temp=0;
for (int i=0; i<dim;i++){
temp = temp + matl[y * dim + i] » mat2[i1i % dim + x];
}

matRes[y » dim + x] = temp;

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

Example: matrix multiplication

float_st matl[DIMMAT] [DIMMAT], mat2 [DIMMAT] [DIMMAT],
res [DIMMAT] [DIMMAT] ;

cadna_init (-1);

int size = DIMMAT * DIMMAT = sizeof (float_st);
cudaMalloc ((void *=*) &d_matl, size);

cudaMalloc ((void **) &d_mat2, size);

cudaMalloc ((void *=*) &d_res, size);

cudaMemcpy (d_matl, matl, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_mat2, mat2, size, cudaMemcpyHostToDevice);

dim3 threadsPerBlock (16,16);

int nbbx = (int)ceil ((float)DIMMAT/ (float)16);

int nbby = (int)ceil ((float)DIMMAT/ (float)16);

dim3 numBlocks (nbbx , nbby);

matMulKernel<<< numBlocks , threadsPerBlock>>>
(d_matl, d_mat2, d_res, DIMMAT);

cudaMemcpy (res, d_res, size, cudaMemcpyDeviceToHost) ;

cadna_end() ;

Pacéme Eberhart Est. of numerical repro. using stochastic arith.

3-4 Dec. 2015

matl=

0.0000000E+000 0.1000000E+001 0.2000000E+001 0.3000000E+001
0.4000000E+001 0.5000000E+001 0.6000000E+001 0.6999999E+001
0.8000000E+001 @.0 0.1000000E+002 0.1099999E+002
0.1199999E+002 0.1299999E+002 0.1400000E+002 0.1500000E+002

mat2=

0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 @.0 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001
0.1000000E+001 0.1000000E+001 0.1000000E+001 0.1000000E+001

res=

0.5999999E+001 @.0 0.5999999E+001 0.5999999E+001
0.2199999E+002 @.0 0.2199999E+002 0.2199999E+002
@.0 @.0 MUL @.0 @.0
0.5399999E+002 @.0 0.5399999E+002 0.5399999E+002
CADNA GPU software —-—-- University P. et M. Curie --- LIP6

No instability detected on CPU

Pacéme Eberhart

Est. of numerical repro. using stochastic arith.

3-4 Dec. 2015 28/39

The acoustic wave propagation code examined with

CADNA

The code is run on:
@ an AMD Opteron 6168 CPU with gcc
@ an NVIDIA C2050 GPU with CUDA.

With both implementations of the finite difference scheme, the number of
exact digits varies from 0 to 7 (single precision).

Its mean value is:

@ 4.06 with both schemes on CPU

@ 3.43 with scheme 1 and 3.49 with scheme 2 on GPU.
= consistent with our previous observations

Instabilities detected: > 270 000 cancellations

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

The acoustic wave propagation code examined with

CADNA

Results computed at 3 different points using scheme 1:

Point in the space domain
pi =(0,19,62) | p2=(50,12,2) | ps=(20,1,46)
IEEE CPU | -1.110479E+0 5.454238E+1 6.141038E+2
IEEE GPU | -1.110204E+0 5.454224E +1 6.141046E+2
CADNA CPU | -1.1E+0 5.454E+1 6.14104E+2
CADNA GPU | -1.11E+0 5.45E+1 6.1410E+2
Reference -1.108603879E+0 | 5.454034021E+1 | 6.141041156E+2

Despite differences in the estimated accuracy, the same trend can be
observed on CPU and on GPU.

@ Highest round-off errors impact negligible results.
@ Highest results impacted by low round-off errors.

Pacéme Eberhart

Est. of numerical repro. using stochastic arith.

3-4 Dec. 2015 30/39

Accuracy distribution on CPU

cPU -+

Tt + e o

6 f -

Accuracy
I

2t + ot g

0 i R AT 1 1 I 1
1073 1072 107! 1 10 102 103

Absolute values

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 31/39

Accuracy distribution on GPU

GPU

Accuracy
I

+H 4

Absolute values

3-4 Dec. 2015

32/39

Pacéme Eberhart

Est. of numerical repro. using stochastic arith.

Execution times

CPU
execution | instability detection | execution time (s) | ratio
IEEE - 110.8 1
CADNA all instabilities 4349 39.3
no instability 1655 14.9
mul., div., branching 1663 15.0
GPU
execution | instability detection | execution time (s) | ratio
IEEE - 0.80 1
CADNA | mul., div., branching 5.73 7.2

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 33/39

Overhead of the CADNA library

There is an overhead in computation time when using the CADNA library.
@ A factor of 10 to 40 depending on the program and the level of detection
@ Can go up to 2 orders of magnitude for optimised programs
@ Mainly due to the change of the FPU rounding mode

Additionally, the lack of support in gcc for directed rounding modes prevents
compiler optimisation.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 34/39

Improving the performance of the CADNA library

To remove the change of the rounding mode during the computation, we can

obtain the values of rounded up operations, using only rounded down
operations, thank to the following properties.

@ ad®ioob=—(—a®_ —Db) (similarly for ©)
@ A®4i00 b=—(a®_ —b) (similarly for @)

Moreover, this allows for several additional optimisations to be applied.
@ Compiler optimisation now possible
@ Inlining operators to decrease cost of function calls

Furthermore, to enable support for vectorised codes, we have changed the
random generator.

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015

35/39

Scalar performance

Execution time (s)

Overhead
X539

Addition

Execution time (s)

Pacome Eberhar

Overhead
X114

Mandelbrot

Est. of numerical repro. using sto

Execution time (s)

Execution time (s)

had
105 overhead
AR

Multiplication

Stencil

verhead,
Overhea
X222 06h

Supporting vectorised codes with the CADNA library

We use ispc (Intel SPMD Program Compiler) to generate vectorised codes.
@ Generates for different instructions sets (AVX, SSE, ...) without using
intrinsics
@ Can define variables as lane specific or vector global
We test two versions of the vectorised CADNA library.

@ dyn, directly adapted from the scalar version
@ define, where anomaly detection is defined at compile time

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 37/39

Vectorised performance

9 - wmmmm |EEE - scal 1
s |EEE - AVX2 14 [e |EEE - scal 1
8 - mmmmm dyn - scal q e |[EEE - AVX2
7 | — dyn - AVX2 12 | = dyn - scal —
@ define - scal 1 m— dyn - AVX2
s 6l define - AVX2 i % 10k define - scal |
H ° define - AVX2
5 °f 1 HIRL: 1
s er 1 g
3 6 1
g sr 1 §
Specaop | &4l |
2 4 Spesdup
1 X364
2
0
Addition 0
Multiplication
3
mmmmm |EEE - scal 20
s |EEE - AVX2 mm—— |EEE - scal
2.5 wmmmm dyn - scal 1 . |EEE - AVX2
m— dyn - AVX2 mm— dyn - scal
@ define - scal 15 | m==—dyn - AVX2 |
> 2 define - AVX2 1 I define - scal
H ° define - AVX2
s 15[E £
2 5§ 10F B
2 1 4 3
w £
s e | S st w1
0
Mandelbrot 0

Stencil

Pacéme Eberhal Est. of numerical repro. using sto

Conclusion

@ Measure reliability of numerical applications

@ Estimation of the number of exact significant digits

Relatively low overhead

Support for wide range of codes (GPU, vectorised, MPI, OpenMP)

Easily applied to real life applications

Numerical instabilities sometimes difficult to understand in a big code

Pacéme Eberhart Est. of numerical repro. using stochastic arith. 3-4 Dec. 2015 39/39

