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Chapter 1

Research Context and History

This document presents a summary of the research activities I have conducted after obtaining my
PhD degree in December 2003 from the École Normale Supérieure de Lyon, under the supervi-
sion of Yves Robert and Olivier Beaumont. This research work has been done at ÉNS Lyon until
September 2004, at University of California at San Diego until September 2005, and at the com-
puter science laboratory of Grenoble (LIG) where I hold a tenured full time researcher position
from CNRS since September 2004.

In this chapter, I first present the scientific context in which my research was done and try to
provide a brief justification of the state of mind in which it was conducted. Then I present the
evolution of my work since its early stages in June 1999 when I was a Master intern at UCSD,
working under the supervision of Henri Casanova and Francine Berman. This work and the
discussions I had with Henri and Fran at this time were decisive for the rest of my work and I
think it is thus justified to discuss it in this document as it should help understanding the paths I
have followed since almost 16 years now.

1.1 Context

1.1.1 Computational Science and Digital Revolution

Computer science is a very recent science that really emerged only in the late 20th century al-
though one could argue its premises start with the Sumerians back in 2700–2300BC. It has been
the basis of a massive worldwide industry and has influenced both society and other fields of
science through both technology and science.

The digital revolution started in the second half of the 20th century with the mass produc-
tion and widespread usage of computer related technologies. The consequences on society have
been tremendous and are due both to computer/telecommunication technologies and computer
science (e.g., RSA algorithms that secure our transactions, model checking of complex systems,
compression algorithms, recommendation algorithms,. . . ).

Interestingly, computer science has somehow influenced other sciences like biology that now
use notions of information and coding as common tools and concepts [Win06]. DNA sequences
are thought as strings of a language, cells are seen as self-regulatory systems similar to an elec-
tronic circuit, interactions between molecules such as proteins and RNA are seen as a process cal-
culus. There is a clear hope data structures and algorithms can help us understand the structure
and interactions of proteins in ways that elucidate their function at a global scale. Computational
thinking is changing the way biologists think because it offers new ways to conceive phenomena
and it has also started influencing other disciplines like physics, chemistry, geo-sciences, eco-
nomics, laws. . .

Interestingly, computer science and technology also offer new ways of discovering and ana-
lyzing phenomena. Scientists have quickly realized that pencil and paper alone cannot solve all
our problems and that computer could be used be used as a scientific instrument. The ability to

1
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dig the vast amounts of data now accessible to scientists and to solve complex numerical systems
has brought us two new scientific paradigms:

Big data The widespread adoption of computer technology has enabled the collection of huge
data sets and their exploitation. Although the term "big data" was coined rather recently
(e.g., in [Die03]), this was clearly a concern decades ago and motivated the development of
major computational infrastructures. Along computational infrastructures comes the need
to develop software infrastructures, algorithms, machine learning techniques to support
data analytics. Data sources can be sensors, transaction records, genome and protein data-
banks,. . . and this obviously changed approaches in both science, industry and society that
now rely on such techniques. The most striking about such approach is that it enables to
discover phenomena or truths that would otherwise remain unseen.

In silico science or computational science Equations and phenomenon investigated by scien-
tists have such a level of complexity that they have quickly become too complex to be
conducted solely by hand, hence the need for computers. Scientists model the real world
and devise simulations, i.e., computer programs that solve the corresponding equations
and compute the evolution the system under study in a very controlled way. Perform-
ing the corresponding experiments in real world would generally be too costly (in term of
infrastructure, money, energy, or time) and even sometimes simply impossible. Industry
and scientists can thus can explore and investigate designs or phenomena in a few hours
which would take months or even years to study using classical experiments involving
the construction of miniatures. Hence, all fields of science (physics, genomics, astronomy,
ecology,. . . ) and industry (drug design, avionics, structural engineering, oil companies,. . . )
now heavily rely on computers to screen among a set of potential designs or investigate
completely new designs.

Computing infrastructures have thus become a fundamental tool for all domains of science and
industry.

1.1.2 Distributed Computing infrastructures: Technology, Engineering and
Research

The exponential increase of processor speed that has been observed since their creation in the
50s has always been insufficient to answer the ever growing need of scientists for computing
power. This unsatisfied appetite is answered by aggregating several (dozens, thousands or mil-
lions depending on the context and the decade) processing units with a more or less implicit
communication network (see Fig. 1.1). This domain is known under various names such as par-
allel computing, distributed computing, high performance computing, supercomputing,. . . and
has known several up and downs.

For some time, this research domain was a niche driven by state agencies, military research
and major companies and had little direct societal impact. But very quickly new techniques
(parallelism, vector processors, pipelining, interconnection technology) were transferred to major
industry then to smaller companies and finally in more massive productions, which in turn had
a major impact on the way high-end super-computer are built.

Interestingly, research in parallel and distributed computing follows trends and technology
developments as well as it influences them. There are many examples of great ideas developed
decades ago and that could not be applied because technology was not mature enough or market
at this time was not ready and had cheaper alternatives.

As a consequence, although research in this domain has direct applications and is most of
the time motivated by current practical considerations, researchers have to anticipate the needs
and issues that will arise in the next years or decade. This difficulty is all the more significant
as computer science and technology have evolved and keep evolving at an incredible speed.
Whenever a machine or a technology goes on the market, it often becomes obsolete within a few



CHAPTER 1. RESEARCH CONTEXT AND HISTORY 3

ENIAC Ferranti Mark 1 

UNIVAC I IBM 701 

CDC 1604 

Illiac−IV Cray−1 

Home Computers 

Cray X−MP 
Cray−2

Caltech Cosmic Cube 

Thinking Machine CM−1 

Intel i386 

MasPar MP−2 

NASA Beowulf Cluster 

ASCI Red (Intel) 
SETI@home 

BOINC (2002 - ...)
Earth Simulator (NEC) 

PS3 cluster 
RoadRunner (IBM/LANL) 

ATI Radeon 

Sequoia (IBM BG/Q)
Titan (Cray) 

Exascale System 

1

Kilo

Mega

Giga

Tera

Peta

Exa

Zetta

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
Year

F
lo

ps

Type

Number of cores

1

1,000

1,000,000

Commodity

Scalar

Vector

Massive Parallelism

Top 500

To design...

Figure 1.1: Illustrating the evolution of computing infrastructures through a few emblematic
platforms

months (not to say weeks). This requires researchers to discriminate real innovations and trends
from fad.

Hence, in this domain of computer science, research requires to anticipate technology (r)evolu-
tions, market needs, and societal needs to address what could be the right questions to answer.
In this context, the fact that researchers sometimes try to answer questions that are not yet posed
by practical situations raises at least two distinct issues that still puzzle me:

• How to evaluate the relevance of a question that is supposed to arise from a situation that
does not exist yet? It may be the case that this question, even motivated by an hypothetical
practical situation, will simply never appear. Fortunately, history (both in classical sciences
and in the short history of computer sciences) is full of examples where even though some
questions have never aroused, the answer to such questions has been useful to answer other
unforeseen questions (note that this may be one of the reason why we have seen such an
explosion of knowledge in the last century along with the ability to make connections be-
tween various fields of science thanks to the development of communication technologies.)
Although society may be satisfied (or not) by such an answer, I consider it is not that obvi-
ous to manage for a researcher and this issue is part of my recurrent doubts as I can only
answer it by personal faith or support from my peers and a few historical facts.

• How to evaluate the relevance of the solution to a practical problem that does not exist yet?
This issue is especially tricky as it raises the question of evaluation, which goes to the root of
the concerned domain of science. Any science is expected to define its subject and method
of inquiry. This may not be sufficient to completely define such an activity but this is clearly
an important question to answer. In mathematics, for example, where one aims at building
coherent theories and proving hypothesis, the evaluation of a result is rather clear. The
proof of a result is either true or false, disregarding of whether it is interesting/elegant or
not1. In physics, where one aims at investigating natural phenomena, one is concerned by
collecting data and building experiments that either support or disprove a theory. In en-
gineering, where one aims at solving problems and constructing systems, the quality of a
solution is evaluated by designing, implementing and testing this solution. As explained by
Tedre [Ted07], computer science somehow borrows to the essence of these three disciplines
(and also from others) and to their method of inquiry, which sometimes leads to method-
ological confusions. Compared to other disciplines, computer scientists publish relatively
few papers with experimentally validated results. While this may not be an issue for those

1Although elegance is definitely valuable as it often bring more insights in the result.
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of us who are mainly concerned with theoretical considerations, I think this is an issue for
those who claim to tackle problems that have a practical application, a direct connection to
the real (present or future) world. Again, this issue still puzzles me and motivates some of
my research.

Most researchers and engineers implementing and managing these computing infrastructures
have to deal with a lot of technical and human details and often have to deal with the most press-
ing matters first. Some, like Butler Lampson [Lam83], say "In allocating resources, strive to avoid
disaster, rather than to attain the optimum". This is certainly true when one needs to build a fully
functional system taking into account all physical, engineering and budget constraints. Talking
about optimality could even seem illusive. Yet, despite all the knowledge and engineering in-
sights collected decades after decades, the complexity of such infrastructure with optimization at
every level often turn these systems into bloatware that go beyond understanding. I think that
trying to define optimality and how to achieve it is an honorable goal as it may provide inter-
esting insights in the management of such architectures. Indeed, distributed systems appear in
a variety of context and have thus been studied with very different tools and approaches. Be-
ing able to identify which concepts and techniques can provide the right insight, approach, and
structure to manage workload and technology evolution is the key to an efficient management
of such systems. Furthermore, I think such investigation has to be done before commercial or
societal pressures quietly drive us to designs that are less appropriate.

1.1.3 Context of my Research

In summary, although our everyday life and society now depends heavily on communication in-
frastructures and computation infrastructures, scientists and engineers have always been among
the main consumers of computing power. My research targets the management and performance
evaluation of large scale distributed computing infrastructures such as clusters, grids, desktop
grids, volunteer computing platforms, clouds,. . . when used for scientific computing. More
specifically, I have interest in understanding how to make a better use of these platforms and
possibly to extend their applicability to other workload than those for which they are already
efficiently used. Although my motivations are quite practical, my work is mostly theoretical
but done in connection with practitioners and applied whenever possible in order to keep my
modeling assumptions as reasonable as possible.

1.2 History

1.2.1 Heuristics for Scheduling Parameter Sweep Applications in Grid En-
vironments

My research really started in 1999 during my Master internship with Henri Casanova at UCSD,
in the AppLeS (Application Level Scheduling) group lead by Francine Berman [BWF+96]. This
group was involved in what was a very hot topic: grid computing. One can distinguish between
several categories of parallel applications described in various formalism (data flow, BSP, mold-
able tasks, mixed parallelism, . . . ) and in a complex context such as a grid comprising several
computing sites interconnected through an heterogeneous network, it did not seem reasonable to
come up a universal efficient solution. That is why the AppLeS group was trying to design an ad
hoc scheduler, i.e., an entity responsible for the management of computations and data commu-
nications, for every such class of application. The motivation for the study of such or such class
often came from a collaboration with other scientists that had computation intensive needs and
wanted to benefit from the emerging grid technology.

The class of application I have worked on was the one of parameter sweep applications. Such
applications are structured as a set of computation tasks that are mostly independent. Each com-
putation task may depend on several files that have to be transferred beforehand and although
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Figure 1.2: Scheduling parameter sweep applications: APST view.

some computation tasks may share some input files, the output of a task is never used as the
entry of an other computation task. In spite of its apparent simplicity, this application model
arises in many fields of science and engineering, including computational fluid dynamics, bio-
informatics, particle physics, discrete-event simulation, computer graphics, etc.

In the context of AppLeS, we modeled such applications as follows: each application com-
prises a set of computation tasks Ti that depend on a set of input files Ii and produce an output
fileOi (see Fig. 1.2(a)). Hence an input file could be shared or not by multiple tasks. The grid com-
puting platform was modeled as a set of computing sites available to the user (see Fig. 1.2(b)).
Each site comprises a storage facility, possibly several computing resources, and is accessible
from the user through a network link. We assumed that file transfer time on these links could
be estimated from the file characteristics and using tools like the NWS [WSH99]. Likewise, we
assumed that task runtime estimates of computation tasks could be obtained for each set of re-
sources. Such estimates were expected to account for potential task/resource affinities. In such
a context, scheduling the whole bag of tasks requires to balance the load between the different
sites, to exploit data sharing pattern and to organize input file transfers.

From a complexity and algorithmic point of view, there are several difficulties in such a prob-
lem:

1. Computation times are heterogeneous and vary from a task to another. This problem is
already NP-complete in the case of homogeneous machines and when there is no commu-
nication to take into account (〈P ||Cmax〉).

2. When considering negligible computation time, homogeneous communication links, and
no data sharing, the problem trivially reduce to 〈P ||Cmax〉 if one assumes that communi-
cation can be done in parallel from the master. The problem is made even more complex
because of data sharing

3. In practice, there would be limits on the amount of data that can be stored on a site, which
adds the difficulty of deciding which files need to be deleted and when as the scheduling
proceeds.

Since this problem has many sources of combinatorial difficulties, we decided to use simple
but robust list scheduling heuristics. Indeed, list scheduling is a 2-approximation for 〈P ||Cmax〉
although particular list scheduling can have a better approximation ratio (like LPT, which is a
4/3 approximation for 〈P ||Cmax〉). In our context, there was obviously no hope of obtaining a
guarantee but list-scheduling was a reasonable starting point. The heuristics we studied were
adaptation to this particular context of classical list heuristics like LPT (aka max-min), SPT (aka
min-min) and sufferage (that always schedules the task that would "suffer" the most from not
being scheduled on its best host). Our heuristics relied on a dynamic estimation of communica-
tion and computation time and took into account the presence of files on the different sites. The
Xsufferage heuristic that we designed had the better results and was inspired by sufferage but
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tried to discriminate between groups of machines that lead to similar characteristics instead of
only considering the best two machines.

Now, from a modeling point of view, there are other difficulties that can all be answered in
the negative:

1. Is it reasonable to assume that computation time is known beforehand for each combination
of task and platform? Is it reasonable to trust user estimations?

2. Although we can easily estimate input data size and how tasks depend on it if user correctly
describe their problem, can we really have a good estimation of communication time? In
particular, it is likely that there will be contention on the output connection of the user
machine. Should we then assume that communications are done sequentially? Or should
we assume that they can all occur in parallel with no degradation?

3. Can we assume that communication and computation resources will be dedicated and that
their performance will remain stable over time?

For all these reasons, a tightly organized schedule resulting from a long optimization of the
previous scheduling problem but using inaccurate information may lead to really bad overall
completion time in practice. It would certainly be better to handle this issue by considering di-
rectly such uncertainties in the problem modeling but it would certainly involve more elaborate
techniques that we did not master and could have other limitations as well. So we decided it
would be important to evaluate the sensibility of our algorithms to such uncertainties. Further-
more, since replaying a workload in a non-controlled environment such as a grid was difficult,
we decided to rely on simulations to assess the quality of our heuristics and their sensibility to
uncertainties.

The conclusion was that although deciding which scheduling algorithm is appropriate for
which situation is a difficult question, the XSufferage heuristic seemed effective when large input
files are shared by several application tasks and when performance prediction errors are within
reasonable bounds. However, in an environment where resource availability varies significantly,
thereby making performance unpredictable, or when the amount of application data is small, a
greedy non-clairvoyant algorithm seemed more appropriate.

This work led to my first article in the Heterogeneous Computing Workshop, held in conjunc-
tion with IPDPS 2000 [65] and is by far the most cited of my articles2 Interestingly, this work had
all the seeds of my current work:

Scheduling independent tasks on a distributed computing platform Many applications are em-
barrassingly parallel and this simple application context already raises many interesting
and non trivial issues. Many people would consider that this is a solved problem but I
think this is not true in the general case. We have systems that can manage efficiently a
few large compute-bound applications but I do not think we really understand how to deal
with more general situations. Although heterogeneity is an inherent key characteristic of
such platforms and has to be accounted for from the beginning, it may not necessarily make
the problem much more complicated (unlike what I initially thought). However, commu-
nication modeling is difficult and needs to be accounted in a reasonable way whenever
possible.

Pragmatism and alternate modeling I have always tried to stay away from what I would call
artificial complexity. Knowing that a problem is NP-hard does not really help. It merely
provides a free ticket for heuristic investigation. Proving that a problem is NP-hard is
more interesting though as it may allow to understand where a combinatorial difficulty
hides. However, most of the time such NP-completeness reductions are done using wid-
gets and the resulting difficult instance is somehow far away from any instance one may
ever encounter in practice. So narrowing the combinatorial difficulty is a good occasion of

2705 citations according to Google scholar in July 2015.

http://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=Ityu1_0AAAAJ:u5HHmVD_uO8C
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wondering whether simplifying assumptions should not be used to get rid of an "artificial
complexity". Using a slightly alternate modeling may lead to simpler problems that can
be solved or that allow to introduce further complex aspects that would be to difficult to
express in the initial formulation.

Cooperative optimization During my internship at UCSD, Francine Berman mentioned an in-
teresting issue that she liked to call the "Bushel of AppLeS" problem [BW97]. Obtaining
an efficient Application Level Scheduler was a good thing from a single user perspective.
Unfortunately, it was unclear what would happen if several users sharing machines were
to launch separate AppLeS at the same time. They would use the same sources of infor-
mation and would clearly step on each other’s toes. It could also be the case that the high
optimization of an AppLeS, although beneficial to its owner, would be somehow harmful
to the rest of users.

Performance evaluation In this work, we relied on a custom simulator that tried to be as realistic
as possible and to account for important features (heterogeneous computation and transfer
time, variability). The main idea was to try to evaluate algorithms in a context that is much
more complex and realistic than the one in which they have been designed although it is
not exactly the one in which they are supposed to run in the end.

As I already mentioned, this article is the most cited of my articles. Although it was well writ-
ten and scientifically sound and honest, it does not contain anything revolutionary and this pop-
ularity can probably be explained by the fact that it was on particularly hot subject, in the right
conference, at the right time. Looking back, I now see several issues with this work. Although it
raised very interesting questions, the answers we provided were far from being satisfying. For
example, regarding scheduling, using a greedy but sophisticated approach to optimize the com-
pletion time of each task was naive since all that matters is the completion of the last one.3 Hence,
focusing on completion time of each individual task is somehow irrelevant, especially when it
assumes an a priori knowledge of their processing time. At that time, we had obviously realized
that the file-task structure could be exploited in a less myopic way and thought of modeling it
as a graph or hyper-graph partitioning problem. Our time was limited though and we decided
to stay with simpler, more classical and potentially more robust approaches like list-scheduling.
Aykanat et al. [KA06] have worked on this approach a few years after using hyper-graph par-
titioning techniques that were their specialties. Such an approach was definitely much smarter.
Unfortunately it does not handle well heterogeneity or variability, hence its applicability to a real
setting remains questionable and I am not aware of recent developments overcoming such issue.

Brasileiro and Cirne et al. faced a similar issue when implementing OurGrid [CBA+06]. Their
solution is simple and I think has the right intuitions. When scheduling a BoT, one often has
to wait for last tasks during an abnormally long time. When the last tasks are allocated to slow
or unreliable workers, this may have a dramatic effect on the overall completion time of the
BoT [KCC04, KCC07]. Note that using such workers at the beginning of the BoT is generally not
an issue and can still be beneficial. A very effective way to deal with such stragglers is the use of
replication toward the end. The mechanism proposed by Brasileiro and Cirne et al. [SNCBL04] is
thus to use a simple work-queue with replication and data affinity, i.e., where replication is done
in priority on workers where files do not need to be transferred.

This last solution is probably all that was needed in this context although one may always find
situation where large data transfers and specific data sharing patterns would hinder this myopic
(but adaptive) approach. This means that characterizing and selecting the right workload is also
a critical step that is often overlooked.

3Or maybe it allows to actually optimize the average completion time but none of our heuristics has been evaluated
this way.
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1.2.2 Later Work

This first contact with scheduling for large scale distributed systems has greatly influenced my
subsequent research. When I engaged with Yves Robert and Olivier Beaumont into a PhD, the
heterogeneity issue and pragmatic modeling were clearly at stake. I have moved to through-
put optimization and divisible load scheduling in 2001 as an alternative to classical scheduling
formulations. We have shown during my PhD thesis how linear programming and matching
decomposition enable to solve such problems in a wide variety of context. These modeling tech-
niques enable to stay away from artificial complexity issues at little cost and to address more
complex/general problems than what can usually be done. In some cases, it could even lead
to fully distributed solutions, which appeared to me as a good direction toward autonomous
scheduling.

In 2003, after the completion of my PhD, I have started to understand some of the limitations
of throughput optimization and I have worked on response time/stretch optimization of divisi-
ble jobs with Frédéric Vivien. Another limitation of the work I had done during my PhD was the
absence of users in the modeling. This made me feel the need to introduce Game Theory notions
in my work starting in 2004, as well as the need to design solutions that can be distributed and
have resilience/scalability properties. These two aspects (the need to account for users and the
need to design distributed solutions) have been the core of my scheduling research work since
then.

During my PhD thesis where I had started designing distributed scheduling algorithms, I
have faced the same performance evaluation issues as I had encountered in my initial work with
Henri Casanova at UCSD. In the meantime, Henri had turned the toy simulator we had devel-
oped into SimGrid, an open-source simulation toolkit. I have extended this tool for my own
research and taken over its development, first alone, then with Martin Quinson, and later with
other colleagues such as Frédéric Suter as the user community was growing and more recently
Arnaud Giersch. This tool was initially mainly designed for my own research but its generic de-
sign and purpose has proven to be useful to many other contexts, which strengthened our feeling
that open-source development of such tools was the only good way to go. The second motivation
for open-source development of such a tool was the feeling that I needed to provide others the
ability to freely reproduce (and check) my work and build upon it. Amusingly, SimGrid started
as a toy tool for scheduling research and has turned to be a very fruitful source of research and
"philosophical" questions in itself.

I have always developed these two research activities (scheduling and performance evalua-
tion through simulation) in parallel and they have surprisingly nurtured each other.

In the rest of this document I try to present and summarize my work in a coherent way
and to detail without concession its strengths and weaknesses as well as how I think it could
be improved. The goal of such presentation is to try to help others to avoid pitfalls I have
encountered and list open paths of research, some of which I intend to pursue.

1.3 Organization of the Document

This document is naturally organized in two parts that correspond to my main two research activ-
ities. Each chapter builds on (generally several) articles that were published after the completion
of my PhD in 2003.

1. Scheduling and game theory:

• In Chapter 2, I briefly introduce some scheduling notions (mainly throughput opti-
mization and divisible load scheduling) that were mainly developed during my doc-
toral work, on which I have built upon, and which are thus important to understand
the rest of the document. I also introduce a few classical game theory notions that I
have relied upon.
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• As explained in Chapter 2, optimizing throughput of a single application can be easily
done through simple strategies on simple platforms. In Chapter 3, I present some
results on the analysis of the situation where the throughput of several applications
is optimized independently of each other. Such non-cooperative optimization results
give us the opportunity to question some classical inefficiency characterization tools.

• Since non-cooperative optimization generally leads to rather inefficient results, I present
in Chapter 4 a first approach to a cooperative optimization of throughput trying to
achieve max-min fairness. Such approach was mildly successful and allowed us to re-
alize that both the max-min fairness objective, the communication modeling, and the
optimization tools we used were not really suited to this context.

• This is why we present a more adapted approach in Chapter 5, which instead leads to
a proportionally fair solution and relies on distributed Lagrangian optimization. In-
terestingly, although such technique is somehow common in the networking context,
it revealed more difficult than expected to apply to our context. I think such approach
is very promising for a practical usage although it deserves further investigation.

• Considering throughput optimization allows to get rid of several combinatorial diffi-
culties and to incorporate in the modeling important aspects such as communication
and complex topologies. There are however situations where the steady-state hypoth-
esis is too strong and where communications are not that critical. I have thus consid-
ered the co-scheduling of relatively large bag of tasks belonging to different users. In
Chapter 6, I present some work we conducted on response time and stretch optimiza-
tion in the divisible load framework. This work allowed to rediscover and understand
some optimization techniques, to gain a better understanding of how users could be
incorporated in the scheduling picture, and of which scheduling ingredients should
be used in a practical implementation.

• Some of these ideas are actually partially implemented in production systems such as
BOINC. However, they are barely activated in practice and BOINC was designed to
be fully distributed. Hence, there is no coordination between applications and non-
cooperative optimization may result in inefficiencies. Since some recent related work
mentioned experiencing such issues, we decided to study more precisely such non-
cooperative optimizations in the BOINC context, which I present in Chapter 7. This
study can be seen as the realistic and practical counterpart of the theoretical problem
presented in Chapter 3.

• Finally, Chapter 8 concludes this part by summarizing open issues and presenting
ongoing and future work I intend to focus on.

2. SimGrid: an open simulation Framework. This part presents my investment in the Sim-
Grid project, which aims at providing an open simulation framework for our community.
Indeed, simulation is often used in parallel/distributed computing to evaluate the rele-
vance of proposals. However, this if often done without proper training on simulation and
performance evaluation and the resulting tools and studies are often quite disappointing.
In particular, as I was particularly unsatisfied with my own studies, I decided rather early
to invest myself into improving my practices and possibly the ones of my colleagues.

• In Chapter 10, I start by invalidating popular simulators and then I present the efforts
we conducted to improve the quality of the SimGrid simulator in term of prediction
capability.

• Most articles published on simulators in our community emphasize on the software
genericity of the simulator but actually trade accuracy and modeling genericity for
speed since large scale systems motivate our research. In Chapter 11, I briefly present
how we addressed such scalability and expressiveness issues in the SimGrid project.



10 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

• Finally, I conclude this part in Chapter 12 by presenting ongoing and challenging work
as well as some topics and concerns I discovered during these years and on which I
intend to focus in a near future.

Although the two parts can be considered and are presented as independent works, they have
nurtured each others. Many simulation developments were motivated by scheduling study
needs. Conversely, the scheduling studies provided us the right workload to focus on and also
sometimes the right optimization tools to improve our simulations. I think the synergy between
these two topics has been particularly fruitful and instructive.



Part I

Scheduling and Game Theory

11





Chapter 2

Scheduling and Game Theory Concepts

2.1 Throughput Optimization

In this section, I introduce the notion of steady-state scheduling and try to give a slightly different
perspective from the one presented in my PhD thesis. In particular I try to emphasize on the
importance of dual formulation (even if the primal formulation is always used to solve problems
in practice) as it provides an interesting perspective on problem complexity. I also deliberately
use slightly more lightweight notations.

2.1.1 Motivation

Let us assume that we are given an application made of a set of n independent computation tasks
with identical characteristics. Each task depends on a private input file whose transfer has to be
completed before processing can start. If we are given a master/worker platform (see Fig. 2.1),
we can note di the time required to send an input file from the master to worker Pi and wi the
time required by Pi to process the corresponding task. On the worker side, we assume that a
worker can process only one task at a time and that it can receive an input file while processing
an other task. On the server side, we assume that only one file can be sent at a time (one-port
model).

Such a model is a crude approximation of the kind of scheduling problem that could arise in
volunteer computing platforms such as BOINC or Folding@home. Obviously, such projects have
to deal with other issues such as dynamicity or volatility of workers, the imperfect uniformity of
tasks within a batch, . . . Yet, it captures some of the essence of the difficulty arising from platform
heterogeneity.

M

P1 P2 Pi Pp

di

dpd1

d2

w1 w2 wi wp

Figure 2.1: Master worker architecture. Worker Pi can process a task in wi units of time and the
master can send a task to worker i in di seconds.

13
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Problem 2.1 (MasterWorker (P1(d1, w1), . . . , Pp(dp, wp), n, T )). Given a master worker plat-
form setting with characteristics (d1, w1), . . . , (dp, wp), is it possible to schedule n tasks in less that
T units of time?

Unfortunately such formulation raises several issues.

1. In essence, since all the tasks are identical, it would seem reasonable to encode, just as in
the previous definition of MasterWorker, the input of our problem as a description of the
task and the number n of such tasks. Yet, such description raises a complexity issue. A
reasonable (and useful) certificate would be a description of when and where each task is
executed, hence in size polynomial with n (unless the problem has a particular structure
that can be exploited to provide a compact description) and thus exponential in the input
whose size is Θ(log n). This means that when stating such a problem, a redundant descrip-
tion of all input tasks should be part of the input:

Problem 2.2 (MasterWorker-Schedule (n,T , p,W,D, T )). Given

• a set T = {T1, T2, . . . , Tn} of n independent and identical tasks;

• a setW = {w1, w2, . . . , wp} of p execution times for each worker;

• e set D = {d1, d2, . . . , dp} of p communication delays for each worker;

• a time bound T ;

is it possible to schedule in less than T units of time the set T of n tasks on a master worker
platform made of p workers Pi whose characteristics are wi and di?

We have shown in [57] that this problem can be solved in time O(n2p2) by a non-trivial
greedy algorithm.

2. One may be satisfied with a polynomial complexity of O(n2p2) at first but it quickly be-
comes prohibitive when n and p grow large. What is even more impractical, is that although
this problem is solved by a greedy algorithm, the optimal schedule for n tasks may be com-
pletely different from the optimal schedule for n+ 1 tasks. Indeed, although our algorithm
is greedy, it builds the schedule backward. This is however a property of optimal solutions
and not of a peculiarity of the algorithm.

3. Pierre-François Dutot [Dut03b] extended this result to the case of chain and octopus graph
of platforms. Again, the algorithm proceeds backward and has complexity O(np2). He also
proved in [Dut03a] that this problem is NP-complete as soon as the graph as the platform
graph is a tree (a chain graph followed by a star graph actually).

Yet, when n grows large, it is expected that some kind of regularity appears with a sort of
pipeline where start-up and clean-up phases have little impact on the total completion time if
most of the time is spent in steady-state. That is why we proposed in my PhD thesis to optimize
the throughput, i.e., the average number of tasks completed per unit of time.

2.1.2 Steady-State Scheduling of the Master Worker Problem

Let us now consider the same platform as earlier but with an unlimited supply of tasks to process.

Problem 2.3 (MasterWorker-SS (p,W,D)). Given a master worker setting described as

• a setW = {w1, w2, . . . , wp} of p execution times for each worker;

• a set D = {d1, d2, . . . , dp} of p communication delays for each worker;

what is the maximum achievable throughput?
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P0 Send

P1

P2

P3

16 400 6 24 30

...

1 1 2

3 14

P0

P1 P2 P3

Figure 2.2: Illustrating steady-state scheduling on a simple master-worker platform. Although
the third workers is particularly fast, it is kept partially idle as the master cannot send him data
sufficiently fast.

Let us consider an infinite schedule of such tasks. Let us denote by ni(T ) the number of tasks
processed on Pi in the time interval [0, T ]. Therefore, the total number of tasks processed in the
time interval [0, T ] is ntotal(T ) =

∑
i ni(T ) and we have:{

∀Pi, ni(T ) · wi 6 T (processing constraint)∑
i ni(T ) · di 6 T (one-port constraint)

Therefore, if we note αi = limT→∞ ni(T )/T (assuming such limit exists) the effective task pro-
cessing rate of Pi, we have

∀Pi, αi > 0

∀Pi, αi · wi 6 1 (processing constraint)∑
i αi · di 6 1 (one-port constraint)

(2.1)

and the throughput of our schedule can defined as

% =
∑
i

αi (2.2)

Constraints (2.1) and objective (2.2) define a simple (rational) linear program that can be solved
in polynomial time and provides an upper-bound on the throughput of any infinite schedule.
From the solution of this linear program, it is possible to easily build a simple periodic schedule
that achieves such a throughput. Let us denote by Tp, the lcm of the denominators of the αi. Let
us denote Ni = αi · Tp the number of tasks that will be sent to Pi every Tp time units. In our
schedule, the master simply sends Ni tasks to Pi, one worker after the other and workers process
tasks as soon as they have received the input data. Once the master has sent N1 + . . .+Np tasks,
it repeats the operation.

Such a technique is illustrated on Fig. 2.1.2. In this toy example, the platform comprises
three workers whose communication delays are d = (1, 1, 2) and whose execution times are w =
(4, 3, 1). Solving the corresponding linear program leads to α1 = 1

4 , α2 = 1
3 (from the processing

constraints), α3 = 5
24 (from the one-port constraint), and % = 19

24 . It is thus possible to build a
periodic pattern of length 24 where worker 1 processes 24

4 = 6 tasks, worker 2 processes 24
3 = 8

tasks and worker 3 processes 5×24
24 = 5 tasks, hence the desired throughput.

Although, for small values of N , the previous periodic schedule is likely to produce bad
performance compared to the solution of MasterWorker-Schedule, it is expected that when N
grows large, the difference vanishes.

Theorem 2.1. Let us denote by %opt = K
Tp

the optimal throughput, nopt(T ) the optimal number of tasks
that can be done in T units of time, and nper(T ) the number of tasks that are processed in T units of time
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by the periodic schedule.

nper(T ) 6 nopt(T ) + %optTp, hence lim
T→∞

nper(T )

noptT
= 1.

Proof. We have nopt(T ) 6 %optT . In time T , there are b TTp c full periods and since data sent at a
given time are completed at most Tp units of time later, at least %optTp(b TTp c − 1) are processed.
Therefore nopt(T )− nper(T ) 6 %optTp, hence the result. �

The periodic schedule is thus asymptotically optimal for the MasterWorker-Schedule prob-
lem. Yet, since MasterWorker-Schedule and MasterWorker-SS can both be solved in polyno-
mial, one may wonder what steady-state really brought.

1. The periodic algorithm is much simpler and does not depend on n.

2. Although the periodic schedule would probably be of no practical use as such, we can
derive a nice intuition. The previous linear program is so simple that there is no need to
resort to a classical linear programming solver. It can be interpreted as a rational knapsack,
which means that workers should be prioritized according to their delay and saturated.
Counter-intuitively, one should not serve the fastest workers first but instead the workers
that have the best bandwidth as they are the ones that will keep the master busy as little as
possible and allow him to serve other workers. We called such strategy bandwidth-centric
in [56, 14].

3. Such simple strategy applies not only to star platform but also to tree topologies. Indeed,
we proved in [56, 14] that a subtree could be summarized by a single value corresponding
to its aggregated computing capacity. By recursively applying this principle (see Fig. 2.3),
it is thus possible to compute the overall throughput of a tree topology
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1 1 1

4 1 1 31 2

11

11

1 31 2
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5 5
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10
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5
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9

40
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Figure 2.3: Computing the optimal throughput on a tree topology using the bandwidth-centric
property and recursively aggregating subtrees. The throughput of a subtree is the inverse of the
weight of its root.

4. Last, if on the one hand, MasterWorker-Schedule becomes NP-hard as soon as the plat-
forms becomes a little more complex, MasterWorker-SS on the other and, remains polyno-
mial, even for arbitrarily complex platforms.
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2.1.3 Platform Modeling

The platform model of the previous problem is very simple and limited. For larger platforms,
network topology may matter. Therefore, we present in this section how more complex platforms
can be modeled and we explain later how this impact the steady-state scheduling problem.

Bi,j

Wj
Wi

Figure 2.4: A resource graph labeled with node (computation) and edge (communication)
weights.

We represent the target computing and communication resources by a platform graph, i.e.,
a node-weighted edge-weighted graph G = (P,E,W,B), as illustrated in Fig. 2.4. Each node
Pi ∈ P represents a computing resource that can deliverWi floating-point operations per second.
Each edge ei,j : (Pi → Pj) ∈ E is labeled by a valueBi,j which represents the bandwidth between
Pi and Pj

1. We assume a linear-cost communication and computation model. Hence it takes
X/Bi,j time units to send a message of size X from Pi to Pj .

For the sake of clarity, we ignore processor-task affinities; instead, we assume that only the
number of floating-point operations per second (Wi for processor Pi) determines the application
execution speed. However, taking such affinities into account does not change any of the results
presented in this document. We assume that all Wi are non-negative rational numbers. For any
i, Wi = 0 means that Pi has no computing power but yet, can forward data to other processors.
Similarly, we assume that all Bi,j are positive rational numbers (or equal to 0 if there is no link
between Pi and Pj).

Generally, one assumes that a processor can only compute one task at a time. However, in the
literature, one can distinguish between several communication modes.

1-port models In the simplex 1-port model, a node can be engaged in at most one communi-
cation at a time. This requires a careful synchronization of all senders and receivers when
building the schedule. On the other hand, in the full-duplex 1-port model, a node can both
send and receive data at the same time although it can be engaged in at most an emission at
a time and a reception at a time. In such models, one generally assumes that a data can not
be re-emitted until it has been completely received. Fundamentally, 1-port models impose
constraints on the time a node spends communicating data.

Multi-port In practice, computers do not have to be engaged in only one communication at a
time. In the multi-port model, a processor can thus be engaged in communications with
all its neighbors at the same time with no degradation [BSP+99, BNGNS00]. This model is
found in most DAG scheduling problems involving communications. Note that the ability
to send data in parallel with no overhead does not remove the constraint that a link can be
used to carry only one file at a time. The multi-port model is thus far less restrictive than
the one-port model and easier to handle but it can also lead to unrealistic situations when a
node has a large number of neighbors. To address the lack of realism of the previous model,
some authors have proposed the bounded multi-port [HP07] where each node is associated
a bound on the amount of data it can receive and sent at any instant. Fundamentally, such
models impose constraints on the amount of data that can be exchanged and are thus less
strict than 1-port models which lead to more combinatorial issues.

Communication/computation overlap In the simplest form, one could assume that when a pro-
cessor is processing a task, it becomes unable to manage communications. This is somehow

1Such modeling allows to easily account for asymmetrical connections.
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true in single-threaded programs but may not be a reasonable assumption anymore with
the advent of multi-core machines and thread programming. On the other hand, one could
assume that communications and computations can be perfectly overlapped with no degra-
dation. This is obviously an approximation since in a real machine, both actions would
contend for example on the memory bus but attempts to model such level of interferences
are not really convincing yet. Hence, in the rest of this work, we always assume that it is
possible to both communicate and compute (on other data than the ones that are currently
received) at the same time.

2.1.4 Formal Definition of Steady-state Scheduling

We consider an application made of N independent tasks T1, . . . , TN to process, with N large
and such that all tasks have similar characteristics. Hence, they can be characterized solely by
an amount of data b (in bytes) to transfer and an amount w of computation (in Mflop). We
further assume that all tasks originate from a particular node (the master) denoted by M . For
sake of simplicity, we assume that the only communication required is outwards from the master
nodes, i.e., that the amount of data returned by the worker is negligible. Considering inward
data would incur only minor modifications to the remaining equations and algorithms. Again,
for sake of simplicity, we assume there is no 1-port constraints (we will come back later on the
technical difficulties introduced by such kind of constraints). Such modeling allows us to define
the following notions, which we try to keep lightweight and intuitive:

Definition 2.1 (Allocation). An allocation π is a function that associates to each tasks Ti a path
in GP originating from M . Such a path indicates along which links the input data should be
forwarded and on which machine the task should be processed. We denote by Π, the finite (but
exponential in GP ) set of all such allocations π of a single task.

Definition 2.2 (Schedule). A schedule associated to an allocation π is a timing function tπ that in-
dicates when each communication starts on each link of the path and when the processing of the
corresponding task starts on the final machine. Such a schedule needs to respect the precedence
constraints (i.e., the processing or the re-emission of a file cannot start before it is completely
received) and the resource exclusivity constraints.

Definition 2.3 (Duration of a schedule). The duration of schedule is defined as the time elapsed
between the beginning of the first emission and the end of the last processing.

Definition 2.4 (Cyclic schedule and throughput). We now assume our set of tasks is not finite
anymore but instead that our tasks are indexed by N. The definition of allocation and schedule
still make sense but are called cyclic schedules (tcπ) and cyclic allocations (πc) [HM95b, HM95a].
Note that the term cyclic does not impose any notion of cycle or periodicity. It simple means
infinite.
The notion of duration has to be slightly adapted. Instead, one can define the duration DN of
the N first tasks as the time elapsed between the beginning of the first (among the N first tasks)
communication and the last (among the N first tasks) end of the processing. Such notion allows
to define the throughput of a cyclic schedule as, provided it exists, the limit:

% = lim
N→∞

N

DN

One may then ask the following question:

Problem 2.4 (CyclicScheduling (GP ,b,w)). What is the maximal throughput %∗ of a cyclic sched-
ule?

Unfortunately, such question raises two issues in term of complexity:

1. Although, one may easily define the set of such achievable throughputs, it may not neces-
sarily contain its supremum.
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2. Even if the supremum is achieved by a cyclic schedule, is there such a schedule that can be
described in a compact (polynomial) way?

The first issue is answered by looking at a seemingly complex formulation of this problem.
Let us assume that we are given a cyclic schedule (πc, tcπ). For a given single task allocation

π ∈ Π, let us denote by nπ(N) the number of time π is used to schedule the N first tasks with
πc. This allows us to define απ = limN→∞

nπ(N)
DN

the frequency of apparition of π in πc. Such a
frequency is thus a positive real number:

∀π ∈ Π, απ > 0

A given link (Pi → Pj) may be used several times by different allocations to schedule the N
first tasks of πc. The amount of data going through this link is thus equal to

∑
π3(Pi→Pj) nπ(N).b

and is necessarily smaller than Bi,j .DN . Therefore the απ verify:

∀(Pi → Pj) ∈ E,
∑

π3(Pi→Pj)

απ.b 6 Bi,j

Likewise, the computing constraints on (πc, tcπ) imply that

∀Pi ∈ P,
∑
π3Pi

απ.w 6Wi

Finally, the throughput % of (πc, tcπ) verifies

% =
∑
π∈Π

απ

Hence, the απ are solutions of the following linear program:

MAXIMIZE % =
∑
π∈Π απ,

UNDER THE CONSTRAINTS

(2.3a) ∀π ∈ Π, απ > 0

(2.3b) ∀(Pi → Pj) ∈ E,
∑

π3(Pi→Pj)

απ.b 6 Bi,j

(2.3c) ∀Pi ∈ P,
∑
π3Pi

απ.w 6Wi

(2.3)

The previous definition may seem pointless at first since it has an exponential (|Π|) number of
variables and an exponential number of constraints (|Π| + |E| + |P |). However, this program
provides us several important information:

1. Its optimal solution is rational and is an upper-bound of %∗.

2. There is an optimal solution that corresponds to a vertex of the constraint polyhedron. Since
there are |Π| variables, such a vertex corresponds to the intersection of |Π| hyper-planes, i.e.,
it corresponds to |Π| equalities in the previous constraints. Yet, most (Π) of these constraints
correspond to the positiveness of our variables. This means that most of our variables are
actually 0, hence that |E|+ |P | allocations are sufficient to achieve such optimal solution.

3. Although, it would not be reasonable to use such formulation with a linear programming
solver, the dual formulation can be solved with the ellipsoid method. Indeed, the dual
formulation of linear program (2.3) is:

MINIMIZE
∑

(Pi→Pj)∈E
Bi,j
b βi,j +

∑
Pk∈P

Wk

w γk,

UNDER THE CONSTRAINTS
(2.4a) ∀(Pi → Pj), βi,j > 0

(2.4b) ∀Pi, γi > 0

(2.4c) ∀π = ((PM ; PPk)) ∈ Π, γk +
∑

(Pi→Pj)∈π

βi,j > 1

(2.4)
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For a given vector (β, γ) checking constraints (2.4a) and (2.4b) is obviously done in poly-
nomial time. Although there is an exponential number of constraints (2.4c), they can be
checked in polynomial time. Indeed, let us weight the graph GP by β and γ and compute
the shortest path from M to all other Pi. If the sum of the weights of this path is larger
than 1, then (2.4c) are valid otherwise, we have found an invalid constraint. Such a cutting-
plane oracle can then be used in the ellipsoid algorithm. Program (2.3) can thus be solved
in polynomial time although it requires a rather involved algorithm.

Such formulation and consideration may seem purely theoretical and of little practical use.
However, it brings the light on the fact that a steady-state schedule is fundamentally nothing else
than the weighted combination of a few allocations. The maximal throughput of Problem 2.4 can
be achieved by relying only on the (rational) combination of a few (at most |E| + |P |, which is a
polynomial number) allocations.

Let us prove now that such an upper-bound can be achieved.

Definition 2.5 (K-periodic sequence). A sequence u is said to be K-periodic if and only if it is
increasing and there is an n0 > 0 and a Tp > 0 such that

∀n > n0 : un+K = un + Tp

K is the periodicity factor and Tp is the period of the sequence. A K-periodic sequence such that
n0 = 0 is said to be strictly periodic

Definition 2.6 (K-periodic schedule). A K-periodic schedule is a cyclic schedule such that the
corresponding timing are K-periodic. In other words, there is an n0 such that for each n > n0,
task Tn+K has the same allocation as task Tn and is scheduled exactly Tp units of time after Tn.
Likewise a cyclic schedule is said strictly K-periodic when n0 = 0.
The throughput of a K-periodic schedule with period Tp is K

Tp
.

The main strength of periodic schedules is their compactness In term of throughput, a (strict)
K-periodic schedule is completely characterized by the (rational) dates modulo Tp of the K first
tasks. Such dates are called a pattern and are sufficient to build a valid K-periodic schedule of
period Tp. This means that one does not need to check precedence constraints when checking the
validity of a schedule. Checking resource constraints of the pattern is sufficient.

This means that problem 2.4 is actually in NP since the optimal throughput is rational and a
valid certificate is a polynomial set of weighted allocations along with how they are organized
(possibly to respect 1-port constraints). Obviously, since we have proved that the linear program
could be solved in polynomial time, there is no need to prove that it is in NP anymore. Yet, there
are more complex situations (e.g., multicasting in a network) where the steady-state formula-
tion is no more polynomial although it can be proved that the problem remains in NP with this
exponential formulation.

Theorem 2.2. CyclicScheduling can be solved in polynomial time and the optimal throughput is
achieved by a compact periodic schedule.

In practice, one prefers a different formulation with a polynomial number of variables. Let
us consider αi the average number of tasks processed on Pi per time unit and sent i,j the average
number of tasks sent on (Pi → Pj). Resource impose the following constraints:{

∀Pi, αi · w 6Wi (processing constraint)
∀(Pi → Pj), sent i,j · b 6 Bi,j (communication constraint)

Furthermore, we have the conservation law:

∀Pi 6= M :
∑

(Pj→Pi)

sentj,i = αi +
∑

(Pi→Pj)

sent i,j
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These constraints can then be gathered in the following compact linear program:

MAXIMIZE % =
∑
i αi,

UNDER THE CONSTRAINTS

(2.5a) ∀Pi, αi > 0 and ∀(Pi → Pj), sent i,j > 0

(2.5b) ∀Pi, αi · w 6Wi

(2.5c) ∀(Pi → Pj), sent i,j · b 6 Bi,j
(2.5d) ∀Pi 6= M :

∑
(Pj→Pi)

sentj,i = αi +
∑

(Pi→Pj)

sent i,j

(2.5)

This program has the same solution as (2.3) and is obviously polynomial. The corresponding
values of sent and α indicate which fraction of tasks should be processed locally or sent to each
neighbor. Such a local view is also more suited to a practical implementation.

2.1.5 Application Domains

As we have previously seen, when the number of tasks grows large, steady-state scheduling
provides an efficient way of circumventing the difficulty raised by the combinatorial aspect of
classical scheduling formulations. Such problem can be solved through a linear program that
summarizes the resource constraints imposed by the platforms to any schedule. This provides an
upper-bound on the achievable throughput. By "peeling" the solution of the linear program, it is
possible to compute a weighted superposition of (spatial) allocations, that can then be arranged
into a valid (temporal) schedule. Such a schedule reaches the desired optimal throughput by
construction.

Such approach has been applied to more complex situations where applications are made of
an infinite amount of identical DAGs, which happens when managing workflows. The formalism
seamlessly handles the fact that some tasks can only be processed on particular machines, which
is common in this context and generally raises combinatorial issues, or have speed affinities (e.g.,
because of GPUs). Such approach has also been applied to collective communications (scatter,
gather, broadcast) in Loris Marchal’s PhD thesis [Mar06]. A few collective communications (e.g.,
reduce and multicast) remain NP-hard even in this model.

2.1.6 Issues

Despite the aforementioned benefits, this approach has several drawbacks that need to be pointed
out:

• The previous periodic schedule has a very large period (the lcm of the denominators of solu-
tions of the linear program), which has several consequences. As such, start-up and clean-
up phases are very long and not optimized at all. This is particularly problematic when
scheduling workflows and not solely independent tasks. Furthermore, the time elapsed
between the emission of a task by the master and its processing can be of the order of sev-
eral periods. Last but not least, since all data received within a period are sent at the next
period, this requires huge buffers at each node. Furthermore, it is unlikely that the machine
characteristics will remain perfectly stable during large periods of time. Obviously such a
rigid schedule is of no practical interest.

On the theoretical side, imposing limits on buffer size or trying to minimize latency quickly
leads to NP-hard problems. However, on the practical side, it is reasonable to maintain a
weighted list of allocations and to dynamically choose which allocation to use while trying
to respect the corresponding weights. Such approach can even be used locally. If each node
knows which fraction of tasks should be processed locally and which fraction should be
sent to each neighbor, such information can be used to dynamically load balance tasks. This
approach somehow enables to adapt to slow load variation assuming that such weights are
periodically recomputed.
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• Except for a few cases such as star platforms presented in Section 2.1.2 or for tree plat-
forms [56, 14], the values of α and sent are obtained by centrally solving a large linear
program whose parameters depend on the whole platform. Combined with the previous
load-balancing approach, being able to compute such values in a distributed way would
provide a fully distributed approach that may be more scalable and likely to adapt to load
variations or churn.

• In this brief and general presentation of steady-state scheduling, we have deliberately omit-
ted to go into the difficulties raised by 1-port constraints and non-overlapping of communi-
cations and computations. Such constraints incur an additional difficulty, which is the syn-
chronization of senders and receivers when building the pattern of the periodic schedule.
In the full-duplex model, this requires a matching decomposition which seems inherently
centralized on general platform graphs. In the simplex model, formulation (2.3) and (2.5) do
not have the same solution anymore and matching constraints have to be incorporated to
formulation 2.4. Although the problem remains polynomial, 1-port constraints make it sig-
nificantly more difficult to implement, which is why the multi-port model or the bounded
multi-port model should be preferred when possible, especially when seeking for a large
scale distributed algorithm.

• The steady state scheduling approach has been successfully used to a rather wide variety
of domains but always with only one user. Yet, large scale distributed computing plat-
forms are likely to be used by several users and it would be interesting to know how such
additional constraint impact this approach.

2.2 Divisible Workload

2.2.1 Problem Definition and Notations

In the problem of divisible load scheduling, we still consider a large amount of computations that
need to be performed by a certain number of worker nodes. Again, the master node originally
holds all the data, and the goal is to organize the communications to distribute this data among
the participating workers. Albeit, the model is called "divisible" because computations can be di-
vided in chunks of arbitrary sizes. It is thus suited for large "bag-of-tasks" applications, in which
the granularity is sufficiently low to be neglected. Just like steady-state, such model enables to
stay away from some combinatorial issues that arise with more standard modeling.

In this section, we make the following assumptions that are commonly used in the divisible
load scheduling literature. We assume that the master cannot send chunks to more than one
worker at a time, following the one-port model. We also assume that a worker may compute
and receive data simultaneously. However a worker has to wait for a chunk to be completely
transferred before starting processing it. We do not consider transfer of output data back to the
master.

Consider a DL application that consists of W independent units of load to be processed. The
processing of each load unit involves performing some computations on some input data. With-
out loss of generality, we assume that the master does not perform any computation. Worker Pi
can process a chunk of x load units in xwi seconds, and the master can send a chunk of x load
units to worker i in si + xbi seconds (si is a startup term for initializing the communication) . We
assume that the wi’s, si’s, bi’s, x and W are rational. A major difference with the previous model
is that communications and computations can be divided in chunks of arbitrary sizes.

The problem we consider is: how should the master partition the load into chunks and send
those chunks to the workers so that the application makespan, i.e., the time at which the last unit
of load is completed, is minimized? A schedule consists of a sequence of workers to which the
master sends load chunks in order, which is called the activation sequence, and the size of each
load chunk. We denote by α(j)

i the size of the jth chunk of load sent to worker i, measured as a
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Figure 2.5: Master worker architecture in the DL framework. Worker Pi can process a chunk of x
load units in xwi seconds, and the master can send a chunk of x load units to worker i in si + xbi
seconds.
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Figure 2.6: Single round versus multi-round for one-port divisible load scheduling. The gray
area represents idle-time.

rational number of load units. αi denotes the size of the chunk of load sent to worker i in case
only one chunk is sent to worker i in the schedule.

We define the associated decision problem as:

Problem 2.5 (DLS). Given p workers, (wi)16i6p, (si)16i6p, (bi)16i6p, and two rational numbers
W > 0 and T > 0, is it possible to compute all W load units within T seconds after the master
starts sending out the first load unit?

Computing a DL schedule entails three steps: (i) select which workers should participate in
the computation; (ii) decide in which order workers should receive load chunks and how many
times; and (iii) compute how much work each load chunk should comprise. Most proposed solu-
tions to the DLS problem fall into two categories: one-round schedules and multi-round schedules.
In one-round schedules, each worker receives only one load chunk. In multi-round schedules,
each worker may receive multiple load chunks throughout application execution. As illustrated
in Fig. 2.6, multi-round schedules are preferable to one-round schedules because they allow for
better overlap of computation and communication. Albeit, they are also generally less regular
and more difficult to compute.

In the following, we will consider some restrictions of the DLS problem. These restrictions
will be denoted as DLS{restriction}where restriction may be for example: 1Round (all processors
are used at most one time), bi = 0 (bandwidths from the master to the slaves are infinite), si = 0
(no startup), and so on.

Regarding unconstrained multi-round schedules, it is important to understand that DLS{si =
0} is a problem that does not make any sense. Indeed, for any finite schedule, it is possible to
find a better schedule: when everything is perfectly linear, idle time can be strictly decreased by
adding a new round. Therefore, scheduling problem involving several rounds generally require
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startup constraints.

2.2.2 Linear Programming and Optimality Principle

Some workers may not be used in the schedule and hence not appear in the activation sequence.
In the following, we will denote as actmax, the largest number of activations allowed in an activa-
tion sequence. In the one-round case, a worker can only appear once in the activation sequence.
The multi-round notion commonly used in the literature assumes that the activation sequence is
periodic but this is an artificial restriction.

Consider a given instance I = (s, b, w) of the problem. Let σ : {1, . . . , n} → {1, . . . , p} denote
a given activation sequence of size n. Then if we denote by αj the amount of workload sent to
Pσ(j), DLS{FixedActivation} is equivalent to determining whether the following linear constraints
define a non-empty set:

(2.6a)
n∑
j=1

αj = W

(2.6b) ∀k 6 n :

k∑
j=1

(
sσ(j) + αjbσ(j)

)
+

∑
j > k : σ(j) = σ(k)

αjwσ(k) 6 T

(2.6c) ∀j 6 n : αj > 0

(2.6)

The leftmost part of Constraint (2.6b) represents the time at which the kth communication
ends and the middle one is a lower bound on the computation time of worker σ(k) after this
communication. The sum of these two times has thus to be smaller than the makespan T . Con-
sidering in backward order the activations where a given worker l is used, it is not hard to see
from the constraints that one will obtain a feasible schedule [Dro97].

Theorem 2.3. DLS{FixedActivation} is polynomial and can be solved with linear programming

Linear programming can be used to prove what is known in the literature as the optimality
principle.

Theorem 2.4 (Optimality Principle). For an optimal activation sequence and the corresponding optimal
load distribution, all messages, except maybe the trailing ones, convey some load and there is no idle time.

It is important to understand that this optimality principle only holds for the optimal acti-
vation sequence. This result allows to derive elegant closed-form formula in many simple cases
(e.g., for DLS{bi = b, si = 0}) [BRG96, Rob03].

2.2.3 Complexity results

Since DLS{FixedActivation} is polynomial, the difficult part in DLS is to select and order workers.
Interestingly, the introduction of startup times creates a sharp complexity gap in the 1Round
problems:

• DLS{1Round, si = 0} is a polynomial problem. Workers should be ordered by decreasing
bi, just like the bandwidth-centric principle of Section 2.1.2.

• DLS{1Round, bi = 0} is weakly NP-hard and there is a pseudo-polynomial algorithm to
solve it [YCD+07]. To the best of our knowledge, it is unknown whether DLS{1Round}
is strong NP-hard or not. In essence, the weak NP-completeness results is based on the
selection issue. It would thus be interesting to know whether the problem is hard once the
selection is done, i.e., if the ordering problem is hard. It could provide a direction toward
strong NP-completeness.
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As we have already mentioned, multi-round optimization requires to introduce startup. Un-
fortunately, there are very simple instances for which the optimal number of round grows with√
W . The definition of DLS{Multi-Round}, even with startup is problematic. There are several

options to circumvent this issue:

• The first one is to set a bound on the number of activations, in which case the problem can
be solved by a mixed integer linear program. It is also possible to resort to branch and
bound techniques or genetic algorithms to build the activation sequence [DL05].

• One may also restrict to particular class of schedules like periodic ones. Using the same
kind of technique as in steady-state scheduling, it is possible to derive asymptotically op-
timal periodic schedules such that Tper 6 T ∗ + O(

√
T ∗). Note that such schedules have

Θ(
√
W ) round and that it strengthens the intuition that the optimal number of rounds is

always Θ(
√
W ).

• A major drawback of periodic schedules is their rigidity: the exact same amount of work-
load is sent to each worker during every period. Intuitively, rounds should be smaller in
the beginning to allow a better overlap of communications and computations and a better
start-up time. The UMR and RUMR heuristics [YdRC05, Yan05] build upon such heuristic
and propose schedule where the workload sent at each round is always shared with the
same proportions and where chunk size grows geometrically.

2.2.4 Issues

• The efficiency or multi-round schedules over 1-round schedules makes the introduction
of startup times a necessary evil. Yet, the selection difficulty they induce seems somehow
artificial to me as the difficulty occur only when the workload is relatively small compared
to startup delays. Efficient algorithms exist when there is lot of workload to process. And
when there is too little work to process, it is probably not worth using a parallel platform
anyway. . . It may be the case that network latency is very large but it is generally for setting
up a connection. If the connections can remain open or be open in advance, then latency is
not really an issue anymore.

• Lots of variants on divisible load can be found in the literature (with return messages, with
buffers, with several workload to distribute, with non linear cost). Such variants generally
make the problem more complicated and somehow explore how far the divisible model
can be pushed. Although such research path is interesting, I prefer to go the other way
around, i.e., to start from practical situations and see how such computationally solvable
framework can be used.

2.3 Game Theory

Game theory is a branch of mathematics that has been developed to study conflict and co-
operation between intelligent rational decision-makers. Algorithmic game theory has recently
emerged at the intersection of game theory and algorithm design. Unlike classical game theory,
there is a stronger emphasis on constructiveness, approximation ratio and polynomial running
times.

2.3.1 Non-cooperative games

It is generally assumed that a player has a real-valued utility function whose value is to be max-
imized and depends on a set of possible strategy. The previous scheduling problems can thus
be seen as one player situations, the utility being for example the inverse of the time spent pro-
cessing load (i.e., their throughput), and the strategy being how the load is distributed to the
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workers. Such a modeling is sound if the distributed system is dedicated to a single user. Such
an assumption is rarely reasonable since large scale distributed systems generally result from the
collaboration of several entities (universities, computing centers, volunteers, . . . ). When the sys-
tem is shared by several users, the utility of a player does not solely depend on his own strategy
but also on the ones of all the other players. Indeed, if two users decide to use the same set of
machines, it will create a contention that will generally be detrimental to both of them despite
potential transparent sharing mechanisms that may have been set up. This makes scheduling
problem much more complicated but also much more realistic and interesting.

Definition 2.7 (Game). Let us consider a set P = {1, . . . ,m} of players, each player k having a set
of strategies Sk at his disposal. Each player k can select freely every strategy sk ∈ Sk he wants.
A game is a function U : S1 × S2 × . . . Sm → Rm that associate to a strategy profile (s1, . . . , sm)
a reward or utility to every player. Each player k is thus trying to optimize his own utility
Uk(s1, . . . , sm) but only controls sk and has no influence on s1, . . . , sk−1, sk+1, . . . , sm.

Nash introduced in 1950 [Nas50b] a notion of equilibrium that plays a central role in game
theory. A Nash equilibrium is a strategy profile such that no player has interest in changing uni-
laterally his own strategy. Each strategy in a Nash equilibrium is a best response to the strategies
of the other players in that equilibrium.

Definition 2.8. Nash equilibrium A strategy profile (s1, . . . , sm) is a Nash equilibrium iff for all
k and for all s′k ∈ Sk: Uk(s1, . . . , sk−1, s

′
k, sk+1, . . . , sm) 6 Uk(s1, . . . , sk−1, sk, sk+1, . . . , sm).

Obviously such model is simple and does not account for temporal aspects, asymmetry of
information, intimidation that some players may exert on others, random variability, or the fact
that some players may be smarter than others. Several extensions have been proposed since to
alleviate these issues but all assume the rationality of players. It is yet a good basis for the study
of non-cooperative situations. Although it may be debatable to apply such modeling to human-
being, game theory provides an interesting framework to study interactions between computer
systems or to design their interactions.

Nash equilibria raise several difficulties though. In general, there is not necessarily a Nash
equilibrium (unless we consider mixed games where players have to choose a probability dis-
tribution over their strategy space) and even if such an equilibrium exists, there is no known
polynomial algorithm to find it (the problem is PPAD-complete [DGP06]). One may consider the
dynamic where every player is asked one after the other to update his strategy to maximize his
utility. Such a best response dynamic has no particular reason to converge but if so, it would be
toward a Nash equilibrium. This is one of the reason that motivates the interest for such equilib-
ria. If every player selfishly optimize his own utility, the only possible outcome, if any, is a Nash
equilibrium.

Nash equilibria are somehow the result of non-cooperative optimization and are stable (hence
the name equilibrium) in the sense that no player has interest in unilaterally deviating from its
strategy. Yet, Nash equilibria are not resilient to coalitions. A subset of players could have interest
in simultaneously changing their strategy to all obtain a better utility. Such coalition notions are
more advanced game theory notions [Mye97] and will not be discussed in this document.

As one would expect, such Nash equilibria, when they exist, have no particular reason for
being "efficient" or "fair". But let us define this more precisely.

Definition 2.9 (Pareto optimality). Let us denote by U = U(S1 × . . . × Sm) ⊂ Rm the utility set.
An outcome u ∈ U is said to be Pareto optimal if

∀v ∈ U : (∃i, vi > ui)⇒ (∃j, vj < uj) .

By extension, a strategy profile (s1, . . . , sm) is said to be Pareto-optimal if U(s1, . . . , sm) is Pareto-
optimal.

Pareto optimal strategies are thus strategies where it is impossible to increase someone’s util-
ity without decreasing the utility of someone else (see Fig. 2.7).
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Figure 2.7: Utility set for two users. Any point in the gray area correspond to a possible outcome.
Different strategies may lead to the same outcome. The Pareto border (i.e., the set of points that
are not dominated by any other strategy) is depicted with a bold line. As illustrated, the Nash
equilibrium may be dominated by many other solutions.

Nash equilibria are generally not Pareto-optimal: it could be the case that every one obtains a
better utility by using a different strategy profile. Such strategy profile would however probably
not be an equilibrium: a player could increase his own utility by deviating, which would impact
the utility of the others that would then change their strategy, . . . The stability of Nash equilib-
rium (they are resilient to the deviation of individual users) is what may make them desirable. It
is thus important to evaluate how inefficient they may be.

The Price of Anarchy has been introduced by Koutsoupias and Papadimitriou [KP99] to mea-
sure how the efficiency of a system degrades due to selfish behavior of its agents. This function
relies on the definition of an index, also called welfare function, W : Rm → R like the sum of
players utilities (also called social welfare, and which is the most commonly used welfare func-
tion), the minimum of players utilities (that would rather represent an egalitarian objective) or
any increasing function that may make sense for the game under study.

Let us consider sNE a Nash equilibrium. The inefficiency of this Nash equilibrium can be
defined as:

IW (sNE ) =
maxs∈SW (U(s))

W (U(sNE ))
(2.7)

The price of anarchy of a game is the largest inefficiency of a Nash equilibrium, hence

POAW = max
U

maxs∈SW (U(s))

minsNE∈NE W (U(sNE ))
(2.8)

Let us illustrate a last notion related to the inefficiency of Nash equilibria. When studying
properties of Nash equilibria in routing systems, Braess exhibited in 1968 an example in which,
by adding resource to the system (in his example, a route), the performance of all the users were
degraded [Bra68]. This is somehow surprising as one may expect that at least a few benefit from
additional resources.

Definition 2.10 (Braess paradox). Let us denote (S,U) the original game and (S′, U ′) a new game
with additional resources (i.e., we have S ⊂ S′ and U(s) = U ′(s) for each s ∈ S.)
Obviously U ⊂ U ′, the new utility set is larger and provides potentially better outcomes. Unfor-
tunately, since "the" Nash equilibrium s′NE of U ′ is not Pareto optimal, it can be anywhere in U ′,
even below "the" Nash equilibrium sNE of U . There is a Braess paradox if Uk(sNE ) > Uk(s′NE )
for each player k.

The condition of existence of Braess paradox are not well understood yet.
Nash equilibria are thus potentially interesting because of their stability and because an un-

coordinated selfish best-response dynamic may converge only toward them. However, they may
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be inefficient and this inefficiency needs to be assessed. In situation where this inefficiency is
not harmful, one may want to let the system evolve with no particular intervention. Should it
be otherwise (e.g., large price of anarchy or potential Braess paradox), one may want to design
particular control mechanisms that promotes cooperation or enforce a rational usage of resource
(e.g., through pricing).

2.3.2 Index-based Fairness

In network engineering, fairness index have been commonly used to quantify how fair is the
resource sharing between users or applications. The optimization of these index leads to different
fairness notions.

Definition 2.11 (Social welfare). An allocation u ∈ U is said to be socially optimal if it is maximal
in U for the index Σ : Rm → R defined by Σ(u) =

∑
k uk.

A common drawback of such allocations is that they often comprise players with null utility.
To circumvent this issue, one may consider other kind of indexes.

Definition 2.12 (Max-min fairness). One may consider the index min : Rm → R. However there
may be several u ∈ U that maximize this index. Furthermore, since min is not strictly increasing,
points that achieve the maximum in U may not be Pareto optimal. Hence, this index should be
recursively optimized.
An allocation u ∈ U is said to be max-min fair if it is maximum for the lexicographic order in U .
In other words, if the smallest uk is maximized and the second smallest u′k is maximized and etc.

Max-min fair allocations somehow ensure that everything is done to provide as much as pos-
sible to the "poorest" user, even if it has to be done at the detriment of the whole system. Other
indexes allow to find a trade-off between such extreme choices (i.e., between social welfare opti-
mization and max-min fairness).

Definition 2.13 (Proportional fairness). An allocation u ∈ U is said to be proportionally fair if it is
maximal in U for the index Π : Rm → R defined by Π(u) =

∏
k uk.

Alternative and equivalent definitions involve maximizing
∑
k log(uk) or being such that for any

other utility v ∈ U ,
∑
k
vk−uk
uk

< 0.

An interesting property of proportional fairness is that it is scale-free. If the utility of a player
is uniformly scaled up or down by a constant factor, it will not change the resulting solution. In
other words, proportional fairness is not sensitive to the units in which utilities are expressed (if
these units are linear . . . ). Proportional fairness also obviously ensures that no player can get a
null utility. Another way to avoid such a situation is to consider the inverse of utilities.

Definition 2.14 (Potential delay minimization). An allocation u ∈ U is said minimize potential
delay if it is minimal in U for the index Σ−1 : Rm → R such that Σ−1(u) =

∑
k 1/uk. The term of

delay minimization may seem awkward but comes from the context of elastic bandwidth sharing
where utility is the bandwidth alloted to each flow. If all flows need to transfer the same amount
of data M , then the time perceived by user k for transmitting his file will be M/uk and the total
time will thus be M

∑
k 1/uk.

These three fairness criteria respectively correspond to the arithmetic, geometric and har-
monic mean of u. This provides a perspective for generalizing fairness.

Definition 2.15 (α-fairness). For a given α > 0, an allocation u ∈ U is said to be α-fair if it is
maximum in U for the index fα : Rm → R such that

fα(u) =

{
1

1−α
∑
k u

1−α
k , if α 6= 1∑

k log(uk) , otherwise
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The index fα is continuous in α and has the interesting property to correspond to Social wel-
fare when α = 0, to proportional fairness when α = 1, to potential delay minimization when
α = 2, and to max-min fairness when α =∞. It has been thought for some time that such metric
enabled to adjust the trade-off between particularly fair solutions (α =∞) and efficient solutions
(α = 1). This is far from obvious as explained for example in [TWL06] or [LKCS10].

2.3.3 Axiomatic Fairness

Another (maybe more natural) way to conceive fairness is to define it through axioms, i.e.,
through properties that one would expect from a fair solution. This is the approach that Nash
proposed in [Nas50a].

Definition 2.16 (Nash Bargaining Solution). A bargaining problem can be defined as a pair (U , d)
where U is the utility set of our game and d ∈ U and is a disagreement which every player will
end up with if they cannot agree. We assume that U is convex and compact and that there exist a
v ∈ U such that ∀k, vk > dk.
A bargaining solution is a mechanism f that selects a vector u ∈ U for a bargaining problem
(U , d). One would expect from a bargaining solution that it respects the following properties:

• Pareto efficiency: A Pareto inefficient solution is unlikely as it would leave room for rene-
gotiation.

• Symmetry: Let us consider two players i and j. If U is symmetrical with respect to i and
j and they both have the same disagreement values (di = dj), then they should obtain the
same utility (f(U , d)i = f(U , d)j)).

• Independence of irrelevant alternatives: Let (U , d) and (U ′, d) be two bargaining problems
such that U ′ ⊂ U . If f(U , d) ∈ U ′, then f(U ′, d) = f(U , d).

• Scale invariance: Let us consider two vectors α > 0 and β.

f(α · U + β, α · d+ β) = αf(U , d) + β

Interestingly, when U is convex and compact, the proportionally fair allocation (with respect
to the disagreement point) is the only allocation verifying the Nash axioms [Nas50a].

Most previous axioms are very natural. The interpretation of scale invariance is less obvious
and may or not make sense depending on the context. Alternative axioms have been proposed
by Kalai and Smorodinsky [KS75] and can be related to max-min fairness.
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Chapter 3

Non-Cooperative Throughput Optimization

This chapter builds on two articles written with Corinne Touati at INFOCOM’07 [38] and GAME-
COM’07 [37]. We consider a very simple topology and illustrate that even under idealistic condi-
tions, when letting everyone optimize its own throughput, bad things can happen. The resulting
insights allow us to question classical definitions like the price of Anarchy and to propose a pos-
sibly more meaningful definition.

3.1 Platform and Application Setting

We consider a master-worker platform with p workers (see Fig. 3.1). Each worker Pi is character-
ized by its processing capability Wi (in Mflop/s) and the capacity Bi (in MB/s) of its connection.
We define the communication-to-computation ratio Ci of worker Pi as Bi/Wi. We assume that the
platform performs an ideal fair sharing of resources among the various requests. More precisely,
let us denote by N (B)

i (t) (resp. N (W )
i (t)) the number of ongoing communication (resp. computa-

tion) from M to Pi (resp. on Pi) at time t. The platform ensures that the amount of bandwidth
received at time t by a communication from M to Pi is exactly Bi/N

(B)
i (t). Likewise, the amount

of processor power received at time t by a computation on Pi is exactly Wi/N
(W )
i (t). Therefore,

the time T needed to transfer a file of size b from M to Pi starting at time t0 is such that

∫ t0+T

t=t0

Bi

N
(B)
i (t)

· dt = b.

M

P1 P2 Pi Pp

W1 W2 Wi Wp

Bi

BpB1

B2

Figure 3.1: Master worker architecture. Worker Pi can deliver Wi floating point operations per
second and is connected to the master by a Bi bandwidth connection.
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Likewise, the time T needed to perform a computation of size w on Pi starting at time t0 is such
that ∫ t0+T

t=t0

Wi

N
(W )
i (t)

· dt = w.

Last, we assume that the master is operated under the multi-port model, i.e., that communica-
tions to different processors do not interfere.

We consider K BoT applications, Ak, 1 6 k 6 K. Each application is composed of a large
set of independent, same-size tasks. Let wk be the amount of computation (in Mflop) required
to process a task of type k. Similarly, bk is the size (in MB) of (the file associated to) a task
of application k. Last, we define the communication-to-computation ratio ck of tasks of type k as
bk/wk.

Let us define αi,k the average number of tasks of type k performed per time-unit on worker
Pi. The throughput for application k of such a schedule is defined as αk =

∑P
i=1 αi,k. Since

the platform is operated under the full-overlap multi-port model, the αi,k verify the following
constraints:

Computation ∀Pi :
∑K
k=1 αi,k · wk 6Wi (3.1a)

Communication ∀Pi :
∑K
k=1 αi,k · bk 6 Bi (3.1b)

Remark. Consider a system S withK applications running overP machines. The set of achievable
utilities U(S, P ), that is to say the set of possible throughput αk is given by

U(S, P ) =

(αk)16k6K

∣∣∣∣∣∣∣∣∣∣

∃α1,1, . . . , αP,K ,

∀k ∈ {1, . . . ,K} :
∑P
n=1 αi,k = αk

∀n ∈ {1, . . . , P} :
∑K
k=1 αi,k · wk 6Wi

∀n ∈ {1, . . . , P} :
∑K
k=1 αi,k · bk 6 Bi

∀n ∈ {1, . . . , P},∀k ∈ {1, . . . ,K} : αi,k > 0

.
The utility set is hence convex and compact.

3.2 Non-Cooperative Scheduling

We first study the situation where only one application is scheduled on the platform. This will
enable us to simply define the scheduling strategy that will be used by each player (scheduler) in
the more general case where many applications are considered. When there is only one applica-
tion, our problem reduces to the following linear program:

MAXIMIZE
∑P
i=1 αi,1,

UNDER THE CONSTRAINTS
(3.2a) ∀Pi : αi,1 · w1 6Wi

(3.2b) ∀Pi : αi,1 · b1 6 Bi
(3.2c) ∀Pi, αi,1 > 0.

(3.2)

We can easily show that the optimal solution to this linear program is obtained by setting
∀Pi, αi,1 = min

(
Wi

w1
, Bib1

)
. In a practical setting, this amounts to say that the master process

will saturate each worker by sending it as many tasks as possible. On a stable platform, Wi

and Bi can easily be measured and the αi,1’s can thus easily be computed. On an unstable one,
this may be more tricky. However a simple acknowledgment mechanism enables the master
process to ensure that it is not over-flooding the workers, while always converging to the optimal
throughput.

In a multiple-applications context, each player (process) strives to optimize its own perfor-
mance measure (considered here to be its throughput αk) regardless of the strategies of the other
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players. Hence, in this scenario, each process constantly floods the workers while ensuring that
all the tasks it sends are performed (e.g., using an acknowledgment mechanism). This adaptive
strategy automatically cope with other schedulers usage of resource and selfishly maximize the
throughput of each application. As the players constantly adapt to each others’ actions, they may
(or not) reach some Nash equilibrium. One can actually prove [38] that such equilibrium exists
and is unique. We denote by α(NE)

i,k the rates achieved at such a stable state.
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(b) With cooperation. Application 1 uses
solely worker 1 while application 2 uses
solely worker 2.
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(c) Non-cooperative equilibrium. Now
both application 1 and 2 use worker 1 (and
2).

Figure 3.2: Non-cooperation can lead to inefficiencies. Fig. 3.2(b) and Fig. 3.2(c) depict steady-
state patterns of length 20. The height represents the capacities of the resources.

Consider a system (see Fig. 3.2(a)) with two computers 1 and 2, with parameters B1 = 1,
W1 = 2, B2 = 2, W2 = 1 and two applications of parameters b1 = 1, w1 = 2, b2 = 2 and
w2 = 1. Fig. 3.2(b)) depicts a steady-state pattern for the situation where the two applications
would cooperate and use only their prefered machine (i.e., application 1 uses exclusively worker
1 while application 2 uses exclusively worker 2). On Worker 1 (top left), a green rectangle of
height 1 and width 1 represents a communication of the first application. Since b1, B1 = 1 and
only application 1 uses the communication link of worker 1, such communications last for one
time unit. Likewise, since w1 = 2 andW1 = 2, computations of application 1 last exactly one time
unit. Overall there is a good resource usage and, their respective throughput would be

α
(coop)
1 = α

(coop)
2 = 1.

Yet, with a non-cooperative approach (see Fig. 3.2(c)), both applications will use both workers as
much as possible. Communications of application 1 on worker 1 (green rectangles on the top left
part) last twice longer (i.e., two time units). Likewise, some of the computations of application 1
are slowed down by those of application 2, which prevents the CPU of worker 1 to be kept fully
busy. The same problem occurs with the communication link of Worker 2. One can check that
applications only get a throughput of:

α
(NE)
1 = α

(NE)
2 =

3

4

In this example, one can easily check that, at the Nash equilibrium, for any worker, there is
no resource waste: slave 1 (resp. slave 2) is communication (resp. computation) saturated i.e.,
Eq. (3.1b) (resp. Eq. (3.1a)) is an equality. However, communication-saturation implies computa-
tion idle times and vice-versa. Yet, when communication and computation idle times coexist in a
system, the non-cooperative behavior of the applications can lead to important inefficiencies.

The scheduling algorithm used by the players consists in constantly flooding workers. A
player k is thus said to be either communication-saturated on worker n or computation-saturated on
worker n. Using different equivalent representations of the schedule and saturation properties,
one can prove that there always exists exactly one non-cooperative equilibrium and that it has a
closed form expression.

Theorem 3.1 ([38]). We assume c1 6 c2 6 · · · 6 cK . Let us denote by Wi the set of players that are
computation-saturated and by Bi the set of players that are communication-saturated on a given arbitrary
worker i. Depending on the ck’s and the Ci’s, we have either:
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1. If
∑
k
Ci
ck
6 K thenWi = ∅ and ∀k, α(NE)

i,k =
Bi
K.bk

.

2. Else, if
∑
k
ck
Ci
6 K then Bi = ∅ and ∀k, α(NE)

i,k =
Wi

K.wk
.

3. Else, Bi andWi are non-empty and there exists an integer m ∈ {1, . . . ,K − 1} such that

cm
Ci

<
m−

∑m
k=1

ck
Ci

K −m−
∑K
k=m+1

Ci
ck

<
cm+1

Ci
.

Then, we haveWi = {1, . . . ,m} and Bi = {m+ 1, . . . ,K} and
α

(NE)
i,k = Bi

bk

|Wi|−
∑
p∈Wi

cp
Ci

|Wi||Bi|−
∑
p∈Wi

cp
∑
p∈Bi

1
cp

if k ∈ Bi

α
(NE)
i,k = Wi

wk

|Bi|−
∑
p∈Bi

Ci
cp

|Wi||Bi|−
∑
p∈Wi

cp
∑
p∈Bi

1
cp

if k ∈ Wi

(3.3)

3.3 Nash Equilibrium and Pareto Inefficiency

As we have seen in the example of Fig. 3.2, the Nash equilibrium may be Pareto inefficient.
However, on a single-processor system, the allocation at the Nash equilibrium is always Pareto
optimal. On a multi-processor system, Pareto inefficiencies occur as soon as there are both
communication-saturated and computation-saturated nodes:

Theorem 3.2 ([38]). Assume that applications are not all identical, that is to say that there exists k1 and
k2 such that ck1 < ck2 . Then, the allocation at the Nash equilibrium is Pareto inefficient if and only if
there exists two workers n1 and n2 such thatWn1

= ∅ and Bn2
= ∅.

Since the Nash equilibrium may be Pareto, a natural question is “how much inefficient is it?”.
Let us thus look at the price of Anarchy of this problem.

Let us consider the following simple system SM,K comprising one machine (B1 = 1 and
W1 = 1) and K applications (b = ( 1

M , 1, . . . , 1), and w = ( 1
M , 1, . . . , 1)). It is then easy to compute

the following allocations (see Fig. 3.3):

• α(NE)(SM,K) =
(
M
K ,

1
K , . . . ,

1
K

)
corresponds to the non-cooperative allocation;

• α(Σ)(SM,K) = (M, 0, . . . , 0) corresponds to the allocation optimizing the average through-
put;

• α(min)(SM,K) =
(

1
K−1+1/M , . . . , 1

K−1+1/M

)
corresponds to the max-min fair allocation;

• α(Π)(SM,K) =
(
M
K ,

1
K , . . . ,

1
K

)
corresponds to the proportionally fair allocation (i.e., the

Nash Bargaining Solution when the disagreement point is (0, . . . , 0)). Surprisingly, on this
instance, this allocation also corresponds to the non-cooperative one.

Note that, all these allocations are Pareto optimal either by definition or because this is a single-
processor system. One can easily compute (using Eq. (2.7) the inefficiencies of the Nash equilib-
rium:

IΣ(SM,K) =
M

M
K + K−1

K

−−−−→
M→∞

K

Imin(SM,K) =
K

MK −M + 1
−−−−→
M→0

K.

Theorem 3.3. The prices of anarchy POAΣ and POAmin are unbounded even when restricting to single-
processor systems where the Nash equilibrium is always Pareto optimal.
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Figure 3.3: Utility set and allocations for SM,K (K = 3,M = 2).

The fact that the non-cooperative equilibria of such instances are Pareto-optimal and have
interesting properties of fairness (it corresponds to the Nash Bargaining Solution in this particular
example) questions the relevance of the price of anarchy notion as a Pareto efficiency measure. To
quantify the degradation of Braess-like Paradoxes (the degree of Paradox), Kameda [Kam06]
introduced the Pareto-comparison of two allocations. Working on such notions [37], we realized
such a measure can be properly defined only when referring to some kind of distance to the whole
Pareto set and no index-based inefficiency measure can reflect such distance. As algorithmicians
are used to manipulate approximation factors when evaluating the performance of an algorithm,
this distance to the Pareto set should be measured in the log space. Let us denote by P(U) the
Pareto set of U . It may be the case that P is not closed (even when U is compact and convex).
Hence, we refer to P(U), the closure of P(U). Let α The distance from β to the closure of the
Pareto set P(U) in the log-space is equal to:

d∞(log(β(U), log(P(U))) = min
u∈P(u)

max
k
| log(β(U)k)− log(uk)|

Therefore, we proposed in [37] to define the Pareto inefficiency of β as

Ĩ∞(β, U) = exp(d∞(log(β(U), log(P(U)))

= min
u∈P(u)

max
k

max

(
β(U)k
uk

,
uk

β(U)k

)
(3.4)

This notion is somehow related to the notion of ε-approximation introduced by Papadimitriou
and Yannakakis [PY00] in the context of multi-objective approximation. The definition of Ĩ∞
(Eq. (3.4)) may seem much more complicated than the one of IW (Eq. (2.7)) used in the price of
anarchy, especially as it relies on the Pareto set P(U) that may be complex and computationally
intractable. This seems however required to grasp the notion of Pareto inefficiency. Index-based
inefficiency measures can only reflect a particular property of the allocation such as fairness.
Note that in mono-criteria situations, it is natural to compare a solution to a computationally
intractable optimal solution, generally using approximations or lower bounds. Therefore, it is
not surprising that similar approaches should be used in multi-criteria settings to compute Ĩ∞.
This inefficiency measure is thus a natural extension of the classical mono-criteria performance
ratio.

Theorem 3.4. When increasing the unbalance of example of Fig. 3.2 (i.e., when settingB1 = 1,W1 = M ,
B2 = M , W2 = 1 and two applications of parameters b1 = 1, w1 = M , b2 = M and w2 = 1), the Pareto
inefficiency is equal to 1

M2+M

2M2

−−−−−→
M→+∞

2.
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3.4 Resource Augmentation

In this section, we make a few observations on the influence of resource augmentation on the
overall performance of the system. We say that S = ((P,W,B), (K,w, b)) is a subsystem of
S′ = ((P,W ′, B′), (K,w, b)) iff for all Pi, Wi 6W ′i and Bi 6 B′i.

Let us consider a system (called “initial”) and a second one (referred to as the “augmented”
system), derived from the first one by adding some quantity of resource. Intuitively, the Nash
equilibrium aug in the augmented system should be Pareto-superior to the one in the initial
system ini. However, since the Nash equilibrium aug may be Pareto inefficient, it may be the
strictly Pareto-inferior to ini, in which case we have a Braess paradox happens. Interestingly,
such situation cannot happen in our context. Thanks to the characterization of Theorem 3.1, we
have been able to prove:

Theorem 3.5 ([38]). Even though the Nash equilibria may be Pareto inefficient, in the non-cooperative
multi-port scheduling problem considered scenario, Braess paradoxes cannot occur.

Although there is no Braess paradox, the evolution of resource share with resource augmen-
tation is not very regular. Unexpected behavior of typical performance metrics can occur even for
Pareto optimal situations (e.g., on single-processor systems). Let us illustrate this by considering
the simple numerical example of Fig. 3.4. Observe that when the bandwidthB is 245/24 ' 10.208
the three metrics (namely the higher throughput, the lower throughput and the average through-
put) have lower values than when the bandwidth B is only equal to 560/73 ' 7.671.
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Figure 3.4: The three performance metrics (min, max, average) can simultaneously decrease with
resource augmentation: b = (8, 5, 7, 1), w = (4, 5, 12, 2), K = 4, Wi = 10.

The previous example illustrates the non-monotonicity with resource augmentation of the
maximal throughput, of the minimal throughput and of the average throughput. This result can
even be strengthened [38].

Theorem 3.6. For both the maximal throughput, the minimal throughput and the average throughput,
there are single-processor systems where degradation when increasing resource can be made arbitrarily
large.

Therefore, although there is no Braess Paradox, it is difficult to tell who will benefit from
resource augmentation in the Nash equilibrium.

3.5 Conclusion and Open Issues

The previous study is instructive as it shows that bad situations can happen even with an ide-
alistic model. The bi-dimensional nature of the problem (i.e., applications have both a possibly
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unrelated computation and a communication requirement) is sufficient to be the source of inef-
ficiencies. The multi-port non-cooperative steady-state scheduling problem is thus rather mini-
malist and enables to reconsider classical measures of inefficiency with a different perspective.

Several questions remain open though:

• The ability to analytically compute the Nash equilibrium heavily relies on the multi-port as-
sumption. In this model, all applications constantly flood the workers and the sharing on a
worker has no influence on what happens on another worker. One may wonder what hap-
pens for 1-port model. In this model, the master should send tasks in priority to workers
with the highest bandwidth. Since instantaneous bandwidth depends on the choice of the
others, this means that a worker selection that is optimal at time t may become sub-optimal
at time t′ > t. The inability to interrupt communications and reconsider ongoing commu-
nications makes the optimal strategy definition much more complex. As will be illustrated
in the next chapter, numerical simulations indicate that the quality of the equilibrium can
be quite bad under such assumption.

• We have exhibited simple situations where the Pareto inefficiency of the Nash equilibria of
the multi-port non-cooperative steady-state scheduling problem could be arbitrarily close
to 2. We have never been able to find examples with a larger inefficiency. We suspect
that the Pareto inefficiency of this problem is always smaller than 2, which would be an
interesting property and would show that the Selfishness Degradation Factor is a useful
definition just as natural as the classical approximation ratio notion.

• Even if the Nash equilibrium had bounded Pareto inefficiency, it would be interesting to
know if there exists an index for which it has a bounded price of anarchy, i.e., if it somehow
optimizes something. We know for sure that it is neither the average throughput nor the
minimum throughput. Some simple examples suggest a connection with proportional fair-
ness but this remains to be investigated. Anyway, the previous results advocate for the need
of some form of coordination so as to obtain a fair and efficient throughput optimization in
a realistic and complex setting.
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Chapter 4

Max-min Fair Throughput Optimization

This chapter builds on two articles at IPDPS’06 [39] and in TPDS’08 [8] written with Olivier
Beaumont, Larry Carter, Jeanne Ferrante, Loris Marchal, and Yves Robert. This work was initi-
ated during my stay at UC San Diego in 2004 and completed during the ALPAGE ANR project.
This was our first attempt to incorporate a notion of users in steady-state scheduling and to in-
vestigate whether the linear programming techniques we had developed during my PhD thesis
were still effective or not.

4.1 Platform and Application Setting

In this chapter, we consider a platform model similar to the one presented in Section 2.1.3 except
that we restrict to rooted tree and single-level tree (or star) topologies. We concentrate on the
full-overlap single-port model where each processor can simultaneously receive data from one of
its neighbors, perform some (independent) computation, and send data to one of its neighbors.
At any given time, there are at most two communications involving a given processor, one sent
and the other received.

The application setting is similar to the one of the previous chapter: we consider K applica-
tions, Ak, 1 6 k 6 K that originate from the root of the tree PM , which initially holds all the
input data necessary for each application Ak. Each application is composed of a set of indepen-
dent, equal-sized tasks that can be characterized by wk, the amount of computation (in Mflop)
required to process a task of type k, and by bk, the amount of data (in MB) to transfer to process
a task of application k. Last and as usual, we define the communication-to-computation ratio ck of
tasks of type k as bk/wk.

Under such model, the set of constraints on αi,k is a set of linear inequalities, and we know
that the utility set is thus a convex polyhedron, as illustrated in Fig. 4.1. Fig. 4.1(a) corresponds

α1

α2

(a) Conflict on a worker

α1

α2

(b) Synergy

α1

α2

(c) Independency

α1

α2

(d) Typical utility set for tree

Figure 4.1: A few examples of utility sets. Dotted lines are isolines of (α1, α2)→ min(α1, α2) and
bold lines represent Pareto optimal points.

39
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to the typical situation where two applications are competing on a single node:{
α1 · b1 + α2 · b2 6 B1 α1 > 0

α1 · w1 + α2 · w2 6Wu α2 > 0

As a consequence (see Fig. 4.1(a)), many points are Pareto-optimal. Any Pareto optimal point is
thus a priori as worth of interest as any other Pareto optimal point. Defining fairness can be seen as
defining a criterion for choosing among Pareto optimal points. Since our previous results heavily
relied on linear programming, which we knew pretty well, we proposed to focus on obtaining
a max-min fair solution as it is more reasonably fair than for example trying to maximizing the
sum of utilities for which some applications may receive nothing at all.

On Fig. 4.1(a), the minimum of the αk is maximized at a point where all the αk have the same
value. One can easily check that the only Pareto optimal point of Fig. 4.1(b) is also the point such
that the minimum of the αk is maximized. However, one can also check that the points such that
the αk’s all have the same value are not efficient, which corresponds to the well-known fact that
giving the same thing to each user is not always a good option. In fact the shape of this utility
set is rather uncommon and corresponds to a situation where there is a synergy between both
users. Such situations may occur with caching mechanisms for example but cannot occur in our
framework because all coefficients of the linear constraints are positive.

One may then wonder whether in our context max-min optimal solutions are always such
that the throughput of all applications are the same or not. This is true as soon as applications
originate from the same location. The utility set of Fig. 4.1(c) is typical of the situation where
two applications originate from different locations and where one of them can only use a limited
area of the network (e.g., due to a very high communication to computation ratio and a small
connectivity to the network). In such case, it may be possible to increase the throughput of the
application with the lower ratio (α2 here) without decreasing the throughput of the other one
(α1 here). However, if both applications start using the same resources, the throughput of one
application can only increase at the expense of the throughput of another application. It is im-
portant to note that many different points maximize the minimum of the throughputs (all points
belonging to U and to the lowest isoline of min(α1, α2)). However, only one of them is of interest
(i.e., Pareto Optimal). It is well-known that max-min fairness should be recursively defined in this
case: the first minimum should be maximized, then the second should be maximized, and so on.

Such situations cannot occur on tree-shaped platforms as applications originate from the same
location and thus always compete on the same set of resources. That is why in the rest of this
chapter, we can restrict to solutions where all application throughputs are equal. But in a more
general situation, we should look for Pareto-optimal allocations and the previous stopping con-
dition could not be used anymore.

4.2 Computing the Max-min Fair Solution

Using the same approach as in Eq. (2.5), we can show that an optimal schedule can be derived
from the following linear program (where f(i) denotes the father of i in the tree topology):

MAXIMIZE mink
∑
i αi,k,

UNDER THE CONSTRAINTS

(4.1a) ∀Pi, αi,k > 0 and ∀(Pi → Pj), senti→j,k > 0 (non-negativity)

(4.1b) ∀Pi,
∑
k

αi,k · wk 6Wi (computation limit)

(4.1c) ∀Pi,
∑
k

∑
(Pi→Pj)

senti→j,k · bk
Bi,j

6 1 (single-port)

(4.1d) ∀Pi 6= M : sentf(i)→i,k = αi,k +
∑

(Pi→Pj)

senti→j,k (data conservation)

(4.1)
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On tree-shaped platforms, the previous solution is the max-min fair solution. On general plat-
form, constraint (4.1d) should simply be rewritten to account for the fact that data may be re-
ceived from different sources. Yet solving this new linear program would not give the max-min
fair solution as the first minimum should be maximized, then the second should be maximized,
and so on. This can easily be done in our setting by identifying which applications correspond to
the first minimum by looking at saturated constraints (tight inequalities at optimum point). One
can then rerun the linear program, with the throughput of these applications fixed, to maximize
the smallest throughput of the remaining applications. This process can be repeated until all
applications are saturated. Max-min solutions can thus easily be computed in polynomial time,
even on complex platforms.

Although the process is slightly simpler for tree platforms than for general graphs, it requires
to gather the characteristics of the whole platform before solving the linear program (4.1) to ob-
tain the number of tasks of each type each node should assign to each of its children per time
unit. As we explained in Section 2, in the single-application/tree-topology setting, a subtree can
be summarized by a single value corresponding to its aggregated computing capacity. Unfortu-
nately, in the multiple-application context, a subtree is characterized by its whole utility set, i.e.,
by a polyhedron. Therefore, aggregating several subtrees requires to merge the polyhedra and
results into a polyhedron whose complexity may grow during the recursion along the tree. We
could thus not find any particular gain in such approach when compared to a centralized solu-
tion where the characteristics of all resources would be gathered before solving the large linear
program 4.1. We also could not find particular properties of the max-min fair solution that could
be exploited to limit the growth of the complexity of the polyhedra.

Yet, when the computer platform is a star network, we can prove that the optimal solution
has a very particular structure: Fig. 4.2).

Property (Sliced structure). If we order the processors according to their bandwidths (i.e., B0 6
B1 6 . . . Bp) and the applications by communication-to-computation ratio (i.e., b1

w1
> b2

w2
>

. . . bKwK , then there exist indices a0 6 a1 . . . 6 aK such that only processors Pi, i ∈ [ak−1, ak],
execute tasks of type k in the optimal solution.

increasing CCR
increasing bandwidth

A2 A3A1

A2 A3A1

                                              

Pmaster

Figure 4.2: Shape of the optimal one-port solution.

In other words, each application is executed by a set of consecutive nodes, which we refer to
as a slice. The application with the highest communication-to-computation ratio is executed by
a first slice of processors, those with largest bandwidths. Then the next most communication-
intensive application is executed by the next slice of processors, and so on. There is a possible
overlap at the slice boundaries. For instance Pa1 , the processor at the boundary of the first two
slices, may execute tasks for both applications A1 and A2.

Unfortunately, this characterization does not enable to determine the boundaries of the slices
nor the αi,k through analytical formulas. Furthermore, we did not succeed in deriving a counter-
part of such property for tree-shaped platforms. Intuitively, the problem is that a high-bandwidth
child of node Pi can itself have a low-bandwidth, high-compute-rate child, so there is no a priori
reason to give Pi only communication-intensive tasks.
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1: loop
2: If there will be room in your buffer, request work from your parent.
3: Get incoming requests from your local worker and children, if any.
4: Move incoming tasks from your parent, if any, into your buffer.
5: Select which thread (your local worker or a child’s scheduler) to assign work to, and the

type of application that will be assigned.
6: if you have a request and a task that match your choice then
7: Send the task to the chosen thread (when the send port is free)
8: else
9: Wait for a request or a task

Figure 4.3: Demand-driven scheduler thread, run in each node.

4.3 Demand-driven and Distributed Heuristics

Although it is possible from the set of all platform and application parameters to compute an
optimal periodic schedule, the previous approach suffers from several serious drawback, which
we present in this section.

4.3.1 Demand-driven Scheduling

First, the period of the schedule is the least common multiple of the denominators of the solution
of the linear program (4.1). This period may be huge, requiring the nodes to have unreasonably
large buffers to ensure uninterrupted steady-state behavior. The problem of buffer size has al-
ready been pointed out in [KCCF03, 41], where it is shown that no finite amount of buffer space
is sufficient for every tree. It is also known that finding the optimal throughput when buffer
sizes are bounded is a strongly NP-hard problem even in very simple situations [41]. Since un-
limited buffer space is unrealistic, we consider demand-driven algorithms, which try to achieve
pre-determined consumption and emission rates and operate as follows. Each node has a local
worker thread and a scheduler thread that both have their own task buffer of limited size. The
worker thread is an infinite loop that requests a task from the same node’s scheduler thread and
then, upon receiving a task, executes it. Fig. 4.3 shows the pseudo-code for the scheduler thread.
The “select” choices in line 5 depend on the particular heuristic used and are typically based on
the history of requests, task types it has received, and on the communication times it has ob-
served for its children if one wishes to implement a bandwidth-centric strategy. When target rates
have been predetermined (e.g., by solving linear program (4.1)), each scheduler can try to achieve
such rates by selecting the "right" task. To this end, we used a simple 1D load-balancing mech-
anism [BBP+01] to select a requesting thread and an application type. The 1D load-balancing
mechanism works as follows: if task k should be chosen with frequency f(k), and has already
been chosen g(k) times, then the next task to be sent will be of type `, where g(`)+1

f(`) = mink
g(k)+1
f(k) .

In such cases, one knows the expected theoretical fair throughput, which allows us to explore how
implementation issues result in the effective throughput differs from the theoretical throughput.
Note that we evaluated effective throughputs by looking at finite schedules (with 200 tasks per
application), by considering only the part where all applications are competing with each oth-
ers, and by getting rid of the initial and final instabilities. Furthermore, since throughputs are
expected to be all equal, we compare the smallest effective throughputs of the different applica-
tions to the expected theoretical one.

There are many reasons that these quantities might differ, such as the overhead of the request
mechanism or a startup period longer than the 10% we neglect. It turned out that the major
cause of inefficiency was the limit on the buffer size. Our experiments assumed enough buffer
space to hold 10 tasks of any type. For this case, Fig. 4.4 depicts the effective fair throughput
deviation from the expected theoretical throughput. The average deviation is equal to 9.4%.
However, when we increased the buffer size by a factor ten (and increased the number of tasks
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Figure 4.4: Deviation of effective fair throughput from expected theoretical throughput (1 −
Effective fair throughput

Theoretical fair throughput ).

per application to 2000), the mean average deviation dropped to 0.3%. Even though the larger
buffer size led to much better throughput, we considered it unrealistic, and used size 10 in all
other experiments.

4.3.2 Distributed Scheduling

A second problem is that centralized coordination becomes an issue as the size of the platform
grows. It may be costly to collect up-to-date information and disseminate it to all nodes in the
system. Also when platform characteristics evolves smoothly, it would be interesting to have an
algorithm that smoothly adapt to such variations without necessarily recomputing the whole so-
lution. Finally, the centralized solving of the linear program (4.1) induces a single point of failure,
which should be avoided if possible. Consequently, a decentralized scheduling algorithm, where
all choices are based exclusively on locally available information, is desirable.

Building on the previous optimality principles (the bandwidth-centric strategy or the sliced
structure for star networks), we devised several heuristics and evaluated them through simu-
lations:

• Coarse-Grain Bandwidth-Centric (CGBC): trying to build on the bandwidth-centric strategy,
this naive coarse-grain heuristic assembles several tasks from each application into a single
large one. More precisely, we build a macro-task out of one task of type k, for each k,
and the macro-tasks are scheduled using the bandwidth-centric method. Thus, fairness is
assured but efficiency is likely to be poor since non communication-intensive tasks will be
sent to high-bandwidth nodes.

• Parallel bandwidth-centric (PBC): this is the non-cooperative optimization corresponding
to a Nash equilibrium. Each application has its own scheduler on each node, running in
parallel with the others, and using the bandwidth-centric strategy as if it was the only
application running on the platform. In our simulations, the one-port constraint is enforced
for each scheduler thread, which gives an unfair advantage to PBC over the other heuristics
since a node may send as many as K tasks concurrently, one of each type. As we will
see, such advantage is anyway largely counter-balanced by the inefficiency of the non-
cooperative optimization.

• Data-Centric Scheduling (DATA-CENTRIC): we also designed a rather complex heuristic
that starts from the optimal distribution for the most communication-intensive application
and progressively trades some of these tasks for more computation-intensive ones until



44 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

all applications have the same throughput (we refer to [8] for more details). On single-
level trees, the slice structure of optimal solutions allows this heuristic to find the optimal
solution but its performance on general trees was rather unclear.

We compared these three heuristics to the following two baseline strategies:

• First Come First Served (FCFS): the FCFS heuristic is a very simple and common decentral-
ized heuristic. Each scheduler thread simply fulfills its requests on a First Come First Served
basis, using the tasks it receives in order from its parent. The root ensures fairness by select-
ing task types using a round-robin selection. Although fair between the applications, this
simplistic heuristic does not perform any resource selection and may use extremely slow
communication links, hence a poor resource usage.

• Centralized LP-based (LP): in this heuristic, platform resources are constantly benchmarked
so as to solve linear program (4.1) with up-to-date values. The solution of this linear pro-
gram is then instantaneously broadcast and used by the demand-driven schedulers as tar-
get rates. We might hope the LP heuristic would always converge to the optimal through-
put, but this is not always the case, primarily because of insufficient buffer space.

All strategies were implemented and evaluated with SimGrid (see [8] for detailed information
on the simulation setup). For each experimental setting, we compute the (natural) logarithm
of the ratio of the effective fair throughput of LP with the effective fair throughput of a given
heuristic (applying a logarithm enables us to have a symmetrical value). This value is called in
the following logarithmic deviation. Therefore, a positive value means that LP performed better
than the other heuristic. Fig. 4.5 depicts the histogram plots of these values.

First of all, we observe that most values are positive, which demonstrates the superiority of
LP.

As expected FCFS is rather inefficient since the geometrical average of the ratio of the perfor-
mance between FCFS and LP is 1.564. In the worst case, its performance is more than 8 times
worse than LP.

Likewise, PBC leads to very bad results. In many situations (more than 35%), an application
has been particularly unfavored and the fair effective throughput was close to 0. The logarithm
of the deviation for these situations has been normalized to 8. These poor results advocate the
need for fairness guarantees in distributed computing environments like the ones we consider.

In contrast, CGBC (see Fig. 4.5(c)) is much more stable since its worst performance is only
twice that of LP and its geometric average is 1.156.

Finally, one can observe on Fig. 4.5(d) that DATA-CENTRIC is very close to LP most of the
time, despite the distributed computation of the expected αi,k and senti→j,k values. However,
the geometric average of these ratios is equal to 1.164, which is slightly larger than the geometric
average for CGBC (1.156). The reason is that even though in most settings DATA-CENTRIC ends
up with a very good solution, in a few instances it performed very badly (up to 16 times worse
than LP!). This can be seen in the zoom window of Fig. 4.5(d). Our investigation did not allow us
to really understand why this heuristic fails on some instances. We suspect that it is due to the use
of the (sometimes misleading) intuition of the sliced structure of single-level trees. Indeed, in this
heuristic, applications with a high communication-to-computation ratio are performed mainly on
the subtrees with the best bandwidths at the root while applications with a low communication-
to-computation are performed primarily on the subtrees with the worst bandwidths at the root,
which is definitely not optimal on particular instances.

4.4 Conclusion and Open Issues

This was our first attempt to incorporate a notion of users in steady-state scheduling and to reuse
the linear programming techniques we had developed during my PhD thesis. This attempt was
not very successful but quite instructive.
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)
).

Indeed, none of the heuristics we developed was really satisfying. All our attempts to solve
this linear program in a decentralized way failed, even on simple examples like rooted trees.
We could not obtain any good algorithmic intuition like the recursion principle we had in the
single application context. It seemed quite difficult to use single-user or single-level tree results
and intuition to obtain a satisfying solution in a multi-user context, hence a radically different
approach was required.

This study also allowed us to realize that the non-cooperative approach was clearly unaccept-
able in our context. In our simulations, non-cooperative scheduling in the one-port model lead
to very unfair situations compared to the expected max-min optimal solution: some applications
often obtained a close to 0 throughput. This motivated the work presented in the next chapter.

A positive result though is that if feasible rates are provided, the demand-driven autonomous
schedulers presented in Section 4.3 achieve reasonable approximation of these rates even in a
bounded buffer setting. The remaining question that puzzled me was thus How to calculate
these rates in a distributed way?

This study lead us to question two hypothesis we had taken:

Max-min fairness solving max-min fairness seemed more difficult to us than we initially solved
despite the linearity of such objective. Furthermore playing with parameters of the simula-
tions allowed us to realize that such an objective was probably meaningless in our context.
Indeed, since applications are likely to have very different characteristics, the shape of the
utility set is generally very distorted (see Fig. 4.1(d)). Since the max-min fair solution tends
to equate throughputs, serving the more demanding application requires to impose hard
limits on resource usage of the other applications. For example, in Fig. 4.1(d), slightly de-
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creasing the throughput α2 would free a lot of resources, hence allowing an important
improvement of α1 . This allowed us to realize that the fairness notion to use was not really
clear and that the choice of a criteria had to be done very carefully. In particular, in our
context, it would be easy for an application to change the granularity of its task, for exam-
ple, by grouping them by two. This would result in a seemingly twice lower throughput
and a max-min fair solution would then increase further the resource share of such an ap-
plication. Interestingly, proportional fairness is scale free and would not suffer from such
attempts from the applications to acquire more resources than they should. Although we
had initially avoided to use such criteria because of its non-linearity, we realized it was
probably the right criteria for this context.

1-port model As we briefly mentioned in Chapter 2, the 1-port model requires to resort to
matching decompositions to organize communications, which seems inherently central-
ized on general platform graphs. Such constraint makes everything more complicated and
is somehow artificial as threads can easily be used to overcome such limitation. That is
why we think the bounded multi-port [HP07] where each node is associated a bound on
the amount of data it can receive and sent at any instant is more adequate for this context.

Therefore, in the next chapter, we present our attempt to design a proportionally fair dis-
tributed optimization of throughput under the multi-port model.



Chapter 5

Proportionally Fair Distributed Throughput
Optimization

This chapter builds on two articles at Grid’08 [34] and in JPDC’13 [4] written with Rémi Bertin,
Sascha Hunold and Corinne Touati. It was conducted in the context of the DOCCA and USS-
SimGrid projects. From our previous attempts in trying to obtain a max-min fair sharing of
resources, we try to design a distributed and proportionally fair sharing of resources by relying
completely different techniques. We inspire from work conducted in the network community,
and more particularly on the flow control problem in multi-path networks.

5.1 Platform and Application Setting

In this chapter, we consider the same platform model as the one presented in Section 2.1.3. The
target computing and communication resources are represented by a general platform graph, i.e., a
node-weighted edge-weighted graph G = (N,E,W,B), as illustrated in Fig. 5.1. Each node Pn ∈
N represents a computing resource that can deliver Wn floating-point operations per second.
Each edge ei,j : (Pi → Pj) ∈ E is labeled by a valueBi,j which represents the bandwidth between
Pi and Pj . The operation mode of the processors is the full overlap, multi-port model for both
incoming and outgoing communications. In this model, a processor node can simultaneously
receive data from all its neighbors, perform some (independent) computation, and send data to
all its neighbors at arbitrary rate while respecting the resource constraints (i.e., the bandwidth
and processing speed bounds). Note that this framework also comprises the bounded multi-port
extension [HP07] where each node has an additional specific bandwidth bound. This extension
would simply amount to change slightly the graph. However, no specific assumption is made on
the interconnection graph, which may well include cycles and multiple paths.

The application setting is similar to the one of the previous chapter: we consider K applica-
tions,Ak, 1 6 k 6 K. Each application originates from a master node Pm(k) that initially holds all
the input data necessary for each application Ak (see Fig. 5.1). Each application is composed of a
very large set of independent, equal-sized tasks characterized by a computational cost wk and a
communication cost bk.

We further assume that each application Ak is deployed on the platform as a tree. This
assumption is reasonable as this kind of hierarchical deployment is used by many grid ser-
vices [CD06]. Therefore, if an application k uses node Pn, all its data will use a single path
from Pm(k) to Pn denoted by (Pm(k) ; Pn). If there is no such path or if application k cannot
access node n (e.g., for administrative reasons), then (Pm(k) ; Pn) is empty. We do not assume
that there is only a single way from a location to another (which generally does not hold true
in a grid environment). We rather assume that if several ways exist, only one is actually used.
Given the proximity between our problem and the multi-path flow control problem, it would not
be difficult to consider several possible routes whenever needed as long as this number of alter-
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Figure 5.1: A resource graph labeled with node (computation) and edge (communication)
weights. Two application deployments with different sources (respectively m(1) and m(2)) and
task characteristics.

natives remains limited. However, it would uselessly complexify the equations and algorithms
presented thereafter.

As we explained earlier, we choose to focus on proportional fairness, which is a scale-free
measure and ensures that no starvation can occur. Yet, the algorithms we present can be straight-
forwardly adapted to α-fairness, which accounts for other types of fairness. Therefore, we aim at
finding (αn,k)16k6K,16n6N that solve

MAXIMIZE
∑
k log(

∑
n %n,k),

UNDER THE CONSTRAINTS

(5.1a) ∀n,
∑
k

%n,kwk 6Wn (computation capacity)

(5.1b) ∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j (communication capacity)

(5.1c) ∀n, ∀k, %n,k > 0 (non-negativity)

(5.1)

Solving such optimization problem can be expressed as a semi-definite program and hence
solved with a classical SDP solver such as DSDP [BY05]. This provides a quick and reliable,
yet centralized, way to validate of our algorithms.

5.2 Introduction to Flow Control in Multi-path Networks

Lagrangian optimization and dual decomposition is an old idea in optimization, and traces back
at least to the early 1960s. Decentralized optimization has been an active topic of research since
the 1980s and in the last decade, the network community has heavily used such techniques to
both analyze and design network protocols like TCP (see for example [Low03a, KMT98]). This
technique has also recently been applied to devise supply and demand algorithms for smart
grids [DYS12].

To introduce such technique, we first present how it can be used for point-to-point network
protocol design and analysis. Then, we explain how the technique can be extended to study
flow control in multi-path networks. Indeed, such problem is very similar to our optimization
problem (5.1). Unfortunately, as we will explain, a naive adaptation to our context is completely
ineffective.
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5.2.1 Fairness and Network Protocol Design

Assume we are given a network made of a set of linksL whose capacity Bl for l ∈ L is to be
shared among a set of flowsF . Let us denote by %f the bandwidth allotted to flow f ∈ F . Let
us assume that the network operator has decided to share bandwidth according to some fairness
criteria expressed through utility functions Uf (e.g., Uf = log or one of the α-fairness index). The
bandwidth sharing can be written as follows:

MAXIMIZE
∑
f∈F Uf (%f ),

UNDER THE CONSTRAINTS
(5.2a) ∀l ∈ L,

∑
f going through l

%f 6 Bl

(5.2b) ∀f ∈ F , %f > 0

(5.2)

Checking that all constraints are satisfied requires some form of global coordination, which is
very hard to implement. Fortunately, Lagrangian optimization enables us to put the previous
problem in a form more amenable to distribution. This is achieved by introducing a dual variable
for each constraint and hence for each resource, which we will denote by λl. The variables %f of
the initial problem are called primal variables. The Lagrangian function is then defined as:

L(%, λ) =
∑
f∈F

Uf (%f )︸ ︷︷ ︸
objective function

+
∑
l∈L

λl ·

Bl − ∑
f through l

%f


︸ ︷︷ ︸

constraints

(5.3)

The original problem (5.2) can be safely rewritten (primal problem):

max
%>0

min
λ>0

L(%, λ).

Indeed, if an allocation % is unfeasible, then one of the constraints is violated and the inner min-
imization problem (the minimization over λ) is thus solved by setting the corresponding λl to
+∞. Conversely, if % is a feasible allocation, then the inner minimization problem is solved by
setting the corresponding λl to either 0 when the constraints are not tight or to any positive value
when the constraint is tight. The objective value is then equal to the original objective function
and this formulation of the primal problem is thus strictly equivalent to our original problem.
Under very mild assumptions it can be proven that there is no duality gap [BT89], i.e., that

max
%>0

min
λ>0

L(%, λ)︸ ︷︷ ︸
Primal problem

= min
λ>0

max
%>0

L(%, λ)︸ ︷︷ ︸
Dual problem

def
= min

λ>0
d(λ)

In most cases Uf is chosen to be continuous, increasing and strictly concave and the dual func-
tion d is thus a convex function. Solving the original problem is then equivalent to find the
saddle point of L. The main advantage of such reformulation is that now constraints are very
simple (% > 0 and λ > 0) and do not require any global coordination. Since both concave max-
imization and convex minimization problems can be solved through gradient descent (see for
example [BT89, Chapter3], on the convergence analysis of descent algorithms), the saddle point
is generally obtained by applying a gradient descent simultaneously for both inner and outer
optimization problems. A simple constant step-size (γ%) ascent on the primal variables simul-
taneous to a constant step-size (γλ) descent on the dual variables leads the following update
equations 

%f (t+ 1) = %f (t) + γ% ·
∂L

∂%f
(%(t), λ(t))

λl(t+ 1) = λl(t)− γλ ·
∂L

∂λl
(%(t), λ(t))

(5.4)
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Figure 5.2: Distributed sharing algorithm based on Lagrangian optimization and gradient de-
scent. Flows adapt their rate % based on prices λ advertised by the network links they use and
conversely.

Expanding the partial differentiates, the previous update equations are rewritten:
%f (t) = %f (t) + γ% ·

(
U ′f (%f (t))−

∑
l used by f

λl(t)
)

λl(t) = λl(t)− γλ ·
(
Bl −

∑
f through l

%f

) (5.5)

λl is generally called shadow price for link l and the previous equations lead to a surprisingly
simple algorithm that can be interpreted as follows (see Fig. 5.2):

• Every flow f evaluates the “total price” of the resources it uses (i.e., the sum of the λl(t))
and adapts its emission rate to account for both its utility and the virtual price it should
pay. Whenever the price gets “too expensive” compared to the utility increase U ′f (%f ), the
flow decrease its emission rate and conversely.

• Every resource l evaluates whether it is saturated or not and adapts its price accordingly.
Whenever a resource is saturated, it will increase its price so that the flows going through
it decrease their usage and whenever a resource is underused, it will lower its price so that
the flows going through it can increase their rate.

This “supply and demand” inspired algorithm is a simultaneous gradient descent on both primal
and dual variables that will converge to the saddle point, which is the optimal solution of the
original problem. By adapting the step-size, or the utility functions, one gets a different protocol.
Such techniques have for example been used either to design protocols achieving a given fairness
criteria or to reverse-engineer existing protocols. For example, by making an analogy between
the window adjusting protocols and the primal update equations, Low et al. proved [Low03a]
that, under some stability assumptions, TCP Vegas achieves some form of proportional fairness,
while first versions of TCP Reno behaved as if arctan based utility functions were optimized.

To summarize, the general approach of distributed Lagrangian optimization is based on the
following three steps:

1. Modeling. Model the problem as a concave non-linear maximization problem;

2. Partial derivatives. Convert this problem into two coupled optimization problems using
Lagrangian multipliers and differentiate the Lagrangian function L with respect to each
primal and dual variables;

3. Algorithm design. From the structure of these partial derivatives, devise a distributed al-
gorithm implementing coupled gradient descent (on dual variables) and ascent (on primal
variables). This algorithm can be interpreted as a bargaining of applications over resources.
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The key ingredients to turn the partial derivatives into a distributed algorithms (i.e., move from
step 2 to step 3) are (1) the separability of objective functions (it is a sum over the flows of quan-
tities that depend only on each flow) and (2) the structure of the constraints (each constraint
corresponds to a resource).

5.2.2 Flow Control in Multi-path Networks

A similar approach relying on these three steps has been used in the context of network flows
that may choose among a predetermined set of routes [WPL03]. In such a context, each flow f is
subdivided into sub-flows f1,. . . ,fk and the optimal flow control is written as:

Maximize
∑
f∈F Uf (

∑
k %f,k)

s.t.


∀l ∈ L,

∑
fk going through l

%f,k 6 Bl

∀fk ∈ F , %f,k > 0

(5.6)

Wang et al. [WPL03] specifically addressed this problem with the additional constraint that each
flow has minimum and maximum requirements: ∀f,mf 6 %f

def
=
∑
k %f,k 6 Mf . As this kind of

constraints is not relevant in our context, for the sake of clarity, we only present in the following,
simplified versions of the equations and algorithms proposed in [WPL03].

Now that the first modeling step is achieved, we can move on to the partial derivatives step.
Using the same technique as before, a constant step-size gradient algorithm leads to the following
updates: 

%f,k(t+ 1) = %f,k(t) + γ% ·
(
U ′f (%f (t))−

∑
l used by fk

λl(t)
)

λl(t+ 1) = λl(t)− γλ ·
(
Bl −

∑
fk through l

%f,k

) (5.7)

We can now move on to the algorithm design step. The main difference with the previous setting
is that each sub-flow fk has its own rate and requires the aggregate throughput of flow f to be
updated. More concretely, each flow f evaluates the price of each sub-flow fk and updates the
sub-flow rates accordingly, slowly moving toward the cheapest alternatives.

Unfortunately, a technical issue prevents the previous equations to be used directly. Since
the original objective function is not strictly convex (it is strictly convex in any of the %k, but
not with respect to the %f,k), the dual function d is not twice differentiable and so, a gradient
descent algorithm based on this approach may oscillate and exhibit convergence instabilities.
This problem can be circumvented by adding a quadratic term, which makes the primal cost
function strictly convex1. This technique is called proximal optimization (see for example [BT89,
Chapter3]) and is used in [WPL03] where two alternative algorithms are proposed to solve the
flow control problem in multi-path networks.

Consider the new modified optimization problem:

max
%̃>0

max
%>0

∑
f

Uf

(∑
k

%f,k

)
−
∑
k

∑
f

c

2
(%f,k − %̃f,k)2, (5.8)

where %̃f,k is an auxiliary variable and c a constant (set to 1 in [WPL03]).
At the optimum, %̃f,k = %f,k and hence the solution of (5.8) is the same as the one of (5.6).

This optimization problem is strictly concave in each variable %̃f,k and %f,k, and is equivalent to

max
%̃>0

max
%>0

min
λ>0

L(%̃, %, λ), (5.9)

1Han et al. [HSH+06] propose to add a term ε
∑
k,f log(%f,k)) and letting ε → 0. Although this approach is inter-

esting, it may not be well-suited to a system that needs to operate continuously and where applications and machines
regularly join and leave the system.
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Figure 5.3: Four test topologies used in [WPL03, LS06, HSH+06] to illustrate the behavior of
Lagrangian based flow control algorithms in multi-path networks. si denotes the source of a
flow and di the destination. Dotted lines are one particular path that a flow may use.

where any of the minimization and maximization problems is a convex or concave optimization
problem of a twice differentiable function. A classical fixed step-size gradient descent algorithm
can be used for each level. Such three-level resolution would however be extremely inefficient
in practice as it would require to detect several times the convergence (in a distributed way) of
the inner problems before further proceeding on the outer problems. This is why Wang et al.
[WPL03] propose to update all variables %, %̃ and λ simultaneously, hence breaking the very con-
straining three-level hierarchical structure of the proximal optimization problem from Eq. (5.9).
In essence, this leads to the same equations and algorithm as (5.7), except that the %̃ acts as a
smoothing term for the % variables to dampen oscillations.

Note that Wang et al. do not provide a proof of the convergence of this algorithm. This was
studied in a more recent work of Lin and Schroff [LS06], in a similar setting, where the structure
of the two outermost optimization problems is broken. In particular, they prove sufficient con-
ditions on the step-sizes for the algorithm to converge and also study the effect of measurement
noise.

More precisely, let us denote by Ef,k the routing vector for sub-flow fk. This means that Elf,k
is equal to 1 if route f goes through link l and 0 otherwise. One of the main results of [LS06] is
that the algorithm converges if the step-size γλ satisfies

γλ <
c

2 · S ·M
, where

{
M = maxf,k

∑
lE

l
f,k and

S = maxl
∑
k

∑
f E

l
f,k

(5.10)

More concretely, M is the length of the longest path and S is the largest number of sub-flows
going through a link.

It should be mentioned that beside convexity issues, one of the main problems addressed in
most of the previous work is the fact that in network protocols such as TCP or MP-TCP (Multi-
Path TCP) [IET13], the price is interpreted as a measure of congestion and is thus implicitly
measured. Such value is hence neither precise nor up-to-date, which creates instabilities. A large
part of the existing related work is devoted to solving this problem (see for example [KGP+12]).
However, as it will be explained in the next sections, we are not really concerned with such
issue in our context nor in the experiments we performed, as we can develop an application-
level protocol where price estimation can follow perfectly the dynamic induced by Lagrangian
optimization.

Finally, although the multi-path flow control problem has been extensively studied on a
theoretical point of view, it is interesting to note that, to the best of our knowledge, experi-
mental validation of the resulting algorithms is rather limited. The only tested situations re-
ported in [WPL03, LS06, HSH+06] are shown on Fig. 5.3 involve at most 8 nodes and 3 pairs
of sources/destinations. In all theses studies, the proposed step-sizes for each setting lead to a
satisfactory convergence within a few dozens to a few hundreds of iterations. Yet, it is difficult
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to know how sensitive the algorithms are to these step-sizes, as well as how dependent good
step-sizes are on the platform shape and size.

5.3 Toward a Distributed Algorithm for Throughput Optimiza-
tion

It is easy to notice that problem (5.1) is completely similar to problem (5.6) and the same technique
can thus be applied.

5.3.1 Computing Partial Derivatives

Applying the Lagrangian methodology to this context leads to the introduction of dual variables
for both computation resources (λi for Pi) and communication resources (µi,j for (Pi → Pj)).
Again, the resulting algorithm will be governed by the following dynamic:

%n,k(t+ 1) = %n,k(t) + γ% ·
∂L

∂%n,k
(%(t), %̃(t), λ(t), µ(t))

%̃n,k(t+ 1) = %̃n,k(t) + γ%̃ ·
∂L

∂%̃n,k
(%(t), %̃(t), λ(t), µ(t))

λi(t+ 1) = λi(t)− γλ ·
∂L

∂λi
(%(t), %̃(t), λ(t), µ(t))

µi,j(t+ 1) = µi,j − γµ ·
∂L

∂µi,j
(%(t), %̃(t), λ(t), µ(t))

(5.11)

Expanding the partial derivatives for %n,k, we get:

∂L

∂%n,k
= U ′k(%k(t))−

(
bk ·

∑
(Pi → Pj) from
m(k) to Pn

µi,j(t) + wk · λn(t)

︸ ︷︷ ︸
pnk (t): aggregate price to use Pn

)

As expected, the aggregate price to use Pn accounts for both communication link usage (the
µi,j) and CPU usage (the λn). Furthermore, this usage is weighted by communication (bk) and
computation (wk) requirements of application k. Again, updating %n,k requires the knowledge
of %k, which is the aggregate throughput of application k. Since we aim at proportional fairness,
use Uk(%k) = log(%k) and thus the corresponding update equation would write as follows:

%n,k(t+ 1)←
[
(1− γ%)%n,k(t) + γ%%̃n,k(t) + γ%

(
1

%k(t)
− pnk (t)

)]+

. (5.12)

A small value of %k leads to huge updates and thus to severe oscillations. As mentioned
in [WPL03], it is possible to use independent step sizes for the %̃ part and for the price pnk part and
to normalize this update as follows:

%n,k(t+ 1)←
[
(1− γ%̃)%n,k(t) + γ%̃%̃n,k(t) + γ% (1− %k(t).pnk (t))

]+
. (5.13)

Expanding partial derivatives with respect to other variables is straightforward and does not
bring particular insight except that it relies on a set of aggregated quantities, which we will detail
in the next section. They lead to update equations analogous to Eq. (5.7): as soon as the capacity
of a resource is exceeded, its price increases and vice-versa.
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5.3.2 Distributed Algorithm Design

In grids, the master-worker pairs are analogous to routes in the flow control problem, and ap-
plications are analogous to connections. Compared to the flow control problem, there is thus a
huge number of “routes” and a very few “sources,” which may have some important impact on
the convergence rate.

Last, a subsequent difference lies in the decision points. While in networking context, sources
adapt and choose their transmission rate, whereas in grids, we would like the intermediate nodes
(between a master and each of its workers) to adjust the rates, so as to prevent overloading the
master with information management and decision taking. Hence, we propose to use a “source”
algorithm, which is based on a distributed aggregation of various quantities2:

σnk (t) =
∑

n′ such that n∈(Pm(k);Pn′ )

%n′,k(t) (5.14)

ηnk (t) =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j(t) (5.15)

σnk is the aggregate throughput of application k at node n. Hence, it reflects how much data will
need to flow through node n for application k. ηnk is the price per byte to pay for sending data
from the master m(k) to node n. The price pnk can be computed from ηnk as follows:

pnk (t) = bk · ηnk (t) + wk · λn(t) (5.16)

Expanding the partial derivatives for all variables and substituting them in the update equations,
we obtain the following formulas for our algorithm:

(5.17a) %n,k(t+ 1)←
[
(1− γ%̃)%n,k(t) + γ%̃%̃n,k(t) + γ% (1− %k(t).pnk (t))

]+
(5.17b) %̃n,k(t+ 1)← [(1− γ%̃)%̃n,k(t) + γ%̃%n,k(t)]

+

(5.17c) λi(t+ 1)←

[
λi(t) + γλ

(∑
k

wk%i,k(t)−Wi

)]+

(5.17d) µi,j(t+ 1)←

[
µi,j(t) + γµ

(∑
k

bkσ
j
k(t)−Bi,j

)]+

(5.17)

Note that in the previous equation, one should use either σjk or σik depending on whether i or j
is met first in the deployment of application k.

Using this particular structure, we propose to implement this dynamic using classical traver-
sal algorithms [Tel01] initiated by the master of each application.

Prerequisites Each node Pn is responsible for computing primal variables %n,k and %̃n,k, while
the master nodes are responsible for the aggregation %k of the %n,k. Each resource (CPU or
link) is responsible for its dual variable (λn or µi,j). All these variables are initialized with
random non-negative values.

Loop Master, workers and resources interact through the following two steps along the appli-
cation deployment trees in an infinite loop.

• Step 1: Propagation phase Each master propagates its aggregate throughput %k along
the tree to the workers. During the propagation, the aggregate price ηnk for sending
data from the master is computed based on the price µ of the communication resources
encountered along the path down to node n. Therefore, upon reception, each node has
all required information to compute pnk and update its contribution %n,k to application
k using Eq. (5.17a).

2Aggregate quantities are noted xnk instead of xk,n
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• Step 2: Aggregation phase Upon reception of %k and aggregate communication price,
the leaves of the tree send back their new %n,k value up-tree, which are in turn aggre-
gated in σnk up to the master.
During the aggregation phase, every communication (resp. computation) resource has
access to the load bk ·σjk (resp. wk ·%n,k) incurred by application k and can thus update
its price µi,j (resp. λn). Such interaction ensures a permanent improvement of re-
source sharing and a seamless adaptation to variations of Wi of Bi,j and to the arrival
or departure of new nodes and applications.

Similarly to the original algorithm of [WPL03], there is no need for any global information,
such as the number or the kind of nodes that are in the grid. Nodes only need to communicate
with their neighbors and to update the variables they are responsible for. The wave algorithms
seamlessly aggregate all required quantities with no direct interaction among the different appli-
cations. Furthermore, the resulting algorithm only requires very simple computations and few
message exchanges.

We call the algorithm based on Eq. (5.17), the “/naive/ algorithm” as it is a straightforward
application of the distributed Lagrangian optimization proposed in [WPL03] to our context.

5.3.3 A Disappointing Behavior

We implemented this naive algorithm using the SIMGRID simulator (details on experimental
setup and results are reported in [34]). Our first attempts were done on rather large platforms
and were complete disasters. Therefore, we quickly fell back on using a very simple platform
consisting of only 5 nodes (see Fig. 5.4). For ease of interpretation, we even assumed a homoge-
neous set of nodes and links, although neither the algorithm nor our prototype requires that. We
used three kinds of applications of respective (b, w): (1000, 5000), (2000, 800), and (1500, 1500)
that roughly correspond to a computation intensive application, a communication intensive ap-
plication, and an intermediate application. We considered that each application originates from
a different master, as represented on Fig. 5.4. Namely, application 1, 2 and 3 are hosted by nodes
D, A and C respectively.

For each of the simulations presented below, we compared the obtained solutions to the ones
provided by the free open source SDP solver called DSDP [BY05]. Our simulations showed that,
even in this simple case study like the one presented in this section, step sizes (for %, λ and µ)
cannot be properly set. We illustrate this issue on Fig. 5.5(a) and 5.5(b). For relatively large
value of γ% (e.g., γ% = 100), the algorithm is quite unstable, each update on the % values being
too large. Large updates can be avoided by using a smaller step size (for instance γ% = 0.1, see
Fig. 5.5(b)). Yet, although more stable, this scheme does not converge well. Despite an extensive
trial of parameters, the algorithm never converges within 5% of the optimal values, even after
a thousand iterations. Since we thought it may be an implementation error on our side, we
tried different simpler settings. First, we tried to reduce the setup to a single application and
found out it was not too difficult to find an adequate set of steps to obtain convergence. Then
we tried with several identical applications and found out again that it was possible to find
effective step sizes. We were thus somehow able to reproduce the convergence of [WPL03] since

W = 5.108

B = 5.108

m(3) m(1)

m(2)

A

B

EDC

Figure 5.4: Simple platform topology. All applications originate from different nodes.
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(a) "Normal" step sizes: (γλ = 5.10−3, γλ = 5.10−4,
γ% = 100.0, γ%̃ = 0.02). The algorithm is numerically
unstable, which leads to global inefficiencies.
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(b) Smaller step sizes (γλ = 5.10−4, γλ = 5.10−5, γ% =
1.0, γ%̃ = 0.02) help reducing the oscillations and erratic
values but incur a very slow convergence (if any).

Figure 5.5: Evolution of the objective value for the naive adaptation and comparison to the opti-
mal solution. The upper dashed line represents the optimal solution.

the situation where applications are identical can perfectly be reduced to a multi-path routing
problem. Further investigations presented in [4] show that, as long as applications are identical,
this naive algorithm shows a reasonable convergence even for platform size as large as 500 nodes.
However, as soon as applications are different, finding step sizes that lead to convergence seems
impossible.

5.4 A Non-trivial Adaptation

To understand where the problem could come from, we looked in more details to the evolution
of each variables. First, if we study more carefully the evolution of Fig. 5.5(a), it can be seen
that not only do the objective functions fluctuate, but also the throughput of each application, as
represented in Fig. 5.6(a). To understand this behavior, let us recall that the throughput of each
application is actually the sum of the rates on each of the 5 paths it follows: %k =

∑
%i,k. Fig. 5.6(b)

shows how %1 decomposes. We can note that the different %i,1 have exactly the same shape, and
only varies by the instants they are reset to zero. These time epochs actually correspond to sudden
jumps in the prices.

Indeed, a closer look at the system indicates erratic values of the prices in each node and
link. Indeed, for each resource, the prices are null except for a finite number of points, where the
values can be arbitrarily large (Fig. 5.6(c)).

Hence, each application steadily increases it throughput while the prices of the resources it
uses are null. Then, at some point a resource becomes saturated and its price suddenly “jumps,”
leading to a null throughput of all applications that use it. Then the process reiterates, which
explains that the system cannot converge. In Eq. (5.17c) it is easy to see that the price update
is directly proportional to the saturation of the resource. This saturation has the same order of
magnitude as the wk%k whereas at the equilibrium, the price has the same order of magnitude
as the inverse of the %k’s. This explains why every time the objective function goes nearby the
optimal value, it instantaneously bounces away.

Such instability is thus inherent to these update equations (regardless of the values of γλ and
γµ): updating % has an impact on the prices λ and µ, which in turn impact on the %’s update.
Let us assume that we have reached the equilibrium. Further assume that the price λi of Pi is
increased by ∆λi. From Equation (5.17a), we derive that such an increase incurs a variation ∆%i,k
of %i,k:

∆%i,k = −γ%wk∆λi%k.
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(a) Throughput of each of the three applications during
400 iterations: between two iterations, a decrease or in-
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Figure 5.6: Investigating convergence issues. Price updates are over-reactive, which prevents the
algorithm to converge.

In turn, from Equation (5.17c), we see that such a variation incurs a variation of λi:

∑
k s.t. %n,k > 0

γλ.wk.∆%i,k = −∆λi.

(∑
k

γλ.γ%w
2
k%k

)
.

Thus, the solution of our gradient is stable only if∑
k s.t. %n,k > 0

γλ.γ%w
2
k%k < 1.

Therefore, Eq. (5.17c) should be normalized as follows:

λi(t+ 1)←

[
λi(t) + γλ

(∑
k wk%i,k(t)−Wi∑
k s.t. %n,k > 0w2

k%k

)]+

Obviously, the same stability condition around the equilibrium should also hold for µ. This
first modification was presented in [34] and allows convergence for small platforms although it
requires a careful tuning of step sizes. To obtain a more robust algorithm, we used two other
techniques:

1. Fast convergence of the primal As we have previously seen, constant step-size gradient
descent on a convex function F is done by repeating the following updates: x(t + 1) ←
x(t) − γ∇F (x(t)). It is well known that Newton’s algorithm has much faster convergence
than simple gradient projection algorithm. In Newton’s algorithm, the updates are as follows:
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(a) Setting the prices to zero if a division by zero occurs
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(b) Damping with geometrical update

Figure 5.7: Stabilization using geometric update.

x(t+1)← x(t)−γ
(
∇2F (x(t))

)−1·∇F (x(t)). Inverting the Hessian matrix∇2F (x(t)) is how-
ever very time consuming, which is why approximate Newton methods are often used [BT89].
In such methods, the ∇2F (x(t)) matrix is often replaced by a simpler matrix (like its di-
agonal), whose inversion is straightforward and still has the right order of magnitude.
Computing the Hessian matrix for our particular problem leads to a non-invertible matrix
because of the non-strict convexity of our initial objective function. Considering only diag-
onal elements, we get a new scaling that replaces Eq. (5.12) (instead of Eq. (5.13) proposed
in [WPL03]):

%n,k(t+ 1)←
[
(1− γ%̃)%n,k(t) + γ%̃%̃n,k(t) + γ%

(
1− %k(t) · pnk (t)

)
%k(t).

]+
. (5.18)

Obviously, such modification requires to revisit the stability condition around the equilib-
rium but it only incurs mild modifications.

2. Avoiding division by very small values and discontinuities An important point on which
we have not insisted yet is that every variable needs to remain non-negative (hence, the
need in the previous updates of primal variables to only consider variables %n,k that are
positive). Hence, in any such distributed gradient algorithm, if any update step leads to
a negative value, the variable is set to 0. This kind of projection is done with the operator
[x(t) + u]

+
= max(0, x(t) + u) and is applied to every variable (both primal and dual). It

is typical for such methods but raises several issues in our context. Indeed, it may be the
case from an iteration to another that a denominator experiences a very important varia-
tion, which may cause a large negative step. Whenever many dual (resp. primal) variables
suddenly drop to 0, it generally causes a large increase of the primal (resp. dual) variables.
This is why these projections need to be smoothed. We used the following smooth projec-
tion operator, which revealed extremely efficient:

[x(t) + u]
α+

= max(α · x(t), x(t) + u),with 0 < α < 1

With such updates, variables never suddenly drop to 0. Instead, variables geometrically
decrease to zero, until the corresponding resource is used again. In our experiments, we
set α to 1/2. As illustrated in Fig. 5.7, this technique proves very efficient for removing
oscillations.

During our investigations, we observed that Newton method on the primal, stability condi-
tion on the dual and geometric updates all improved convergence without completely solving
the issue. Removing any of these ingredients leads to a dynamic that generally exhibits severe
convergence issues, which makes it hard to evaluate their respective influence. Our new "adaptive
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Figure 5.8: Convergence time distribution as a function of platform size.

algorithm" is thus governed by the following equations:

(5.19a) %n,k(t+ 1)←
[
(1− γ%̃)%n,k(t) + γ%̃%̃n,k(t) + γ% (1− %k(t).pnk (t)) %k(t)

]α+

(5.19b) %̃n,k(t+ 1)← [(1− γ%̃)%̃n,k(t) + γ%̃%n,k(t)]
α+

(5.19c) λi(t+ 1)←

[
λi(t) + γλ

∑
k wk%i,k(t)−Wi∑
k s.t. %n,k>0 w

2
k%

2
k(t)

]α+

(5.19d) µi,j(t+ 1)←

µi,j(t) + γµ

∑
k bkσ

j
k(t)−Bi,j∑

k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)
and %n,k>0

b2k%
2
k(t)


α+

(5.19)

Note that this scaling does not require any additional aggregation operation since all processors
already receive %k to perform the update of %.

In [4], we show how to use designed factorial experiments to determine robust step-sizes and
obtain convergence or the new algorithm. Although such approach is very effective, it turns out
that a more careful look at the number of iterations required to converge is highly dependent
on platform size. Fig. 5.8 summarizes the evolution of convergence time distribution depending
on platform size, application setting (homogeneous vs. heterogeneous) and algorithm (naive vs.
adaptive).

At first sight, it may look like convergence time of the naive algorithm in the homogeneous
application setting (upper left part of Fig. 5.8), although slower, is not really sensitive to platform
size. Yet, one should recall that this naive algorithms never converges in the heterogeneous
application setting and that only 20 configurations out of 30 converged in the 500 nodes setting
whereas 28 configurations out of 30 converged in the 20 nodes setting. Convergence for the 500
node setting could probably be improved as only a crude step-size tuning was done but not to
the extent where convergence time dramatically decreases. As we explained in Section 5.3.3 and
as can be seen in the upper right part of Fig. 5.8, the naive algorithm simply never converges
when heterogeneous applications are deployed. On the other hand, the adaptive algorithm we
proposed converges both in the homogeneous and heterogeneous application setting and even
within much better time bounds than the naive algorithm for homogeneous applications.

However, as can be observed on the lower part of Fig. 5.8, platform size has a tremendous
impact on the convergence time. For a 500 node platform, starting arbitrarily far from the optimal



60 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

 0

 5

 10

 15

 20

 25

 30

 0  100  200  300  400  500  600  700

O
b
je

c
ti
v
e
 v

a
lu

e

Iteration

Distributed algorithm
Optimal value after removal

Optimal value before removal

Reconvergence

Node removal

(a) Worst node removal: all nodes contributing to the
computation are suddenly removed from the network
at the 140th iteration. The optimum of the objective
function decreases, and the algorithm re-converges in
a few dozen of iterations, without oscillations.

Jude

Barry

Steele

Jobin

Provost

Croteau

Adoncourt

Gratton
2 : 29.972

Hz

Sacramento

Wilfrid

KentMireille

Intel

Lamothe

SunOS
0 : 2.29589

Paul

Anne_Marie

Julien

Letarte

Amadeus

Pelletier

Tremblay

Gilles

Matlab

Bellevue

Jupiter

iRMXIII

Gentilly

Zawinski

Jean_Yves

Marielle
0 : 1.39657

Charron

Rubin

Julian
2 : 2.96254

Jacques

Lachapelle
2 : 29.9725

Yvan
2 : 22.4404

Kuenning
2 : 29.9715

Fourier
2 : 29.5817

Archibald
2 : 13.9464

<2>
Seattle

2 : 7103.19

Guy
2 : 1.38735

Joynes

Jean_Paul Alfred

OlivierFrameMaker

Re

Nagle

iRMXII

<1>
mW

1 : 3958.53

Ringuet Sherbrooke

St_Bruno

Papineau

Bellemarre
0 : 1.78033

METAFONT

Viger

Jacobsen

Cloutier

McGill

Lucie
Daniel

Internet

Greg

Leblanc

Laroche

Rioux

OHara

Poussart

Michel

Ricard
Minneapolis

Dodge

Sorel
0 : 4.00379

Disney

Drouin

Vancouver

Brian
0 : 2.66477

Thierry
0 : 2.2884

Jean
0 : 1.00394

Gregory

George

Bernard

Aubertin

Denis
0 : 1.48304

Freedman

Decelles
0 : 4.00388

AutoCAD

St_Paul

Shawinigan

Angie
Abbott

<0>
Longueuil

0 : 0.797469

Laugier

Ozias

Forget

Laval

Pierrefonds

Jude

Barry

Steele
0 : 0.141723

Jobin
0 : 0.141723

Provost
0 : 0.141723

Croteau
0 : 0.141542

Adoncourt

Gratton

Hz

Sacramento

Wilfrid

KentMireille

Intel

Lamothe

SunOS

Paul
0 : 0.135409

Anne_Marie
0 : 0.142151

Julien
0 : 0.142149

Letarte
0 : 0.142149

Amadeus
0 : 0.142149

Pelletier
0 : 0.142146

Tremblay

Gilles
0 : 0.135408

Matlab
0 : 0.13518

Bellevue
0 : 0.135408

Jupiter
0 : 0.135234

iRMXIII
0 : 0.135409

Gentilly
0 : 0.135408

Zawinski

Jean_Yves

Marielle

Charron
0 : 0.142594

Rubin

Julian

Jacques

Lachapelle
0 : 0.125147

Yvan

Kuenning

Fourier

Archibald

<2>
Seattle

2 : 7103.19

Guy

Joynes

Jean_Paul Alfred

OlivierFrameMaker

Re

Nagle

iRMXII

<1>
mW

1 : 3958.54

Ringuet Sherbrooke

St_Bruno
0 : 0.141856

Papineau
0 : 0.141857

Bellemarre

METAFONT

Viger

Jacobsen

Cloutier

McGill

Lucie
Daniel

Internet

Greg
0 : 0.141847

Leblanc
0 : 0.141855

Laroche

Rioux

OHara

Poussart
0 : 0.142407

Michel

Ricard
Minneapolis

Dodge
0 : 0.148373

Sorel
0 : 4.0114

Disney
0 : 0.14259

Drouin
0 : 0.142595

Vancouver

Brian

Thierry

Jean

Gregory

George
0 : 0.142591

Bernard
0 : 0.142588

Aubertin

Denis

Freedman

Decelles

AutoCAD

St_Paul

Shawinigan

Angie
Abbott

<0>
Longueuil

0 : 0.789934

Laugier

Ozias

Forget

Laval

Pierrefonds

(b) Platform usage before and after node removal. Hexagons
represent the masters and gray nodes participate to the com-
putations. After having removed all nodes involved in com-
putations, one application was redeployed on another part of
the network and now interferes with another application.

Figure 5.9: Behavior of the algorithm when removing all participating nodes.

solution, the 95% confidence interval for the expected number of steps is [373, 531]. A 500 node
platform with dmax = 15 has a diameter of roughly 10 and thus the expected convergence time
would be less than nine minutes (assuming a 50ms RTT between machines).

5.5 Conclusion and Open Issues

We have succeeded in obtaining a distributed algorithm which computes a proportionally fair
sharing of resources in steady-state. Although the adaptation from multi-path routing should
have been straightforward, several non-trivial adaptations were required by our context.

All previous work relying on this technique had evaluated the effectiveness of their proposal
in very limited settings comprising at most a dozen of nodes and a few pairs of sources/destinations.
Instead, we evaluated our algorithms in a much more complex setting with up to 500 node plat-
forms. To the best of our knowledge, it is the first time such kind of algorithm is evaluated at
such scale and our study reveals issues that had been unnoticed until now. In particular, this
enabled to show that the difficulties in the multi-path flow-control problem are different from
ours. Indeed, one may have believed that our context is simpler since we can implement the true
dynamic at application level, which is not possible when designing network protocols that have
to be compatible with the rest of the network stack. However, the heterogeneity of applications
in our context raises a new challenge in term of convergence.

I think this study leaves several paths open:

• An interesting feature of this approach is the ability to seamlessly adapt to variations of Wi

of Bi,j and to the arrival or departure of new nodes and applications (see Fig. 5.9(a)). We
almost haven’t investigated such feature so far but it is yet of uttermost importance before
a practical usage can be expected.

• Regarding the fundamentals of the algorithm, although the similitude between flow con-
trol in multi-path networks and steady-state scheduling of BoT has motivated the use of the
augmented Lagrangian method, other methods could be used. As we have explained, one
of the key ingredients for an effective implementation of such method is the smooth projec-
tion operator that shares similarities with a barrier function. Lagrangian algorithms move
toward the optimal solution by oscillating around the constraints and constantly trying to
overuse resources. Besides the resulting potentially slow convergence, the solution may
not always be feasible at a given time step. Interior point methods do not suffer from such
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issues and have received a lots of attention lately. A rigorous treatment of the alternating
direction method of multipliers was also recently brought to my attention [BPC+11]. Such
approach slightly differs from the one we used but its convergence is ensured through a
potential function.

• Like most scheduling work, we have assumed that an accurate description of resources, in
particular of the topology, was available. We also assume a somehow perfect matching of
the application overlay with the physical topology. Our attempts to obtain such information
in an automatic way [49, 36] taught us that this assumption is probably too strong. In
existing large-scale systems that may deal with communication-bound, one would not have
access to the right level of information. Furthermore, we would not be able to deploy
scheduling agents on routers and one would thus have to deal with invisible resources and
the fact that our application topology is only a crude approximation of the real topology.
Therefore, although this seems very difficult to study, I think that checking the influence
of the application overlay as being only a crude approximation of the physical topology
would be very instructive.

• Another possible usage of such technique would be to exploit affinities in BOINC. Indeed
applications have several versions depending on architecture and operating system. As
a consequence, some processor may be better fitted to some applications than others (un-
related speed). Since sharing is determined by the volunteer priorities, the same kind of
inefficiencies as the ones we explained in Chapter 3 are possible. The same kind of algo-
rithm could be used and would be even simpler. Our first simulations showed that it would
work perfectly and would allow for smart optimization of the whole system. However our
first investigation of the BOINC workload revealed that there would not be too much to
gain and that the already existing pragmatic strategy is probably sufficient for now. If het-
erogeneity keeps increasing such ideas could provide an interesting solution.

• Finally, the previous study heavily relies on the steady-state throughput formulation and
hence achieves a flow-based fairness that accounts for the different application character-
istics and needs. However, such modeling by essence ignores temporal aspects such as
application campaign termination and creation, which is highly criticizable [Bri07]. In a
context where a platform is shared among different users, it would make sense that users
can express that they have a urgent need of resources to meet a deadline and that they are
willing to release critical resources later. Likewise, whenever a user does not use resources
for some time it may make sense that whenever he comes back with new work he obtains
a higher priority than those that have used "more than their share". As we have seen, this
notion of share is quite difficult to define in a static context (i.e., without task arrival and
termination) and including sound temporal components seems even more challenging. Al-
though related notions of repeated games (in the game theory field) or of regret minimiza-
tion (in the stochastic optimization field) have been introduced, I have not found any really
satisfying formulation yet. The next two chapters present some attempts in this direction
that have been pursued in parallel with the work presented in the previous three chapters.
Although they are clearly no definitive solution to this fair resource sharing problem with
temporal constraints, I think they provide some interesting insights in how this problem is
difficult.
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Chapter 6

Centralized Response Time Optimization

This chapter builds on two articles published at HCW’05 [42], SPAA’06 [40] and in JoS’08 [9] with
Fréderic Vivien and Alan Su. This work was initiated right after my PhD defense, while I was
still in Lyon and was pursued in the context of the ALPAGE ANR project.

This work was originally motivated by a French ACI GRID project involving the IBCP (Insti-
tute of Biology and Chemistry of Proteins), the IN2P3 computing center and the LIP in which I
was working. The goal of this project was to set up a grid infrastructure to perform protein pat-
tern/profile scanning: GriPPS [BCGD00, Gri05]. It turned out that this application was well mod-
eled as a divisible load scheduling problem with release dates, which can be related to scheduling
with preemption. We we have thus revisited many results from this literature. Doing so, we have
gathered all related complexity results and drawn the corresponding complexity landscape. This
has allowed to fill a few holes (e.g., by improving some inapproximability bounds and proving a
few NP-completeness results) and to clearly identify what was still open.

Probably more important, this theoretical scheduling study has allowed us to extract some
important techniques and intuitions. One of the outcome is a pragmatic heuristic that performs in
practice much better than already existing algorithms that have proven performance guarantees.

6.1 The GriPPS Infrastructure

The GriPPS framework is based on large databases of information about proteins; each protein
is represented by a string of characters denoting the sequence of amino acids of which it is com-
posed. Biologists need to search such sequence databases for specific patterns that indicate bio-
logically significant structures. The GriPPS software enables such queries in grid environments,
where the data may be replicated across a distributed heterogeneous computing platform.

As a matter of fact, there seems to be two common usages in protein comparison applications.
In the first case, a biologist working on a set of proteins builds a pattern to search for similar
sequences on the servers (this is the case for the GriPPS framework). In the second case, canonical
patterns are known and should be used for comparison with daily updates of the databanks. This
is the only case we are aware of where a very large set of motifs is sent to all databanks. This is
however a typical background process whereas the first case is a typical online problem as many
biologists concurrently use the servers. Therefore in this first case, the motifs are very small
and communication cost they incur can really be neglected. To develop a suitable application
model for the GriPPS application scenario, we performed a series of experiments to analyze the
fundamental properties of the sequence comparison algorithms used in this code. Here we report
on the conclusions of this study whose details can be found in [42, LSV04].

From our modeling perspective, the critical components of the GriPPS application are:

• Protein databanks: the reference databases of amino acid sequences, located at fixed loca-
tions in a distributed heterogeneous computing platform;
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ies.

• Motifs: compact representations of amino acid patterns that are biologically important and
serve as user input to the application.

• Sequence comparison servers: computational processes co-located with some protein data-
banks that accept as input sets of motifs and return as output all matching entries in any
subset of a particular databank.

The main characteristics of the GriPPS application are:

1. Negligible communication costs. A motif is a relatively compact representation of an
amino acid pattern. Therefore, the communication overhead induced while sending a motif
to any processor is negligible compared to the processing time of a comparison. Although
the transfer times of results is larger, it also remains negligible compared to the computa-
tional requirements of this application.

2. Divisible loads. As illustrated on Fig. 6.2, the processing time required for sequence com-
parisons against a subset of a particular databank is linearly proportional to the size of
the subset. This property allows us to distribute the processing of a request among many
processors at the same time without additional cost. The GriPPS protein databank search
application is therefore an example of a linear divisible workload without communication costs.

In the classical scheduling literature, preemption is defined as the ability to suspend a job
at any time and to resume it, possibly on another processor, at no cost. Our application
implicitly falls in this category. Indeed, we can easily halt the processing of a request on a
given processor and continue the pattern matching for the unprocessed part of the database
on a different processor (as it only requires a negligible data transfer operation to move
the pattern to the new location). From a theoretical perspective, divisible load without
communication costs can be seen as a generalization of the preemptive execution model that
allows for simultaneous execution of different parts of a same job on different machines.

3. Uniform machines with restricted availabilities. A set of jobs is uniform over a set of
processors if the relative execution times of jobs over the set of processors does not depend
on the nature of the jobs. More formally, for any job Jj , the time pi,j needed to process job
Jj on processor i is equal to wj ·Wi, where Wi describes the speed of processor i and wj
represents the size of Jj . Our experiments indicated a clear constant relationship between
the computation time observed for a particular motif on a given machine, compared to
the computation time measured on a reference machine for that same motif. This trend
supports the hypothesis of uniformity. However, in practice a given databank may not be
available on all sequence comparison servers. Our model essentially represents a uniform
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machines with restricted availabilities scheduling problem, which is a specific instance of the
more general unrelated machines scheduling problem.

6.2 Scheduling for the Divisible Load Model

6.2.1 Framework and Notations

An instance of our problem is defined by n jobs, J1,. . . ,Jn and m machines (or processors),
M1,. . . ,Mm. The job Jj arrives in the system at time rj (expressed in seconds), which is its re-
lease date; we suppose that jobs are numbered by increasing release dates.

The value pi,j denotes the amount of time it would take for machineMi to process job Jj . Note
that pi,j can be infinite if the job Jj cannot be executed on the machineMi, e.g., for our motivating
application, if job Jj requires a databank that is not present on the machine Mi. Finally, each job
may be assigned a weight or priority ωj .

As we have seen, for the particular case of our motivating application, we could replace the
unrelated times pi,j by the expression wj/Wi, where wj denotes the size (in Mflop) of the job Jj
and Wi denotes the computational capacity of machine Mi (in Mflop/s). To maintain correctness
for the biological sequence comparison application, we separately maintain a list of databanks
present at each machine and enforce the constraint that a job Jj may only be executed on a ma-
chine that has a copy of all data upon which job Jj depends. However, since the theoretical results
we present do not rely on these restrictions, we retain the more general scheduling problem for-
mulation that is, we address the unrelated machines framework in this article. As a consequence,
all the values we consider in this article are nonnegative rational numbers (except the previously
mentioned case in which pi,j is infinite if Jj cannot be processed on Mi).

The time at which job Jj is completed is denoted as Cj . Then, the flow time of the job Jj ,
defined as Fj = Cj − rj , is essentially the time the job spends in the system.

Due to the divisible load model, each job may be divided into an arbitrary number of sub-
jobs, of any size. Furthermore, each sub-job may be executed on any machine at which the data
dependencies of the job are satisfied. Thus, at a given moment, many different machines may be
processing the same job (with a master scheduler ensuring that these machines are working on
different parts of the job). Therefore, if we denote by αi,j the fraction of job Jj processed on Mi,
we enforce the following property to ensure each job is fully executed: ∀j,

∑
i αi,j = 1.

When a size wj can be defined for each job Jj (e.g., in the single processor case) we denote by
∆ the ratio of the sizes of the largest and shortest jobs submitted to the system: ∆ =

maxj wj
minj wj

.

6.2.2 Relationships with the Single Processor Case with Preemption

We first prove that any schedule in the uniform machines model with divisibility has a canon-
ical corresponding schedule in the single processor model with preemption. This is especially
important as many interesting results in the scheduling literature only hold for the preemptive
computation model (denoted pmtn).

Lemma 6.1. For any platform M1, ..., Mm composed of uniform processors, i.e., such that for any job Jj ,
pi,j = wj/Wi, one can define a platform made of a single processor M̃ with W̃ =

∑
iWi, such that: - For

any divisible schedule of J1, ..., Jn on {M1, ...,Mm} there exists a preemptive schedule of J1, ..., Jn on M̃
with smaller or equal completion times. - Conversely, for any preemptive schedule of J1, ..., Jn on M̃ there
exists a divisible schedule on {M1, ...,Mm} with equal completion times.

Fig. 6.3 illustrates the underlying idea (see [LSV06] for details). The reverse transformation
simply processes jobs sequentially, distributing each job’s work across all processors.

As a consequence, any complexity result for the preemptive single processor model also holds
for the uniform divisible model. Thus, throughout this article, in addition to addressing the
multi-processor case, we will also closely examine the single processor case.
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Unfortunately, this line of reasoning is no longer valid when the computational platform ex-
hibits restricted availability. In the single processor case, a schedule can be seen as a priority list
of the jobs (see the article of Bender, Muthukrishnan, and Rajaraman [BMR04] for example). For
this reason, whenever we will present heuristics for the uniprocessor case they will follow the
same basic approach: maintain a priority list of the jobs and at any moment, execute the one
with the highest priority. In the multi-processor case with restricted availability, an additional
scheduling dimension must be resolved: the spatial distribution of each job.

The example in Fig. 6.4 explains the difficulty of this last problem. In the uniform situation, it
is always beneficial to fully distribute work across all available resources: each job’s completion
time in situation B is strictly better than the corresponding job’s completion time in situation A.
However, introducing restricted availability confounds this process. Consider a case in which
tasks may be limited in their ability to utilize some subset of the platform’s resources (e.g., their
requisite data are not present throughout the platform). In situation C of Fig. 6.4, one task is
subject to restricted availability: the P2 computational resource is not able to service this task.

Deciding between various scheduling options in this scenario is non-trivial in the general case
(for example schedule A has a better max flow than schedule C, but schedule C has a better max
stretch than schedule A), so we apply the following simple rule to build a schedule for general
platforms from single processor heuristics: While some processors are idle, one selects the job
with the highest priority and distribute its processing on all available processors that are capable
of processing it.

6.2.3 Optimization Criteria

An other important characteristic of our problem is that we target a platform shared by many
users. As a consequence, we need to ensure a certain degree of fairness between the different
requests. Given a set of requests, how should we share resources among the different requests?

The most common objective function in the parallel scheduling literature is the makespan: the
maximum of the job termination times, or maxj Cj . Makespan minimization is supposed to be
a system-centric approach, seeking to ensure efficient platform utilization. Makespan minimiza-
tion is meaningful when there is only one user and when all jobs are submitted simultaneously.
It is also common to consider average completion time instead (

∑
j Cj) but although such metric

accounts for every user, it does not take into account their release dates.
Individual users sharing a system are typically more interested in job-centric metrics, such

as job flow time (also called response time): the time an individual job spends in the system (i.e.,
Cj − rj). It is thus common to consider minimization of the maximum flow time, maxj Fj . On a
single processor with preemption, this metric is minimized with the simple first come first served
(FCFS) policy, which prioritizes job by the inverse of their release date. Therefore, we do not even
need to preempt jobs. Another interesting property of this policy is that it is non-clairvoyant, i.e.,
it does not relies on the processing time pj of jobs. The optimality of this strategy relies on a
simple exchange argument. However, whenever a long job is submitted, once it is started, it is
never preempted and one would thus hardly consider a system operated with such a strategy to
be reactive. Somehow, a max-based criterion focuses on worst-case behavior while one may be
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more interested by the average behavior. It would probably more reasonable to sacrifice some
large jobs to get something more “reactive” and favor shorter jobs.

It is thus common to consider the average (or total) flow time,
∑
j Fj , which accounts for every

single user in a single number. On a single processor with preemption, this metric is minimized
with the simple shortest remaining processing time first (SRPT) policy, whose optimality relies again
on a simple exchange argument. Scheduling small jobs first is good for “reactivity” but it requires
to know the size of the jobs (i.e., it is a clairvoyant algorithm). Unfortunately, although scheduling
small jobs first is good for the average response time, large jobs may be left behind and starvation
is thus possible, i.e., some (large) jobs may be delayed to an unbounded extent [BCM98].

To overcome the previous problems, one common approach [CK02] focuses on the weighted
flow time, using job weights to offset the bias against short or large jobs. Sum weighted flow
and maximum weighted flow metrics can then be analogously defined. Note however that the
starvation problem identified for sum-flow minimization is inherent to all sum-based objectives,
so the sum weighted flow suffers from the same weakness. The stretch is a particular case of
weighted flow, in which a job’s weight is inversely proportional to its size: ωj = 1/wj [BCM98].
On a single processor, the stretch of a job can be seen as the slowdown it experiences when
the system is loaded. In a network context, the stretch can be seen as the inverse of the overall
bandwidth allocated to a given transfer (i.e., the amount of data to transfer divided by the overall
time needed to complete the transfer). However this kind of definition does not account for the
affinity of some tasks with some particular machines (e.g., the scarcity of a particular database).
That is why we think a slightly different definition should be used in an unrelated machines
context. The stretch is originally defined to represent the slowdown a job experiences when the
system is loaded. In the remaining of this article, we will thus define the stretch as a particular
case of weighted flow time, in which a job’s weight is inversely proportional to its processing time
when the system is empty: ωj =

∑
i

1
pi,j

in our divisible load model. This definition matches the
previous one in a single processor context and is thus a reasonably fair measure of the level of
service provided to an individual job. It is more relevant than the flow in a system with highly
variable job sizes. Consequently, in our context, mainly the sum-stretch (

∑
Sj) and the max-

stretch (maxSj) metrics are meaningful.
The two simple heuristics we have presented so far (FCFS and SRPT) are both optimal (on a

single processor with preemption) for a criteria but behave quite differently for the others.

maxFj
∑
Fj maxSj

∑
Sj

FCFS Optimal ∆-competitive [9] ∆-competitive [9] ∆2-competitive [9]
SRPT No guarantee Optimal [Bak74] No guarantee 2-competitive [MRSG99]

Note that the previous competitiveness ratios are tight and that, at least for optimal strategies, it
is not possible to optimize both sum- and max- criteria at the same time. This is not surprising
but one may thus wonder whether a trade-off may be found.

Theorem 6.1 ([9]). Consider any online algorithm which has a competitive ratio of %(∆) for the sum-
flow. We assume that this competitive ratio is not trivial, i.e., that %(∆) < ∆. Then, there exists for
this algorithm a sequence of jobs that leads to starvation, and thus for which the obtained max-stretch is
arbitrarily greater than the optimal max-stretch.

Likewise, for any online algorithm which has a non-trivial competitive ratio of %(∆) < ∆2 for the sum-
stretch, there exists a sequence of jobs leading to starvation and where the obtained max-flow is arbitrarily
greater than the optimal one.

Intuitively, algorithms targeting max-based metrics ensure that no job is left behind. Such an
algorithm is thus somehow extremely “fair”. Sum-based metrics tend to optimize instead the
utilization of the platform. The previous theorem establishes that these two objectives can be in
opposition on particular instances. As a consequence, it should be noted that any algorithm opti-
mizing a sum-based metric has the particularly undesirable property of potential starvation. This
observation, combined with the fact that the stretch is more relevant than the flow in a system
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with highly variable job sizes, motivates max-stretch as the metric of choice in designing schedul-
ing algorithms in the GriPPS setting. Yet, sum-stretch should be considered as a secondary objec-
tive although simultaneous optimization cannot be guaranteed. Therefore, the following sections
present a few results and intuitions on sum stretch and max stretch optimization.

6.2.4 Sum Stretch: Shortest Processing Time Rules

In the general case, without preemption and divisibility, minimizing the sum-stretch is an NP-
complete problem, even on a single processor [9]. On the other hand, The complexity of the
offline minimization of the sum-stretch with preemption is still an open problem. At the very
least, this is a hint at the difficulty of this problem. In the framework with preemption, Bender,
Muthukrishnan, and Rajaraman [BMR04] present a Polynomial Time Approximation Scheme
(PTAS) for minimizing the sum-stretch with preemption. Chekuri and Khanna [CK02] present
an approximation scheme for the more general sum weighted flow minimization problem. As
these approximation schemes cannot be extended to work in an online setting, we will not discuss
them further. Muthukrishnan, Rajaraman, Shaheen, and Gehrke [MRSG99] prove that there is no
optimal online algorithm for the sum-stretch minimization problem when there are three or more
distinct job sizes. Furthermore, they give a lower bound of 1.036 on the competitive ratio of any
online algorithm. In [40], we improve this bound and show that competitive ratio is actually less
than or equal to 1.19484.

We have recalled that shortest remaining processing time (SRPT) is optimal for minimizing
the sum-flow. When SRPT takes a scheduling decision, it only considers the remaining processing
time of a job, and not its original processing time. Therefore, from the point of view of the sum-
stretch minimization, SRPT does not take into account the weight of the jobs in the objective func-
tion. Nevertheless, Muthukrishnan, Rajaraman, Shaheen, and Gehrke have shown [MRSG99]
that SRPT is 2-competitive for sum-stretch.

Another well studied algorithm is the Smith’s ratio rule [Smi56] also known as shortest
weighted processing time (SWPT). This is a preemptive list scheduling where the available jobs
are executed in increasing value of the ratio pj

ωj
. Whatever the weights, SWPT is 2-competitive [SS02]

for the minimization of the sum of weighted completion times (
∑
wjCj).

Note that a %-competitive algorithm for the sum weighted flow minimization (
∑
wj(Cj − rj))

is %-competitive for the sum weighted completion time (
∑
wjCj). However, the reverse is not

true: a guarantee on the sum weighted completion time (
∑
wjCj) does not induce any guarantee

on the sum weighted flow (
∑
wj(Cj − rj)). Therefore, the previous ratio on the minimization

of the sum of weighted completion times gives us no result on the efficiency of SWPT for the
minimization of the sum-stretch. Furthermore, it is not difficult to prove [40] that SWPT is not a
competitive algorithm for minimizing the sum-stretch.

The weakness of the SWPT heuristics is obviously that it does not take into account the re-
maining processing times: it may preempt a job when it is almost completed. To address the
weaknesses of both SRPT and SWPT, one might consider a heuristic that takes into account both
the original and the remaining processing times of the jobs. This is what the shortest weighted
remaining processing time heuristic (SWRPT) does. In the framework of sum-stretch minimiza-
tion, at any time t, SWRPT schedules the job Jj which minimizes pj%t(j). Muthukrishnan, Ra-
jaraman, Shaheen, and Gehrke [MRSG99] prove that SWRPT is actually optimal when there are
only two job sizes.

Unfortunately, neither of the proofs of competitiveness of SRPT or SWPT can be extended to
SWRPT. SWRPT has apparently been studied by Megow [Meg02], but only in the scope of the
sum weighted completion time. So far, there is no guarantee on the efficiency of SWRPT for sum-
stretch minimization. Intuitively, we would think that SWRPT is more efficient than SRPT for the
sum-stretch minimization. However, one can prove [40] that SWRPT is at best 2-competitive, just
like SRPT. Yet, the experimental results we will present later show yet that, in practice, SWRPT
is generally better than the simpler SRPT algorithm.

The main results are thus that:
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1. The complexity of offline sum stretch minimization is still an open problem. It seems rather
combinatorial and none of the classical technique and intuition proved useful, hence PTAS
were proposed in the literature.

2. The online setting is much simpler since very simple algorithms are 2-competitive and in
practice the SWRPT heuristic is a good rule of thumb.

6.2.5 Max stretch: Deadline Scheduling and Linear Programming

Max Weighted Flow Minimization and Deadline Scheduling

Let us assume that we are looking for a schedule S under which the maximum weighted flow
is less than or equal to some objective value F . The weighted flow of any job Jj is equal to
ωj(Cj − rj). Then, we should have:

max
16j6n

wj(Cj − rj) 6 F ⇔ ∀j ∈ [1;n], wj(Cj − rj) 6 F ⇔ ∀j ∈ [1;n], Cj 6 rj + F/ωj .

Thus, the execution of Jj must be completed before time dj(F) = rj + F/ωj for schedule S to
satisfy the bound F on the maximum weighted flow. Therefore, looking for a schedule which
satisfies a given upper bound on the maximum weighted flow is equivalent to an instance of the
deadline scheduling problem. We now show how to solve such a deadline scheduling problem
in the divisible load framework.

In deadline scheduling, each job Jj has not only a release date rj but also a deadline dj . The
problem is then to find a schedule such that each job Jj is executed within its executable time
interval [rj , dj ]. We consider the set of all job release dates and deadlines: {r1, . . . , rn, d1, . . . , dn}.
We define an epochal time as a time value at which one or more points in this set occur; there
are between 2 (when all jobs are released at the same date and have the same deadline) and 2n
(when all job release dates and deadlines are distinct) such values. When ordered in absolute
time, adjacent epochal times define a set of time intervals. We denote each time interval It by
It = [inf It, sup It[. Finally, we denote by α

(t)
i,j the fraction of job Jj processed by machine Mi

during the time interval It. In this framework, System (6.1) lists the constraints that should hold
true in any valid schedule:

1. release date: job Jj cannot be processed before it is released (Equation (6.1a));

2. deadline: job Jj cannot be processed after its deadline (Equation (6.1b));

3. resource usage: during a time interval, a machine cannot be used longer than the duration of
this time interval (Equation (6.1c));

4. job completion: each job must be processed to completion (Equation (6.1d)).

(6.1a) ∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

(6.1b) ∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

(6.1c) ∀t,∀i,
∑
j

α
(t)
i,j .pi,j 6 sup It − inf It

(6.1d) ∀j,
∑
t

∑
i

α
(t)
i,j = 1

(6.1)

Lemma 6.2. System (6.1) has a solution if, and only if, there exists a solution to the deadline scheduling
problem.

System (6.1) can be solved in polynomial time by any linear solver system as all its variables are
rational. Building a valid schedule from any solution of System (6.1) is straightforward as for any
time interval It, and on any machine Mi, the job fractions α(t)

i,j can be scheduled in any order.
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Solving on a Range

One may think that by applying a binary search on possible values of the objective value F , one
would be able to find the optimal maximum weighted flow, and an optimal schedule. However,
a binary search on rational values will not terminate. By setting a limit on the precision of the
binary search, the number of process iterations is bounded, and the quality of the approximation
can be guaranteed. However, as we now show, we can adapt our search to always find the
optimal in polynomial time.

So far we have used System (6.1) to check whether our problem has a solution whose maxi-
mum weighted flow is no greater than some objective value F . We now show that we can use it
to check whether our problem has a solution for some particular range of objective values. Later
we show how to divide the whole search space into a polynomial number of search ranges.

First, let us suppose there exist two values F1 and F2, F1 < F2, such that the relative
order of the release dates and deadlines, r1, . . . , rn, d1(F), . . . , dn(F), when ordered in abso-
lute time, is independent of the value of F ∈]F1;F2[. Then, on the objective interval ]F1,F2[,
as before, we define an epochal time as a time value at which one or more points in the set
{r1, . . . , rn, d1(F), . . . , dn(F)} occurs. Note that an epochal time which corresponds to a dead-
line is no longer a constant but an affine function in F . As previously, when ordered in absolute
time, adjacent epochal times define a set of time intervals, that we denote by I1, . . . , Inint(F). The
durations of time intervals are now affine functions in F . Using these new definitions and no-
tations, we can solve our problem on the objective interval [F1,F2] using System (6.1) with the
additional constraint that F belongs to [F1,F2] (F1 6 F 6 F2), and with the minimization of F
as the objective. This gives us System (6.2).

MAXIMIZE F ,
UNDER THE CONSTRAINTS

(6.2a) ∀i,∀j,∀t, rj > sup It ⇒ α
(t)
i,j = 0

(6.2b) ∀i,∀j,∀t, dj 6 inf It ⇒ α
(t)
i,j = 0

(6.2c) ∀t,∀i,
∑
j

α
(t)
i,j .pi,j 6 sup It − inf It

(6.2d) ∀j,
∑
t

∑
i

α
(t)
i,j = 1

(6.2e) F1 6 F 6 F2

(6.2)

The relative ordering of the release dates and deadlines only changes for values of F where
one deadline coincides with a release date or with another deadline. We call such a value of
F a milestone1. In our problem, there are at most n distinct release dates and as many distinct
deadlines. Thus, there are at most n(n−1)

2 milestones at which a deadline function coincides
with a release date. There are also at most n(n−1)

2 milestones at which two deadline functions
coincides (two affine functions intersect in at most one point). Let nq be the number of distinct
milestones. Then, 1 6 nq 6 n2 − n. We denote by F1,F2, ...,Fnq the milestones ordered by
increasing values. To solve our problem we just need to perform a binary search on the set of
milestones F1,F2, ...,Fnq , each time checking whether System (6.2) has a solution in the objective
interval [Fi,Fi+1] (except for i = nq in which case we search for a solution in the range [Fnq ,+∞[).
There is a polynomial number of milestones and System (6.2) can be solved in polynomial time.
Therefore:

Theorem 6.2 ([42]). The problem of minimizing the maximum weighted flow time in the divisible load
model 〈R|rj ; div|maxwjFj〉 can be solved in polynomial time.

1Labetoulle, Lawler, Lenstra, and Rinnooy Kan [LLLR84] call such a value a “critical trial value”.
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Online Scheduling: Competitiveness Bounds and Competitive Algorithms

Unlike the previous results on sum-stretch, offline max-stretch minimization is thus a relatively
easy problem. In the online counterpart, the slightest mistake can be very harmful:

Theorem 6.3 ([40]). There is no 1
2∆
√

2−1-competitive preemptive online algorithm minimizing max-
stretch if we restrict to instance with at least three different processing times.

This result is an improvement from the bound of 1
2∆

1
3 established by Bender, Chakrabarti,

and Muthukrishnan [BCM98]. In fact, we establish this new bound by doing a more precise
analysis of the exact same adversary. In their proof, Bender, Chakrabarti, and Muthukrishnan
implicitly assumed that the algorithm knew in advance the ratio ∆ of the sizes of the largest
and shortest jobs. We have roughly bridged half of the gap between the previous lower bound
and the best existing algorithms, which are O(

√
∆)-competitive algorithms and, which we now

present.
A first approach that consists in rounding job sizes into two categories was proposed by Ben-

der, Muthukrishnan, and Rajaraman [BMR02]. They define, for any job Jj , a pseudo-stretch Ŝj(t):

Ŝj(t) =

{ t−rj√
∆

if 1 6 pj 6
√

∆,

t−rj
∆ if

√
∆ < pj 6 ∆.

Then, they schedule the jobs by decreasing pseudo-stretches, potentially preempting running
jobs each time a new job arrives in the system. They demonstrated that this method is a O(

√
∆)-

competitive online algorithm. Although this approach is very simple, it is rather crude and often
reaches its bound in practice.

Bender, Chakrabarti, and Muthukrishnan [BCM98] had previously described anotherO(
√

∆)-
competitive online algorithm for max-stretch. This algorithm works as follows: each time a new
job arrives, the currently running job is preempted. Then, they compute the optimal (offline)
max-stretch S∗ of all jobs having arrived up to the current time. Next, a deadline is computed for
each job Jj : dj(F) = rj + α × S∗/pj Finally, a schedule is realized by executing jobs according
to their deadlines, using the Earliest Deadline First strategy. To optimize their competitive ratio,
Bender et al. set their expansion factor α to

√
∆. For both heuristics, the ratio ∆ of the sizes of the

largest and shortest jobs submitted to the system is thus assumed to be known in advance.
This is a very nice result as it shows how to build an online algorithm from an offline algo-

rithm and how some of the optimality properties can be transferred from one setting to another.
From our point of view, there are however three practical problems with this approach:

1. To obtain the competitiveness bound, the algorithm needs to recompute the optimal offline
max-stretch S∗ of all jobs having arrived up to the current time. When the system is loaded,
recomputing this value becomes more and more expensive, which is all the more harmful
as it should be done every time a new job enters the system.

2. Such an algorithm tries only to optimize the stretch of the most constraining jobs. Noth-
ing particular is done for the second max-stretch, the third max-stretch, and so on. This is
particularly true with the offline version and although the online version certainly reduces
such effect, this means there is room for improvement. This problem is common to all al-
gorithms minimizing a max objective. Indeed, such an algorithm could schedule all jobs so
that their stretch is equal to the objective, even if most of them could have been scheduled
to achieve far lower stretches. Just like that max-min fairness is recursively defined, mini-
mization of max stretch should also be defined to produce Pareto-optimal schedules. This
problem is far from being merely theoretical and is obviously not specific to stretch min-
imization. For example, the technique of Shmoys, Wein and Williamson [SWW91] allows
to build 2%-competitive polynomial-time online clairvoyant algorithms for 〈P |{|s〉 izej,rj
}{Cmax } from a %-approximation for 〈P |sizej |Cmax〉 by scheduling jobs in batches. Yet,
in practice and despite the guarantee, backfilling is always used to save all the idle time
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wasted by the batch structure. Although we proved [9] that 〈R|rj ; div|maxwjFjPareto〉 is
NP-hard, in practice the combinatorial issue raised by tie-breaking is rare and it is sufficient
to recursively optimize the maximum stretch of jobs.

3. Giving some slack is a sound idea in a online setting but it has been quite difficult to es-
timate its impact compared to a purely greedy strategy. In our simulations, we could not
see any difference, which could have two possible explanations: 1) the random instances
we tried are not complicated enough to trick a simple online greedy algorithm; 2) as the
divisible setting does not incur any preemption cost, a sub-optimal decision is rarely very
constraining.

These different observations motivated a pragmatic algorithm, which does not have any the-
oretical guarantee but largely outperforms other heuristics in simulation.

6.3 A Pragmatic Scheduling Algorithm

The basic online heuristic we proposed is along the same line as the algorithm of Bender, Chakrabarti,
and Muthukrishnan [BCM98]: each time a new job arrives we preempt the running job (if any),
compute the optimal max-stretch, and schedule the jobs according to the solution of System 6.2.
The solution of System 6.2 specifies what fraction of each job should be executed on each proces-
sor during each time interval.

Our first modification to this scheme is that, rather than computing the “optimal max-stretch”,
we compute the “best achievable max-stretch considering the decisions already made”. In other
words, we take into account our knowledge of which jobs were already (partially) executed,
and when. The underlying idea being that we cannot change the past anyway. Also, such an
optimization greatly simplifies the linear system. This modification is implemented by making
trivial modifications to System 6.2.

Our second modification to the above scheme is more important: we want to optimize more
than the max-stretch. The first possibility would be to use in an online framework our offline re-
cursive heuristic for the Pareto minimization of max-stretch of available jobs. However, when the
workload becomes important, the recursive solving becomes quickly cumbersome. So instead,
we tried to schedule each job in a manner that minimizes its own stretch value, while maintaining
the overall maximal stretch value obtained. For example, one could theoretically try to minimize
the sum-stretch under the condition that the max-stretch be optimal. However, as we have seen,
minimizing the sum-stretch is an open problem. So we consider a heuristic approach based on a
relaxation and expressed by System( 6.3).

MAXIMIZE

n∑
j=1

ωj

((∑
t

(
m∑
i=1

α
(t)
i,j

)
sup It(S∗) + inf It(S∗)

2

)
− rj

)
,

UNDER THE CONSTRAINTS

(6.3a) ∀i,∀j,∀t, rj > sup It(S∗)⇒ α
(t)
i,j = 0

(6.3b) ∀i,∀j,∀t, dj(S∗) 6 inf It(S∗)⇒ α
(t)
i,j = 0

(6.3c) ∀t,∀i,
∑
j

α
(t)
i,j .pi,j 6 sup It(S∗)− inf It(S∗)

(6.3d) ∀j,
∑
t

∑
i

α
(t)
i,j = 1

(6.3)

This system ensures that each job is completed no later than the deadline defined by the opti-
mal (offline) max-stretch S∗. Then, under this constraint, this system attempts to minimize an
objective that resembles a rational relaxation of the sum-stretch (or more generally of the sum
weighted flow) using as an approximation of the completion time, the weighted sum of the aver-
age execution times of a job. As we do not know the precise time within an interval when a part
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Max-stretch Sum-stretch
Mean SD Max Mean SD Max

Offline 1.0000 0.0000 1.0000 1.4051 0.2784 2.6685
OfflinePareto 1.0000 0.0000 1.0000 1.2986 0.2605 3.5090

Online-EGDF 1.0331 0.0622 1.6613 1.0024 0.0052 1.1095
Bender982 1.0415 0.0971 2.1521 1.0028 0.0075 1.1393
Bender02 2.9859 2.7071 23.5446 1.2049 0.3087 6.6820
SWRPT 1.0386 0.0729 2.0566 1.0003 0.0014 1.0384

SRPT 1.0596 0.1027 2.1012 1.0048 0.0074 1.1179
SPT 1.0576 0.1032 2.1297 1.0020 0.0048 1.1263

FCFS-Div 5.1353 6.6792 65.9073 1.3767 0.7224 15.4213
MCT 38.4276 24.2626 156.3778 51.9606 36.5202 154.1519

RAND 4.6568 6.9107 87.9141 1.2355 0.4827 10.8549

Table 6.1: Aggregate statistics over all 162 platform/application configurations.

of a job will be scheduled, we approximate it by the mean time of the interval. (This heuristic
obviously offers no guarantee on the sum-stretch achieved.)

Finally, the (active) jobs are processed under a list scheduling policy, using the strategy out-
lined in Section 6.2.2 to deal with restricted availabilities: while some processors are idle, one
selects the job with the highest priority and distribute its processing on all available processors
that are capable of processing it. Jobs are totally ordered by the interval in which their total work
is completed, with ties being broken by the SWRPT policy. We call such policy Online-EGDF and
show its effectiveness in the next section.

Evaluation through simulation

To evaluate the efficacy of various scheduling strategies when optimizing stretch-based metrics,
we implemented a simulator using the SIMGRID toolkit (details on experimental setup and re-
sults are reported in [LSV06]), based on the biological sequence comparison scenario. Our pri-
mary goal was to evaluate the proposed heuristics in realistic conditions that include partial
replication of target sequence databases across the available computing resources. The simula-
tion campaign involves 162 configurations comprising 3, 10 or 20 clusters, 3, 10 or 20 distinct
databases whose availability was 30%, 60%, and 90%, and with different workload density. For
each configuration, 200 platforms and application instances are randomly generated and the sim-
ulation results for each of the studied heuristics is recorded. Table 6.1 presents the aggregate re-
sults from these simulations; finer-grained results based on various partitionings of the data may
be found in [LSV06].

Above all, we note that the MCT heuristic (“minimum completion time”), which was the
policy used in the GriPPS system and simply schedules each job as it arrives on the processor
that offers the best job completion time, without exploiting divisibility is unquestionably inap-
propriate for max-stretch optimization: MCT was over 38 times worse on average than the best
heuristic. Its deficiency might arguably be tolerable on small platforms but, in fact, MCT yielded
max-stretch performance over 16 times worse than the best heuristic in all simulation configura-
tions. Even after addressing the primary limitation that the divisibility property is not utilized,
the results are still disappointing: FCFS-Div, which employs all resources that are able to execute
the job, is on average 5.1 times worse in terms of max-stretch than the best approach we found.
One of the principal failings of the MCT and FCFS-Div heuristics is that they are non-preemptive.
By forcing a small task that arrives in a heavily loaded system to wait, non-preemptive schedulers
cause such a task to be inordinately stretched relative to large tasks that are already running.

We also observe that SWRPT, SRPT, and SPT are all quite effective at sum-stretch optimiza-
tion. Each is on average within 5h of the best observed sum-stretch for all configurations. In

2Bender98 results are limited to 3-cluster platforms, due to prohibitive overhead costs.
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particular, SWRPT produces a sum-stretch that is on average 0.3h within the best observed sum-
stretch, and attaining a sum-stretch within 4% of the best sum-stretch in all of the roughly 32,000
instances. However, it should be noted that these heuristics may lead to starvation. Jobs may
be delayed for an arbitrarily long time, particularly when a long series of small jobs is submit-
ted sequentially (the (n + 1)th job being released right after the termination of the nth job). Our
analysis of the GriPPS application logs has revealed that such situations occur fairly often due to
automated processes that submit jobs at regular intervals. By optimizing max-stretch in lieu of
sum-stretch, the possibility of starvation is eliminated. Such issue is only mildly reflected by our
evaluation as job inter-arrival times was modeled using a Poisson process. We think, this is the
reason why SWRPT, SRPT and SPT do not perform that bad regarding max-stretch.

Experimentally, we find that our online heuristic (Online-EGDF) is consistently near-optimal
(within 4% on average) for max-stretch optimization and actually achieves consistently good
sum-stretch (within 3h of the best observed sum-stretch). Furthermore, our online heuristic
has far better sum-stretch than the OfflinePareto (which is on average almost 30% away of the
best observed sum-stretch). This result validates our heuristic optimization of sum-stretch as
expressed by Linear Program (6.3). As forecast, OfflinePareto has a significantly better average
sum-stretch than Offline.

Next, we find that the Bender98 and Bender02 heuristics are not practically useful in our
scheduling context. At first sight, it may seem that the Bender98 heuristic has a performance
similar to the one of our algorithm. Yet, the results shown in Table 6.1 for the Bender98 heuristic
comprise only 3-cluster platforms; simulations on larger platforms were practically unfeasible,
due to the algorithm’s prohibitive overhead costs. Indeed, for an n-task workload, the Bender98
heuristic solves n optimal max-stretch problems, many of which are computationally equivalent
to the full n-task optimal solution. In several cases the desired workload density required thou-
sands of tasks, rendering the Bender98 algorithm intractable. To roughly compare the overhead
costs of the various heuristics, we ran a small series of simulations using only 3-cluster platforms.
The results of these tests indicate that the scheduling time for a 15-minute workload was on av-
erage under 0.28 s for our online heuristic, and 0.54 s for the offline optimal algorithm (with 0.35
s spent in the resolution of the linear program and 0.19 s spent in the online phases of the sched-
uler); by contrast, the average time spent in the Bender98 scheduler was 19.76s. The scheduling
overhead of Bender02 is far less costly (on average 0.23 s of scheduling time in our overhead exper-
iments), but in realistic scenarios for our application domain, the competitive ratios it guarantees
are ineffective compared with our online heuristics for max-stretch optimization.

Finally, we remark that the RAND heuristic is slightly better than the FCFS-Div for both met-
rics. Moreover, RAND is only 24% away from the best observed sum-stretch on average. This
leads us to think that the sum-stretch may not be a discriminating objective for our problem. In-
deed, it looks as if, whatever the policy, any list-scheduling heuristic delivers good performance
for this metric.

6.4 Conclusion and Open Issues

Motivated by an applicative context that can be modeled as a divisible load scheduling prob-
lem with release dates, we have revisited many results from the literature on offline and online
scheduling with preemption. Doing so, we have mapped the whole landscape and filled a few
holes (e.g., improved a few inapproximability bounds and proved a few NP-completeness re-
sults as can be found in Table 6.2). Some, like the optimization of sum stretch remained open
despite our efforts in either direction. But more importantly, we have extracted some important
techniques and intuitions, which we have sometimes extended. This has enabled us to propose
a pragmatic heuristic that performs much better than already existing algorithms in practice.

In term of modeling, this study allowed us to realize that sum stretch and sum flow are not
good objectives when several users are involved. First, as we mentioned earlier, these objectives
are relatively easy to optimize and do not allow to really discriminate between various heuristics.
Second, optimizing such metric does not allow to prevent starvation between users, which I think
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β = ∅ β = pmtn β = div
〈1|rj ;β|maxwjFj〉 NP ( [BCM98]) ↓ ↓
〈P |rj ;β|maxwjFj〉 ↑ ↓ ↓
〈Q|rj ;β|maxwjFj〉 ↑ ↓ (network flow [LLLR84]) ↓
〈R|rj ;β|maxwjFj〉 ↑ P (Lin. Prog. [9]) P (Lin. Prog. Sec. 6.2.5)
〈1|rj ;β|

∑
Fj〉 NP ( [LRB77]) P (SRPT [Bak74]) ↓

〈P |rj ;β|
∑
Fj〉 ↑ NP (Numerical-3DM [BBC+07]) ↓

〈Q|rj ;β|
∑
Fj〉 ↑ ↑ P (SRPT + Sec. 6.2.2)

〈R|rj ;β|
∑
Fj〉 ↑ ↑ NP (3DM, [9])

〈1|rj ;β|
∑
Sj〉 NP ([9]) open open

〈P |rj ;β|
∑
Sj〉 ↑ open open

〈Q|rj ;β|
∑
Sj〉 ↑ open open

〈R|rj ;β|
∑
Sj〉 ↑ open NP (3DM, [9])

〈1|rj ;β|
∑
wjFj〉 NP ( [LRB77]) NP (Numerical-3DM [LLLR84]) �

〈P |rj ;β|
∑
wjFj〉 ↑ ↑ ↑

〈Q|rj ;β|
∑
wjFj〉 ↑ ↑ ↑

〈R|rj ;β|
∑
wjFj〉 ↑ ↑ ↑

Table 6.2: Summary of complexity results on scheduling with release dates (contributions in
bold).

should be somehow guaranteed although this notion of starvation is rather difficult to grasp.
Indeed, in every non-competitiveness proof we built, we build adversaries that force starva-

tion to occur by having a user that saturates the system by sending tasks regularly as if he was
alone. In stochastic scheduling and queuing theory, this kind of situation is avoided as the system
is then unstable. Yet, our analysis of the GriPPS application logs revealed us that such situations
occur often due to automated processes that submit jobs at regular intervals. However, a deeper
investigation reveals that rather than regular intervals submission, one should talk about auto-
mated interactive submission. Indeed, such behavior corresponds to a robot that resubmits a job
as soon as the previous one is terminated. This is why we did not evaluate our strategies by re-
playing traces from the GriPPS system as we quickly realized it did not make any sense. Instead,
we decided to use a simple Poisson process for job submission. A better approach would proba-
bly have been to model users by using a think time between job submission but characterizing an
existing system was then beyond our skills. In practice, input workload heavily depends on the
performance of the system, which complicates even further the comparison of different alterna-
tives. Yet, I think revisiting our study with a better workload would allow to discriminate better
between our Online-EGDF heuristic and a simpler heuristic such as SWRPT.

Finally, it should be noted that although max stretch optimization has the interesting property
that it prevents starvation, such modeling is still not satisfying to my eyes. Indeed, such approach
focus on minimizing the stretch of every individual jobs. Therefore, this job-centric approach still
lacks a notion of user and is not truthful at all. If a user decides to split one of his job in half
instead of submitting it as a whole, it would be considered as two independent smaller (and thus
more critical) jobs and would thus gain a higher resource share. Fairness should thus be enforced
at the user level and not at the job level, which calls for a two-level aggregation. When defining
such aggregation, one should consider the following intuitions:

• Sum-based aggregation favors small jobs and easily lead to starvation of other jobs when
a stream of small jobs is constantly submitted. However, if there is only one user, such
problem would not really occur as the user would only harm himself and would thus self-
regulate. Such criteria is thus rather meaningful from the perspective of a single user.

• The max part of the criteria allows to ensure that starvation between jobs does not occur
and should be among users rather than among jobs. A reasonable and strict criteria would
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thus be:
max
u

∑
j

S
(u)
j

This would be a "min-max" fair optimization of average stretch of users. If we link such
proposal with more classical fairness criteria, we should probably optimize something like3:∏

u

∑
j

S
(u)
j

This would correspond to the Nash Bargaining Solution. It turns out that Agnetis et al.
[AMPP04, AdPP09, Ale09] have worked on such problem roughly at the same time as we
did and that I only relatively recently discovered their work. Although the corresponding
problems are NP-hard, they can be efficiently approximated. Using Lagrangian optimiza-
tion and the properties of Smith’s ratio rule, they propose a clever polynomial algorithm
that computes a solution which is always within a few percents of the optimal solution in
their experiments. Note that their results are for the setting with no release date (and hence
no preemption). Yet, I think the technique would apply to the preemptive setting as well
(e.g., using SWRPT instead of SPT rule). The main technical issue I see with such approach
in view of a practical implementation is that the complexity of these algorithm tends to
grow rather fast with the number of users.

All these observations on the fact that users adapt their workload and strategy to the per-
formance of the system, and that per-user metric should be considered instead, motivated
the study we present in the next chapter and where we try to characterize the Nash equi-
librium of a system where some users aim at selfishly optimizing their average response
time.

3We ommit for simplicity the disagreement point but we think a reasonable one would be the outcome of a fair sharing
schedule, which is very easy to implement and to compute but is however Pareto inefficient.



Chapter 7

Non-Cooperative Throughput and
Response Time Optimization

This chapter builds on an article published in CCGrid’11 [28] with Bruno Donassolo and Claudio
Geyer. It was conducted in the context of the DOCCA and USS-SimGrid projects as well as thanks
to our collaboration with Bruno Donassolo and Claudio Geyer in the context of the Grenoble-
Porto Alegre associated team and with David Anderson in the context of the INRIA Grenoble-
Berkeley associated team. It was motivated by the wish to analyze a real system and to see
whether our knowledge in game theory and scheduling would help understanding it better and
possibly improve it.

This work is a natural continuation of the questions raised in the previous chapters as it ad-
dresses a situation where:

1. some users aim at optimizing their throughput while some other users aim at optimizing
their average response-time;

2. we assume each user optimizes its own utility while a fair "myopic" resource sharing is
globally enforced as in Chapter 3;

3. we investigate the idea that some users may want to regulate their resource usage because
they worry not only about their immediate utility but also about their "public image".

7.1 The BOINC project

7.1.1 History and Evolution of the BOINC Workload

Volunteer Computing is a kind of distributed computing platform on which clients donate their
idle resources to projects. VC became famous thanks to SETI@home project [ACK+02], which
started in 1999, searching for extraterrestrial intelligence. Later, SETI@home evolved and became
the open-source BOINC (Berkeley Open Infrastructure for Network Computing) project [BOI].
Nowadays, BOINC harnesses more than 580,000 hosts that deliver over 2,300 TeraFLOP per day.
Several projects have been deployed, such as ClimatePrediction.net, Einstein@home or the World
Community Grid. Each project has its own server which is responsible for distributing work units
to clients, recovering results and validating them. Work units run on clients’ machines according
to specific rules defined by the clients.

Salient characteristics of such systems are: scalability, heterogeneity, volatility, unpredictabil-
ity and unreliability. Therefore, typical VC workloads are made of a large (i.e., orders of magni-
tude larger than the number of available hosts) sets of independent CPU-bound tasks and most
projects aim at maximizing their throughput. Supporting new kinds of applications on VC plat-
form is very challenging. A new promising class seems to be the case where applications have a
relatively small number of work units in infrequent time intervals. As these projects do not have
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large amount of tasks, they are interested in getting tasks back as soon as possible. More pre-
cisely, when receiving a batch of tasks, such projects try to minimize the completion time of the
last finishing task of the batch. New algorithms and techniques have been proposed to address
this problem. Kondo et al. [KCC07] claim that rapid application turnaround can be achieved
through resource selection, resource prioritization, and replication. More recently, Heien et al.
[HAH09] proposed to tune the connection interval parameter of BOINC projects to optimize the
response time of batches. Last, the GridBot project [SSGS09, Sil11] recently made use of hybrid
computing platform composed of grid, cluster, VC and cloud resources to execute workload re-
sulting from mix of throughput and response time oriented applications. Yet, all projects rely
on the same BOINC protocol and scheduling algorithms which we expose in the following two
subsections.

BOINC relies on a classical client/server architecture. Each project has a specific server from
which clients request work units to execute. Clients, during the install process for example,
decide the projects that they want to crunch for. The behavior of clients and servers are described
below.

7.1.2 The BOINC Server

The main activity of a BOINC server is to distribute jobs to clients. Upon client request it selects
from a job list which tasks can run on the client. The server must take care of the system’s
constraints which could preclude the client from running these tasks. Due to the high resource
volatility and unpredictability, the server is also responsible for keeping track of jobs and uses
to this end a simple deadline mechanism. When work units are distributed to a client, they are
associated a deadline before which the client should send the task back. Whenever a work unit is
received on time, servers reward the client with credits. If a client takes too much time to execute
a task and misses its deadline, no credit is granted to him.

In this work, we consider two kinds of projects:

• Continuous projects: Such projects have an extremely large number of tasks and are thus
interested in throughput, i.e., the average number of tasks done per day. Most existing
BOINC projects actually fall in this category.

• Burst projects: Unlike the previous ones, these projects receive batches of tasks (or Bags of
Tasks) and are interested in the average response time of these batches.

In order to achieve a better performance, the server may use some strategies, such as repli-
cation, deadline or specific scheduling algorithms. Replication can be used to improve average
response time, avoiding the last-finishing (a.k.a straggler) task issue [KCC07]. Replication has
some variants, such as homogeneous redundancy, which replicates tasks only to hosts with the same
characteristics (OS and CPU) to avoid potential result mismatch due to application numerical in-
stabilities, and adaptive replication, which only replicates tasks if the host is not trustful [AR09].
The deadline, in the other hand, can be configured to keep a track of the tasks running on clients.
Tighter deadlines implies in more interaction between client and server. Also, it can be used to
give urgency to some tasks (last tasks in a batch) and so, get the results earlier. Also, servers
may use some special strategy to select which tasks they will send to clients. In short, they are
described below.

• Fixed: Server does not do any kind of test before sending tasks to clients.

• Saturation: Server receives the saturation date of client, i.e., the date when client finishes
running all urgent tasks (running in EDF mode). Then, it verifies whether a task, starting at
saturation date, will finish before its deadline. This is the most commonly used scheduling
algorithm.

• Earliest Deadline First (EDF): The most restrictive test does a detailed simulation of the
scheduling of all tasks running on the client (the name comes from the fact that the client
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uses an EDF scheduling algorithms when it is getting late). Then, it checks whether, when
sending a new task, all already existing tasks (even from other projects) would not miss
their deadline by more than they did previously.

BOINC’s default configuration utilizes the saturation test. However, each project decides of
activating or not these features according to its workload, objectives and clients’ characteristics,
such that it yields to the best possible behavior (e.g., throughput or response time improvement).

7.1.3 The BOINC Client

According to [AM07], the client scheduling policy has been designed with 3 main goals in mind:

• Maximize the amount of credit given to user;

• Enforce long-term fairness: client must work the same for each project if project shares are
equal;

• Maximize variety: client should avoid long periods working to same project.

So, the client tries to fairly share (instantaneously) the resource between projects with respect
to their priorities. However, this instantaneously fair share incurs overhead which reduces client
throughput and delays task completion. Therefore, BOINC clients implement a complex mix
of short-term/long-term fairness scheduling algorithm. The exception is when a task is near
to miss its deadline. In order to avoid deadline misses, the scheduling algorithm switches to
EDF (Earliest Deadline First) mode and executes such tasks with higher priority. Consequently,
continuous projects generally have loose deadlines, whereas burst projects should prefer tighter
deadlines so that their tasks are executed in priority. It is important to notice that the long-term
debt sharing mechanism prevents projects with tight deadline to always bypass other projects.
When a client overworks for a project, it simply momentarily stops downloading new tasks from
this project.

7.2 A Game Theoretic Modeling

A Volunteer Computing system such as BOINC is made of volunteers that offer resources to be
shared among a set of projects. The underlying client scheduling mechanisms aims at ensuring
a fair and efficient sharing of resources but several parameters may affect this sharing. In the
following, we explain how this situation can be modeled through the use of game theory notions.
We start by defining the main actors of such situations: volunteers and projects.

Definition 7.1 (Volunteer Vj). A BOINC volunteer is characterized by the following parameters:

• a peak performance (in MFLOP .s−1) indicating the amount of MFLOP it can process per
second when it is available.

• an availability trace, i.e., an ordered sequence of disjoint time intervals indicating when
the volunteer machine is available. This trace is unknown from the volunteer scheduler,
which also does not try to use past historical information about this trace to obtain a better
schedule.

• the project shares, i.e., the list of projects the volunteer is ready to work for and which
priorities he/she assigned to each project.

A collection of volunteers is denoted by V.

In our modeling, we consider the volunteers to be passive and to only provide resources.
We will see later how their welfare can be accounted for but in a first approximation, they are
considered to be completely passive.

We now define the main characteristics of BOINC projects (the modeling of the whole system
is depicted in Fig. 7.1.
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Figure 7.1: Modeling the whole BOINC system. Continuous and burst projects share resources
according to the BOINC distributed sharing mechanism and to the project configuration param-
eters.

Definition 7.2 (Project Pi). A BOINC project is characterized by the following parameters:

• wi [MFLOP .task−1] denotes the size of a task, i.e., the number of MFLOP s required to per-
form a task. We assume that the size of the tasks of Pi is uniform. This is an approximation,
but it generally holds true for many projects at the time scale of a few weeks.

• bi [task .batch−1] denotes the number of tasks within each batch. Again, we assume that all
batches of a given project have the same size. This is a rather strong assumption for projects
like GridBOT [SSGS09] but we consider this as reasonable in a preliminary study such as
the one we propose. Furthermore, since we are not interested yet in how a given project
should prioritize its bursts depending on their size, this assumption should not really affect
our conclusions.

• ri [batch.day−1] denotes the input rate, i.e., the number of batches per day. Again, we
assume this is fixed and we neglect the potential bursts and off-peak periods that may arise
at the scale of the week or of the month. Also, we also assume that ri, bi and wi are such
that they do not fully saturate the system, i.e., such that a batch always ends before the
submission of a new one. Indeed, as we previously explained, we are not interested yet
in how a given project should prioritize its bursts. We only focus on how the different
projects interfere with each others so the previous assumptions should not be harmful to
this respect.

• Obj i is the objective function of the project. Depending on the nature of the project, it
could be either the throughput %i, i.e., the average number of tasks processed per day , or
the average completion time of a batch αi.

• qi is the quorum, i.e., the number of successfully processed results that have to be returned
before a task can be considered a valid. In our experiments, we assume that qi is always
equal to 1.

A project Pi is thus a tuple (wi, bi, ri,Obj i) and a project instance is thus a collection of projects
P = (P1, . . . , PK). The set of all such possible project instances is denoted by P.

Using the game theory terminology, projects will be referred to as players. Along the same
lines, the term strategy is used to account for the set of options that players have and that may
influence the sharing of the available resources.
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Definition 7.3 (Strategy Si). The server of each project can be configured with specific values
that directly influence the performance of the project. In our study, we focused on the following
parameters:

• πi is the task work send policy [KAM07] used by the server upon reception of a work
request. When a client connects to the server, it asks for enough work to keep him busy for
a period of time (e.g., one day). Then, it is the server that determines how many tasks to
send. The simplest strategy πcste=c sends a fixed amount (c) of tasks, whatever the state of
the client and of the server. In this simple strategy, c could be determined from the average
task duration and the requested amount of work. More elaborate work send policies like
saturation (πsat) and EDF (πEDF ) have been introduced in Section 7.1.2.

• σi is the slack [KAM07]. This value is used to determine the deadlines assigned to tasks
upon submission to clients. For example, if the average computation time of a task on
a dedicated standard reference machine is one hour, then a fixed slack of 2 would re-
sult in a deadline of two hours. The simplest strategy σcste=s means that a fixed slack
of s is used. In practice, more elaborate strategies, like adapting the slack to volunteers
speed/availability/reliability or to the progress of the batch, could be used but our prelim-
inary study does not explore such possibilities.

• τi is the connection interval [HAH09] and indicates clients how often they should recon-
nect to the server. This parameter influences on how fast volunteers realize that new tasks
need to be processed for a burst project. In our experiments, this parameter ranges from 12
minutes to 30 hours.

• γi is the replication strategy [KCC07]. This replication strategy is completely different from
the replication used to reach a given quorum. γi is used to avoid straggler volunteers to
delay the completion of a batch. Therefore, the strategy γcste=r allows to submit at most
r replicas of the same task and whose deadlines have not expired. In our experiments,
this parameter ranges from 0 to 8. Again, smart strategies adapting to the reliability of
volunteers and to the progress of the batch could be used but our preliminary study does
not explore such possibilities.

Using game theory terminology, the strategy Si of a project Pi is thus a tuple (πi, σi, τi, γi) and the
set of all possible strategies for all projects is denoted by S.

Definition 7.4 (Outcome O). Once a set of project P has decided a given strategy S, the resources
of a given set of volunteers V are shared through the BOINC scheduling mechanisms.
The outcome O(V, P, S) is the set of all information about completion of tasks and batches from
different projects. In the following, when needed, we will denote by Oi the restriction of O to
information related to Pi.
From this outcome, we can compute the following values:

• Throughput of continuous projects. If Pi is a continuous project, then we can compute the
total number of tasks from Pi that have been processed over a given time period.

• Average batch completion time. If Pi is a burst project, then we can sum the time needed
to complete each batch (from the arrival of the batch in the system to the completion of the
last finishing task of the batch) and average it over the total number of batches that have
been submitted over a given time period.

• Waste. Sometimes, tasks fail to be completed before their deadlines. This can happen be-
cause the volunteer’s machine was too slow, or because it went unavailable for a long time,
or maybe even because the slack of the project was too tight. In such cases, the task is often
resubmitted and the client may not get reward for it. The time spent working on missed
tasks is thus wasted both from the volunteer and project perspectives.



82 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

For a given project Pi and a given volunteer Vj , we denote the waste by Wi,j , the ratio of
tasks from Pi missed by Vj over the total number of tasks he/she received from Pi.

Similarly the waste Wi of Pi denotes the ratio between total number of tasks from Pi missed
by volunteers over the total number of tasks.

From a given outcome, we need to define the satisfaction (or utility using the game theory ter-
minology) of each player. In our context, depending on the nature of the project, the satisfaction
is based either on the effective throughput or on the average batch completion time. Yet, these
two metrics do not express in the same units at all. One of them is to be maximized (the through-
put) whereas the other one is to be minimized (the average batch completion time). Therefore, we
propose to translate these two metrics into a common one: the cluster equivalence metric. The
cluster equivalence metric was proposed in [KTB+04] in the context of throughput optimization
and represents the number of dedicated standard reference machines that would be needed to
achieve the same performance. This metric can thus be computed for both types of projects, only
with a different formula.

Definition 7.5 (Cluster equivalence CE ). We denote by W the performance (in MFLOP .s−1) of
the reference machine chosen to estimate the CE . Depending on the objective of project i, its
cluster equivalence can thus be defined either as

CE continuous =
TasksDone · wi
W · TotalT ime

or as CE burst =
bi · wi
W · αi

,

where αi is the average batch response time of project Pi.

We can now define the utility of projects easily:

Definition 7.6 (Utility Ui). The utility of Pi is equal to its cluster equivalence:

Ui(V, P, S) = CEObj i

(
Obj i(Oi(V, P, S))

)
It is thus very important to understand here that the utility of Pi depends on both its own strategy
Si, but also on the strategy choices made by the other projects.
In the following, U(V, P, S) denotes the utility vector of all projects.

The utility of a project is thus what it should aim at maximizing. Yet, as it has been observed
in the context of GridBOT [SSGS09], projects should also try to ensure that the waste they cause
to other projects is not too large. Otherwise volunteers may consider this as selfish and decide
to sign off from Pi. Therefore, even though we do not model such situations and consider the
volunteers to be passive and do not put them in the decision loop, the waste (not only Wi but
rather W as a whole) should be considered as a second objective to be minimized.

In the remaining of this work, we investigate the existence, the computation, and the effi-
ciency of Nash equilibria. Even though the BOINC project administrators do not necessarily
keep tuning the parameters of their project, they certainly monitor the outcome and we think
that such equilibria can be considered as a good approximation of what would happen in reality.

7.3 Simulation Results

The outcome of such complex scheduling algorithms is extremely hard to put into equations and
the outcome of the dynamic of thousands of volunteers running it is even more difficult to model.
Therefore, we conducted a series of SIMGRID simulations to analyze the performance of many
independent players sharing BOINC resources.

We implemented a simulator of the BOINC architecture, including both client and server
components [31]. Based on reading of both articles describing BOINC and its freely available
source code, we designed our simulator so as to take the main features of BOINC into account
and thus perform simulations as realistic as possible.
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Since our study is multi-parametric (deadline, connection interval, . . . ), multi-player (burst
and continuous projects) and multi-objective (throughput and response time), we had to bound
our parameter space and to perform a careful study of parameter influence on global system
performance.

We arbitrarily decided to restrict our study to the following project configurations:

• Burst projects receive one batch per day, comprising only short-live jobs (a few hundreds to
a thousand depending on the external load) which take about 1 hour running on a standard
machine.

• Continuous projects have hundreds of thousands of CPU-bound jobs. We used a typical
configuration from SETI@home project, with tasks of 30 hours1. The deadline of such tasks
is set up to 300 hours as it is commonly accepted to provide good results [KAM07].

The duration of each simulation is equivalent to about 140 days. It is important to have a very
long period to ensure the effectiveness of the long-term share of BOINC system.

The outcome of the sensibility analysis is summarized in Section 7.3.1 but a detailed version
can be found in [28]. In particular, we explain the impact of burst projects on continuous projects
Last, we explain in Section 7.3.2 how we restrict our parameter space and how we sample the
utility set and search for Nash equilibria.

7.3.1 Sensibility Analysis

In such experiments, continuous projects are considered as passive since their parameters are
fixed to sensible values for such projects (i.e., large slack and connection interval). Therefore, we
started by checking the influence the parameters of a single burst project on the performance of
the whole system:

• The connection interval had almost no influence at all, neither on waste nor on CE (cluster
equivalence), so it was finally set to 2 hours in all simulations;

• The slack is a critical parameter. A loose slack leads to a very poor response time, which
easily result in a CE 6 times lower than the one obtained with a tight slack. Such values
should thus be disregarded by burst projects. Our simulations clearly show that the optimal
choice for a burst project is to have deadlines close to the actual job completion time on
a standard machine (around 1.1 hour for 1 hour jobs). However, too tight deadlines (≤ 1
hour for 1 hour jobs) result in important resource waste and in CE reduction for all projects.
Carefully setting such parameter is thus critical.

• Fortunately, the optimal configuration of the burst project does not degrade significantly the
CE of continuous projects, which augurs well for coexistence of such projects. Furthermore,
although the waste for continuous projects remains low when burst projects select their
optimal parameter set (less than 3% compared to an absolute minimum of 1.8% in our
simulations), the waste of burst projects is extremely high (around 40–60%) when using
the simple scheduling strategy πcste where servers satisfy every request sent by clients,
regardless of their potential ability to process or not the task in due date.

• Overall, there is little difference in term of CE (both for burst and continuous projects) when
switching from πcste to the saturation πsat or EDF πEDF scheduling strategy. Both elaborate
scheduling strategies give every project roughly the same CE and a rather low waste (except
for burst projects, which is about 12%). We think that πEDF may reveal superior to πsat in
more complex situations but this did not appear in our simulations. The fixed πcste strategy
allows to obtain a slightly better CE, due to the high number of tasks sent, but incurs a
very important waste (around 50% in the optimal configuration). Indeed, in most of our
experiments, we observed that this naive strategy often thrashes the system even though

1See http://www.boinc-wiki.info/Catalog_of_BOINC_Powered_Projects

http://www.boinc-wiki.info/Catalog_of_BOINC_Powered_Projects
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it is the most efficient way for burst projects to steal computing resources from continuous
projects. Servers should thus disregard this scheduling strategy as it wastes resources and
could disappoint clients, since they may not get credits for missed tasks. The important
waste of this strategy was already identified by Kondo et al. [KAM07] but it had only be
compared with the one of the EDF strategy which is considered to be too costly and is thus
often not activated. The default πsat used in most deployed BOINC projects seems thus a
reasonable choice. Similar issue about unsatisfied users was also reported in [SSGS09].

• When we investigated the impact of speculative replication, in our simulations, allowing
up to 2 replicas can improve performance of burst projects about 7% using 2 replicas while
further replicas lead to a CE decrease. Unintuitively, such replication also decreases waste
from 56% to 48% (with the πcste=1 strategy).

• Finally, although it was already known [KAM07] that the fixed strategy lead to an unac-
ceptable waste, it was not known (to the best of our knowledge) that it could also increase
the waste of other projects. To illustrated this, we replaced continuous projects by burst
projects using the fixed scheduling strategy. Although the waste of burst project remains
stable (50-60%), using more burst projects also considerably increases the waste of continu-
ous projects (from 3% to over 50%). This shows that the current protocol is unable to enforce
fairness and project isolation when using burst projects. Burst projects may thus have an
important influence on waste of others projects and hence can cause users dissatisfaction
since they will miss more tasks and loose credits.

As a conclusion, the only reasonable configuration for a burst project is to use a replication
factor around 2, a connection interval of 2 hours, the saturation πsat scheduling strategy (to min-
imize waste) and to carefully tune its slack. Although there are definitely interactions between
these different parameters, it remains extremely limited compared to the influence of the slack
and this preliminary sensibility analysis provides sound justification for focusing on the simpler
problem where each burst project only tunes its slack. To further ease the analysis, we assume
in the next section that burst projects are identical and thus that, by symmetry, they will use the
same strategy.

7.3.2 Utility Set Sampling and Nash Equilibrium

Beside the high waste of the burst project, the previous study seems to indicate that both kind
of projects can seamlessly share resources. Yet, this nice behavior is largely due to the fact that
the burst project does not exhaust available resources. It is thus always important to check that
the input rate of burst projects remains smaller than what the share they receive allows them
to process. Otherwise (i.e., when arrival rate, batch size, job duration, or the number of burst
projects become too large), the system is saturated and the response time of burst projects artifi-
cially grows to infinity, which results in absurdly low CE. In the following experiments, we thus
always make sure that the system is not saturated.

Our simulations showed us that the negative effect of burst projects may become more visible
when resource become scarce (i.e., when the system is close to saturation). Hence, we first present
a configuration with 6 projects among which 4 of them are burst projects receiving a batch of
900 1 hour tasks per day. In this configuration, continuous projects use 24h and 30h tasks with a
deadline of 336h and 300h (these values are representative of the Einstein@home and SETI@home
projects, respectively).

Although best-response strategy does not necessarily converge, it is known that upon conver-
gence, its limit state is a Nash equilibrium. Furthermore, since in our particular setting, all our
burst projects are identical, they should all have the same configuration at equilibrium. There-
fore, we apply the following methodology. Assuming burst projects agree on a given value of
slack σcons, we compute the CE cons of burst projects (consensus value in Fig. 7.2). For a given
value of slack σcons, a dissident burst project may increase its CE by unilaterally changing its
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Figure 7.2: Illustrating the willingness to depart from a consensus. The consensus line represents
the CE CE cons of each burst project if they agree on a given deadline σcons. The dissident line
represents how much a dissident can improve its CEdis by selecting a different deadline σdis.
The impact of such a strategy modification on the CE of other burst projects is depicted by the
line CEnon−dis.

slack to a different value σdis. We compute this value so that it maximizes the CEdis of the dissi-
dent burst project. Yet, this strategy modification generally results in a decrease of the CEnon−dis
of the other burst projects. Both CEdis and CEnon−dis are represented on Fig. 7.2. For example
when σcons = 1.15 (i.e., a value close to the optimal one found in the previous section), we see
that a burst project can change its CE from 71.3 to 77.5 by changing its slack, thus causing a
CE decrease of 2 for every other burst projects. As a consequence, even though this deadline
leads to the largest CE cons, the other burst projects should disregard σcons = 1.15 and switch to
a better position as well. Interestingly, the three curves join for σi = 2.45, which is thus a Nash
equilibrium.

Fig. 7.3 depicts for a given σcons, the corresponding σdis that leads to the best CEdis. There-
fore, if all projects used a simplistic best response strategy, we can follow the dynamic of the sys-
tem and see that it converges (when initial σinit ∈ [1.8, 2.45]) to the Nash equilibrium σNE = 2.45,
that leads to a CENE of 60.7 for burst projects. Yet, we can read on Fig. 7.2 that a common choice
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Figure 7.3: Best response dynamic: this plot depicts for a given σcons, the corresponding σdis to
which burst projects tend to use. With such information, it is possible to depict the outcome of a
best-response strategy.
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Figure 7.4: Sampling utility set and illustrating the inefficiency of the Nash equilibrium. 2 contin-
uous projects and 4 burst project with 900 1 hour tasks per day each. CE could be improved by more
than 10% for all projects by collaboratively choosing σcons = 1.15 instead of the NE (σNE = 2.45).

of σcons = 1.15 (reference point) would have lead to a CE cons = 71.3 > CENE . Still, it could be
the case that this loss of efficiency did benefit to the continuous projects. This is unfortunately not
true as can easily be checked by representing the outcome of all such situations in the utility space
(Fig. 7.4). With such a representation, we can check that the Nash equilibrium is indeed Pareto
inefficient and that the CE could be improved by more than 10% for all projects by collaboratively
choosing σcons = 1.15.

Such inefficiencies can be observed for many different configurations and the utility set sam-
ples seem to always have more or less the same structure. For example, when using a config-
uration with 8 projects among which 7 of them are burst projects receiving a batch of 600 tasks
per day, we also obtain an inefficient Nash equilibrium (see Fig. 7.5). Note that in this exam-
ple, the continuous project uses 30 hours tasks with a deadline of 300 hours, which is a typical
configuration from the SETI@home project.

Again, with such a representation, we can check that the Nash equilibrium is indeed Pareto

Better configuration (10%,7%)

NE

1

1.15
1.25

2.7
2.75
2.8

2.85
2.9

2.95
3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

3.45
3.5

2.55
2.6

2

2.35

1.95

2.65

2.05

1.85
1.9

2.1
2.15
2.2

2.25
2.3
2.4

2.45
2.5

1.45
1.5

1.55
1.6

1.65
1.75
1.7
1.8

1.3
1.35
1.4

1.1
1.05

1.2
3

305

310

315

320

325

330

335

340

345

350

355

34 35 36 37 38 39 40 41

C
E

-C
on

ti
nu

ou
s

CE - Burst

Burst - Deadline(h)

Figure 7.5: Sampling utility set and illustrating the inefficiency of the Nash equilibrium. 1 con-
tinuous project and 7 burst project with 600 1 hour tasks per day each. CE could be improved
by more than 10% for burst projects and by 7% for the continuous project by collaboratively
choosing σcons = 1.25 instead of the NE (σNE = 2.45).
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inefficient and that the CE could be improved by 10% for burst projects and by 7% for continuous
project by collaboratively choosing σcons = 1.25.

The main conclusion to draw from this set of experiments is that burst projects not only step
on each others toes but also impact rather negatively the efficiency of continuous projects (not
even speaking about their waste).

7.4 Conclusion and Open Issues

In this work, we have studied the situation where burst projects interested in response time share
resources with classical throughput-oriented projects. We perform a game theoretic modeling
and experimental analysis of such system, in order to verify the potential performance issues
raised by such complex configurations. Such game theory concepts are rarely applied in such
“complex” systems. Indeed, our modeling considers a very large strategy space, a rather large
number of players, and a multi-objective optimization problem since project should not only
optimize their throughput or their response time but also their waste (i.e., the fraction of tasks
missing their deadline) and the waste they incur to others.

Our experimental analysis relies on thorough and realistic simulations and enables us to study
the influence of the main server parameters (slack, replication, work sending strategy, . . . ) in a
multi-player context. This study illustrates that the current scheduling mechanism is unable to
enforce fairness and project isolation (burst projects may dramatically impact the performance of
other projects).

In particular, we show that when such burst projects share volunteer machines with con-
tinuous projects, the non-cooperative optimization of their project configuration may result in
rather inefficient sharing of resources. We exhibit situations where every project could use re-
sources 10% more efficiently if burst projects agreed on some of their scheduling parameters.
Even though this result should not surprise people acquainted with game theory, it is, to the
best of our knowledge, the first time inefficient Nash equilibrium is exhibited in the context of
Volunteer Computing systems. It is also interesting to note that these inefficiencies occur even
though the whole system relies on a protocol where each volunteer produces a locally fair and
efficient sharing of its computing resources. Such results can be linked with those presented in
Chapter 3 except that we do not assume an over-simplistic resource model but use a very realistic
simulation instead.

From a theoretical point of view, the existence of inefficient Nash equilibria may lead the
system to even more undesirable behavior, like Braess’s paradox where the addition of resources
may degrade the performance of every project. Note that game theory provides many tools
(correlated equilibria, pricing mechanisms, Shapley value . . . ) to cope with and improve such
situations and that some of them may be used to implement a form of cooperation (possibly
distributed) between servers.

Now, from a practical point of view, the results of this study are subject to the following
reservations:

• Inefficiency of Nash Equilibria: We exhibit situations where every project could use re-
sources 10% more efficiently if burst projects agreed on some of their scheduling parame-
ters. One may wonder whether it would be possible to find situations that are even more
inefficient than this. In our study, we simplified the analysis by assuming that burst projects
are identical so that, by symmetry, they use the same strategy. I think a higher degree of
heterogeneity would probably lead a higher inefficiencies. Also, note that these inefficient
situations correspond to setups which are close to saturation. Practical situations where
burst projects compete with continuous projects are not common and our simulation in-
stanciation is thus somehow arbitrary. It is thus quite difficult to evaluate from our study
how much will be loss whenever such situation will be more common, and whether it
will be worth focusing on such inefficiencies or not. Additional information (in term of
workload characterization) are thus required to decide on sound basis whether the BOINC
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architecture should be modified to prevent such situations to happen.

• Relevance of Nash Equilibria: As David Anderson pointed out, BOINC is typically a
production system where project administrator are very conservative. In practice, many
projects still run an old and custom version of the server and do not benefit from the latest
developments. The EDF server policy is generally considered to be too costly and is thus
not often not activated but in most cases it was actually never tried. It is thus quite unlikely
that project administrators will spend time playing with server parameters and over-tuning
them. However, if the slack choice is critical, coming up with a good default value would
be very useful. From a game theory perspective, David Anderson who manages the BOINC
source code would serve as an oracle and would provide project administrators with the
right value that is globally efficient. One may thus wonder how to compute such good
default parameters. . .

• Umbrella projects: setting up and administrating a BOINC server can time- and resource-
consuming. Therefore, in the last years, BOINC servers have evolved to accommodate
several projects at the same time. Such projects are called umbrella projects and such cen-
tralization could provide an effective way to achieve a fair and efficient resource sharing
between different projects.



Chapter 8

Ongoing and Future Work

Despite all our efforts, large computing platforms are inherently heterogeneous and, due to their
cost, shared by several users. These two aspects are very difficult to model and make optimiza-
tion of such systems particularly challenging.

As illustrated by the results presented in this part, moving from discrete optimization prob-
lems to somehow continuous optimization problems (through steady-state scheduling, divisi-
bility or preemption) is a very effective way to get rid of somehow artificial complexity issues
that prevent focusing on key difficulties. In my PhD thesis, we used such approach to address
scheduling problems where platform exhibit a high degree of heterogeneity (both in term of com-
putation and communication speed or of topology).

Following this path, the subsequent problems I have worked on included both an important
platform heterogeneity as well as a notion of users. To this end, we introduced in our modeling
game theory notions and we adapted to our setting optimization tools (e.g., Lagrangian opti-
mization and gradient descent) whose use is more classical in the networking community. Such
game theory notions also completely changed our perspective on these problems.

In particular, it raises a question that was not really clear to me twelve years ago. Steady-
state optimization does not take time into account while response time optimization requires
finite amount of workload and termination of activities. Theses two kind of scheduling problems
are generally addressed in quite different ways with different formalism and techniques. Yet,
in practice, both make sense and we have mixtures of such workloads. I think understanding
how to combine these two aspects in a sound way in a single optimization problem will improve
our understanding and help us answering the general question of fair and efficient resource sharing
between steady-state oriented and response time oriented workloads.

Interestingly, although I was initially very excited by the stretch notion (see Chapter 6), I
am not convinced anymore that this is the right approach to handle user and task heterogene-
ity. Indeed, the rationale for such normalization is to obtain a value that reflects the slowdown
perceived by users (or tasks) independently of their need and which also somehow reflects the
resource share they obtained. I doubt task-based normalization can help defining a sound fair
resource share.

• First, a user should not care about the way resources given to an other user are used. It
is every user’s duty to determine what is the best way to use resources that are allotted
to him. Therefore, using a renormalization like Cluster Equivalence (see Chapter 7) seems
quite meaningful to me. Obviously, Cluster Equivalence values are very different for a
throughput oriented user and for a response time oriented user but resource-based fair-
ness notion like Nash Bargaining Solution seamlessly handle such heterogeneity of needs
between users.

• Second, I doubt a task-based normalization will ever allow to account for temporal vari-
ability of resource pressure. I think this notion of resource price that appeared when using
Lagrangian optimization (see Chapter 5) and which reflects the instantaneous contention

89



90 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

of a given resource is very elegant and offers many advantages (e.g., in term of distribution
and separation of concerns). Although, we could easily use a similar idea related to time
and let users bid on resources, this would provide a mechanism and not a clear goal to
achieve, which is I think the most difficult part.

In the next years, I intend to revisit the centralized response time optimization problem (see
Chapter 6) in particular in the context of BOINC as it is a setting where the multi-user (project)
and the mixed throughput/response time workload characteristics are naturally present. In
the last three BOINC workshop, I have discussed with many colleagues like David Anderson
(BOINC’s designer and main developer), Kevin Reed (responsible of the World Community Grid
project), Francisco Brasileiro (OurGrid’s designer), Wenjing Wu (responsible of the CAS@home
project), Derrick Kondo, and Lionel Eyraud about how to reorganize the BOINC scheduler to
handle several projects at once (umbrella projects) and response-time oriented projects. Lack of
time and the inability to find a satisfying optimization objective somehow stopped me to test the
different scheduling ideas we came up with. This is unfortunate as I think it is possible to come
up with very pragmatic and effective techniques thanks to the insights gained by theory. Another
excuse for not applying these ideas right away is probably the fear to interfere with a production
system. Again, looking back, this is an error as I am convinced it would allow to quickly improve
the experience of project administrators and widen the usage of BOINC.

Obviously all the questions and solutions related to these scheduling problems are not spe-
cific at all to the BOINC setting. Many articles raise similar issues in the context of map-reduce
applications or of cloud systems but I am not sure these contexts really cast a new light on these
problems nor help answering them. The context of BOINC seems however particularly interest-
ing to me, not only because of its maturity and open-source spirit, but because it offers a diversity
of use cases where workload can be well characterized, which is essential to a sound performance
evaluation.
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Chapter 9

Context

This chapter builds on an article recently published in JPDC’14 [3] with Henri Casanova , Arnaud
Giersch, Martin Quinson, and Frédéric Suter.

9.1 Motivation

While large-scale production platforms have been deployed and used successfully in many do-
mains (grid computing, peer-to-peer systems, high performance computing, volunteer comput-
ing, . . . ), many open fundamental questions remain. Relevant challenges include resource man-
agement, resource discovery and monitoring, application scheduling, data management, decen-
tralized algorithms, electrical power management, resource economics, fault-tolerance, scalabil-
ity, performance, . . . Regardless of the specific context and of the research question at hand,
studying and understanding the behavior of applications on distributed platforms is difficult.
The goal is to assess the quality of competing algorithmic and system designs with respect to
precise objective metrics. Theoretical analysis like the ones we did in Chapters 2- 6 are typically
tractable only when using stringent and ultimately unrealistic assumptions. As a result, relevant
research is mostly empirical and proceeds as follows. An experiment consists in executing a soft-
ware application on a target hardware platform. We use the term “application” in a broad sense here,
encompassing a parallel scientific simulation, a peer-to-peer file sharing system, a cloud comput-
ing brokering system, etc. The application execution on the platform generates a time-stamped
trace of events, from which relevant metrics can be computed (e.g., execution time, throughput,
power consumption). Finally, research questions are answered by comparing these metrics across
multiple experiments.

One can distinguish three classes of experiments. In in vivo experiments an actual imple-
mentation of the application is executed on a real-world platform. Unfortunately, real-world
production platforms may not be available for the purpose of experiments. Even if a testbed
platform is available, experiments can only be conducted for (subsets of) the platform configu-
ration at hand, limiting the range of experimental scenarios. Finally, conducting reproducible in
vivo experiments often proves difficult due to changing workload and resource conditions. An
alternative that obviates these concerns is in vitro experiments, i.e., using emulation (e.g., virtual
machines, network emulation). A problem with both in vivo and in vitro experiments is that
experiments may be prohibitively time consuming. This problem is exacerbated not only by the
need to study long-running applications but also by the fact that large numbers of experiments
are typically needed to obtain results with reasonable statistical significance. Furthermore, when
studying large-scale applications and platforms, commensurate amounts of hardware resources
are required. Even if the necessary resources are available, power consumption considerations
must be taken into account: using large-scale platforms merely for performance evaluation ex-
periments may be an unacceptable expense and a waste of natural resources. The third approach
consists in running (an abstraction of) the application in silico, i.e., using simulation. This ap-

93



94 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

proach is typically less labor intensive, and often less costly in terms of hardware resources,
when compared to in vivo or in vitro experiments. Consequently, it should be no surprise that
many published results in the field are obtained in silico.

An important observation is that simulators used by parallel and distributed computing re-
searchers are domain-specific (e.g., peer-to-peer simulators, grid simulators, HPC simulators). In
some cases, domain-specificity is justified. For instance, wireless networks are markedly differ-
ent from wired networks and in this work, for instance, we only consider wired networks. But,
in general, many simulators are developed by researchers for their own research projects and
these researchers are domain experts, not simulation experts. The popular wisdom seems to be
that developing a versatile simulator that applies across domains is not a worthwhile endeavor
because specialization allows for “better” simulation, i.e., simulations that achieve a desirable
trade-off between accuracy and scalability.

Indeed, in our context, two key concerns for simulation are accuracy (the ability to run in silico
experiments with no or little result bias when compared to their in vivo counterparts) and scala-
bility (the ability to run large and/or fast in silico experiments). A simulator relies on one or more
simulation models to describe the interaction between the simulated application and the simu-
lated platform. There is a widely acknowledged trade-off between model accuracy and model
scalability (e.g., a continuous model based on equations may be less accurate than a complex
event-driven procedure but its evaluation would also be less memory- and CPU-intensive). Sim-
ulation has been used in some areas of Computer Science for decades, e.g., for microprocessor
and network protocol design, but its use in the field of parallel and distributed computing is less
developed. While the scalability of a simulator can be easily quantified, evaluating its accuracy is
painstaking and time-consuming. As a result, published validation results often focus on a few
scenarios, which may be relevant to a particular scope, instead of engaging in a systematic and
critical evaluation methodology. Consequently, countless published research results are obtained
with simulation methods whose accuracy is more or less unknown.

Worse, most simulators developed in this area are only intended for use by their own devel-
opers. Some are sometimes made available to the community but prove short-lived or barely
usable for another study than the one they were initially designed for. As a consequence, to
date, most simulation results in the parallel and distributed computing literature are obtained
with simulators that are ad hoc, unavailable, undocumented, and/or no longer maintained. As
an illustration, in 2013, the authors in [BFS+13] point out that out of 125 recent papers they sur-
veyed that study peer-to-peer systems, 52% use simulation and mention a simulator, but 72% of
them use a custom simulator. Most published simulation results are thus impossible to repro-
duce by researchers other than the authors and there is a strong need for recognized simulation
frameworks by which simulation results can be reproduced and further analyzed.

As explained in Section 1.2.2, Simgrid was originally developed by Henri Casanova who in-
spired from code and ideas from the different scheduler simulators developed in the AppLeS
group at UCSD into an open-source toolkit. The initial motivation was clearly to avoid oth-
ers reinventing the ("squared") wheel by providing the "grid" scheduling community a tool that
would be suited to its needs. During my PhD, I have extended this tool for my own research
and taken over its development, first alone, then with Martin Quinson, and later with other col-
leagues such as Frédéric Suter as the user community was growing and more recently Arnaud
Giersch. In that sense, SimGrid somehow started like most other simulation projects, i.e., by
distributed/parallel computing researchers who did not know much about simulation and per-
formance evaluation. However, it fundamentally differed from the plethora of other distributed
and parallel computing simulators with respect to at least the three following aspects:

• Open-source and long-term support: It was clear to us that releasing code and providing
public access to the revision system was the bare minimum but that it was far from sufficient
to benefit from free software development. Growing a user and developer community
requires both high quality software and adherence to values carried by a long-term project,
which is especially difficult in a research context where quick and dirty prototypes are
the fastest way to answer questions and to publish articles. The credit for achieving this
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clearly goes to my colleagues, Martin Quinson and Frédéric Suter. Martin Quinson always
considered as a major priority for SimGrid to be a high quality software and worked hard
to make sure it would be the case. SimGrid has more than 500 non-regression tests, nightly
builds on a dozen of different architectures/operating systems, and although the favorite
target is recent linux OS, it works both on Mac OS X and windows. The only way to ensure
a long term support is to grow a sufficiently large user base, which again is quite difficult in
a research context and requires to reach a critical mass. This is why when SimGrid started
moving from a simple prototype to also a research project in itself, our sole efforts were not
sufficient and we needed additional funding and manpower. Frédéric Suter and Martin
Quinson always made sure that others would know about our work and that it would be
usable despite all my efforts to temper their enthusiasm and pretend it was not ready yet.
Thanks to their help, we managed to conduct two very large ANR projects whose outcomes
and success was far beyond my expectations. SimGrid is thus clearly a team project that
has built on the strengths of several individuals sharing a common goal of improving their
practices and the one of their community, which in turn attracted contributors believing
in such an objective. This definitely makes SimGrid different from most other simulation
projects.

Although I do not feel I have been a key contributor to the open-source aspect of SimGrid,
I have definitely contributed to its scalability and its accuracy.

• Accuracy: While the scalability of a simulator can be easily quantified, evaluating its accu-
racy is painstaking and time-consuming. Although many simulation projects do not even
consider such issue, Henri Casanova and I had such concerns about 13 years ago and how to
"validate" our model was not clear at all by then. Since then, I have had the chance to direct
the PhD thesis of Pedro Velho on this very subject and to pursue this effort with Augustin
Degomme who worked a research engineer with me and Luka Stanisic who is working as
PhD student with me. Mainly, I finally understood that validation (i.e., somehow proving
that the simulation would be accurate) was illusive and that only thorough invalidation
was possible. The experience gained with Pedro Velho in the context of wide area networks
allowed us to extend our approach to the HPC context with Augustin Degomme and Luka
Stanisic. I quickly describe some of the results we obtained in Chapter 10.

• Scalability: Simulation speed has been a key preoccupation in SimGrid since its creation as
one of the main motivation was rapid prototyping of schedulers. Therefore, SimGrid builds
on simple and pragmatic models as well as an efficient C implementation. SimGrid is now
in its third major version, which could actually as well be its fourth or fifth major version
if we consider a major version to be a major rewrite of the whole code. Achieving highly
scalable simulation requires advanced skills both from the algorithmic and programming
point of view, but also from the workload characterization and modeling perspective and
such skills are hardly found within a single person. Along the years, we have gained ex-
perience that make SimGrid far more scalable than most other simulators of many fields. I
quickly describe some of the techniques we used and results we obtained in Chapter 11.

SimGrid is now a 15 years old project and has become a major player in the field. Interestingly,
SimGrid is not restricted at all to grid computing studies anymore. A major outcome of the
ANR projects USS-SimGrid and SONGS is that SimGrid also applies to the study of peer-to-peer
systems, volunteer computing systems, cloud computing systems and even high performance
computing system. This versatility was never a hindrance but rather an asset as it allowed us to
reuse the experience gained in other domains and to achieve

9.2 The SimGrid Architecture

Fig. 9.1 shows the main components in the design of SIMGRID and depicts some of the key con-
cepts in this design. The top part of the figure shows the three APIs through which users can
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Figure 9.1: Design and internals of SIMGRID.

develop simulators. The MSG API allows users to describe a simulated application as a set of
concurrent processes. These processes execute code implemented by the user (in C, C++, Java,
Lua, or Ruby), and place MSG calls to simulate computation and communication activities. The
SMPI API is also used to simulate applications as sets of concurrent processes, but these processes
are created automatically from an existing application written in C or Fortran that uses the MPI
standard. SMPI also includes a runtime system, not shown in the figure, that implements nec-
essary MPI-specific functionalities (e.g., process startup, collective communications). MSG thus
makes it possible to simulate any arbitrary application, while SMPI makes it possible to simulate
existing, unmodified MPI applications. The mechanisms for simulating the concurrent processes
for both MSG and SMPI are implemented as part of a layer called SIMIX, which is a kernel (in the
Operating Systems sense of the term) that provides process control and synchronization abstrac-
tions. The set of concurrent processes is depicted in the SIMIX box in the figure. All processes
synchronize on a set of condition variables, also shown in the figure. Each condition variable
corresponds to a simulated activity, computation or data transfer, and is used to ensure that con-
current processes wait on activity completions to make progress throughout (simulated) time.
The third API, SimDAG, does not use concurrent processes but instead allows users to specify an
abstract task graph of communicating computational tasks with non-cyclic dependencies.

Regardless of the API used, the simulation application consists of a set of communication
and computation activities which are to be executed on simulated hardware resources. Com-
pute resources are defined in terms of compute capacities (e.g., CPU cycles per time unit). They
are interconnected via a network topology that comprises network links and routing elements,
defined by bandwidth capacities and latencies. All resources can be optionally associated with
time-stamped traces of available capacity values including possible downtime. An example spec-
ification of available resources is depicted in the bottom-right of Fig. 9.1, highlighting three net-
work links (L1, L2, Lm) and one compute resource (P1).

The simulation core, i.e., the component that simulates the execution of activities on resources,
is called SURF and is shown in the bottom-left of the figure. Each activity is defined by a total
amount of work to accomplish (e.g., number of CPU cycles to execute, number of bytes to trans-
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fer) and a remaining amount of work. When its remaining amount of work reaches zero the
activity completes, signaling the corresponding SIMIX condition variable or resolving a task de-
pendency in SimDAG. Activity i corresponds to a variable, xi, which represents a resource share
used by the activity. A set of constraints over these variables, with one constraint per simulated
resource, then describes how the activities compete for using the resources. An example is shown
in the figure. The right-hand sides of each constraint is a resource capacity, denoted by Cx where
x is a given resource (e.g., CL2

is the capacity of network link L2). The first activity requires per-
forming 435 units of work, 372 of which remains to be performed at the current simulated date,
and is associated to variable x1. Variable x1 participates in two constraints, for resources L2 and
L1, meaning that in this example the first activity is a data transfer that uses network links L2 and
L1, among others. The third activity is also a data transfer, with 50 units of work remaining out of
664. This transfer uses links L1 and Lm, meaning that it shares the bandwidth capacity of L1 with
the first activity (as seen in the x1 + x3 6 CL1

constraint). The n-th activity uses links L2 and Lm,
and its corresponding variable xn thus appears in those two constraints. Finally, the second ac-
tivity in this example corresponds to a computation and its variable x2 appears in the constraint
x2 6 CP1 , showing that this resource is not shared with any other compute activity. Note that the
second and n-th activities in this example have yet to begin as their remaining works are equal to
their total works. Based on these constraints the simulation core computes resource allocations.

To this end, SIMGRID mostly uses a unified fluid model for simulating the execution of activi-
ties on simulated resources. This model is purely analytical so as to afford scalability by avoiding
costly cycle-, block-, and packet-level simulation of compute, storage, and network resource us-
age. Such “flow-level” models have been proposed in the networking literature, mostly to study
the theoretical behavior of TCP protocols. Inspired by these developments, in SIMGRID we use
a flow-level model for the purpose of cpu, disk and network simulation. In a flow-level network
model the individual packets of an end-to-end communication are abstracted into a single entity,
a flow, which is characterized by a data transfer rate, or bandwidth. This bandwidth depends on
the network topology and on the interactions with other ongoing network flows. It is assumed
that the flows have reached steady-state, and the goal is to define analytical bandwidth sharing
models that capture the bandwidth sharing behaviors of actual network protocols.

Formally, in the context of SIMGRID, given a resource r, and a set of simulated activities,A, the
model is specified by a set of positive linear constraints and a possibly non-linear optimization
problem:

MAXIMIZE f(a)
UNDER CONSTRAINTS{
∀r,
∑
a ∈ A using resource r %a 6 Cr,

(9.1)

where Cr denotes the capacity of resource r, and %a denotes the resource share allocated to ac-
tivity a. No particular assumption is done on the way activities are linked to resources, which
provides a lot of flexibility when modeling real systems. In practice (but not necessarily), the
objective function is often mina∈A %a, and corresponds to a popular bandwidth sharing model,
Max-Min fairness [BG96], by which the bandwidth allocation is such that increasing the alloca-
tion of any flow would necessarily require decreasing the allocation of a less favored flow.

Solving this optimization problem, which boils down to solving a (generally) linear system,
yields instantaneous resource shares to activities. Given these computed resource shares at sim-
ulated time t0, for all simulated resources, the SURF component of SIMGRID computes the first
activity that will complete, advances the simulated clock to that time, say t1, removes the com-
pleted activity from consideration, accounts for the progress of each activity given its resource
shares and the simulated elapsed time t1 − t0, and possibly adds newly created activities (by
yielding to the process whose activity just completed).

The optimization problem in Eq. (9.1) is at the core of the SURF component of SIMGRID (see
Fig. 9.1), which implements efficient algorithms and data structures to solve the corresponding
linear system quickly. The key aspect of this model is that it is does not only allow to easily
simulate coarse-grain characteristics of networks but also of CPU and storage provided a little
flexibility in optimization function and constraint definition.
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For example, fair sharing of cpu resource or of disk bandwidth is trivially modeled and even
compute priorities. The seek time is added as a fixed initial delay when advancing the simulation
clock in the same way are latency is accounted for when simulating network flows. Obviously,
the resource sharing pattern is much simpler for cpu and disk and does not require such a com-
plex formulation. Yet having a flexible unified formulation is precious and allowed us to reuse
optimization techniques and validity results when moving from a domain to an other unlike
what most other simulators could afford (see for example Fig. 12.5).

9.3 Related Simulators

Many other simulators have also been developed in the area of grid computing, most of which only
intended for use by their own developers (e.g., Bricks [TMN+99] or HyperSim [PUK03] for which
I have never been able to get access to the code). Some were made available to the community
but proved short-lived, such as OptorSim [BCM+03] or ChicSim [RF02]. Besides SIMGRID, the
other simulator widely used in grid computing research is GridSim [BM02]. Several simulators
like GSSim [KNOW07] have built on gridsim to provide higher-level abstractions.

More recently, simulators have been proposed for simulating cloud computing platforms and
applications. GroudSim [OPF10] is a framework that enables the simulation of both grid and
cloud systems. CloudSim [CRB+11] builds on the same simulation internals as GridSim but
exposes specific interfaces for simulating systems that support cloud services. To the best of
our knowledge many people who based their work on CloudSim or on GridSim ended up
modifyning the internals of the simulator although the proposed API suited their needs. iCan-
Cloud [NVPC+11] has been specifically developed to simulate cloud platforms and applications
at a possibly fine-grain level.

Some simulators have also been developed for simulating volunteer computing systems. BOINC [BOI]
is the most popular volunteer computing infrastructure today, and these simulators attempt to
simulate (parts of) BOINC’s functionalities. In fact, BOINC itself embeds in its source code a
simple time-driven simulator for running the actual client scheduler code in simulation mode.
The SimBA simulator [TKE+07] models BOINC clients as finite-state automata based on proba-
bilistic models of availability, and makes it possible to study server-side scheduling policies in
simulation. The same authors later developed EmBOINC [ETA09]. Unlike SimBA, EmBOINC
executes actual BOINC production code to emulate the BOINC server. SimBOINC [Kon07] goes
further and simulates the full BOINC system by linking the BOINC code with SIMGRID, thus
allowing for multiple servers and for the simulation of client-side scheduling. Due to BOINC
code restructuring and to the need to maintain SimBOINC in sync with BOINC, SimBOINC has
however been discontinued, which is why we did not build on it but rewrote our own modeling
of BOINC on top of SIMGRID in Chapter 7.

Another area in which simulators have been developed is peer-to-peer computing [BFS+13].
Most of these simulators trade off accuracy for scalability, so as to make it possible to simulate
up to millions of peers. For instance, it is common to simulate network transfers as fixed delays
since message count is a useful metric to evaluate peer-to-peer systems. PeerSim [MJ09] is likely
the most widely used simulators for theoretical peer-to-peer studies, and relies on simplistic (i.e.,
simple delay-based models) but scalable simulation models. OverSim [BHK07] builds on the
OMNeT++ [Var01] discrete-event simulation kernel and may thus rely on more realistic packet-
level network simulation. Several other simulators have emerged, such as P2PSim [GKL+05] or
PlanetSim [GPM+04], but they have been short-lived and are no longer maintained. It is thus
difficult to say whether more recent proposals, e.g., D-P2P-Sim [SPS+09], will perdure.

Finally, the simulation of parallel applications on parallel computing platforms has a long
history in HPC, in particular in the context of applications based on MPI [GLS99]. Two main ap-
proaches are used: off-line and on-line simulation.

• In off-line simulation, a time-stamped log of computation and communication events is
first obtained by running the application on a real platform. The simulator then replays
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this sequence of events as if they were occurring on another platform with different hard-
ware characteristics. The three most representative such simulators are PSinS [TLCS09],
LogGOPSim [HSL10b], Dimemas [BLGE03] and BigSim [ZKK04] but several others are
available (e.g., [ZCZ10a, TBB+11, NnFG+10, ZCZ10b, HGWW09]). One issue with off-line
simulation is that event logs are tied to a particular application execution (e.g., number
of processors, block size, data distribution schemes) so that a new log must be obtained
for each simulation scenario. However, extrapolation is feasible as proposed for instance
in [WM11, CLT13, HSL10b].

• The alternative to off-line simulation is on-line simulation in which actual application code
is executed on a host platform that attempts to mimic the behavior of the target platform.
Part of the instruction stream is intercepted and passed to a simulator. Many on-line simu-
lators have been developed with various features and capabilities (e.g., [PWTR09, BDP01,
DHN96, Rie06, LRMB09]). In these simulators, the amounts of hardware resources required
to run the simulated application on the host platform are commensurate to (or in fact larger
than) those needed to run the actual application on the target platform. Simulation scal-
ability is thus achieved by “throwing more hardware” at the problem. In the context of
SIMGRID, we always tried to limit our scope to simulations that can be executed on a single
computer, so that simulation scalability must be achieved in software.

As we already explained, the code of all these simulators is not always available and when
it is, it may not be still actively supported, which makes it quite difficult to compare with. In
the next two chapters, we only compare with what we believed to be the most significant ones.
Still, we can already list a few differences between SIMGRID and these simulators: (i) SIMGRID is
the only one that is not domain specific and is generic enough to "compete" with all these other
simulators, (ii) SIMGRID is almost the only one who correctly implements fluid models and can
thus account for network topology and contention in a scalable way, and (iii) SIMGRID is written
in plain C and uses its own custom data structures and thread abstraction. This last point explains
part of the performances we managed to obtain by having a full control on performances but it
also hindered the adoption of SIMGRID compared to most tools relying on java for example and
which are easier to approach.

The reader may notice that we purposely did not include in our list neither classical network
simulators like NS [IH08], GTNetS [Ril03], DaSSF [LN01] nor micro-architecture simulators like
GEMS [MSB+05], SIMICS [sim] or GPGPU-Sim [BYF+09]. The reason for this is such simulators
are typically in details of protocols or of architecture that none of the previous simulators is
actually interested in. SIMGRID is clearly not intended to answer questions like "is such version
of TCP more fair or more TCP-friendly or more reactive than such other version of TCP?" or
"would our GPU benefit from a different prefetching policy or from a larger texture cache or
from a higher number of cores?". SIMGRID is initially rather intended to questions scheduling
and resource management questions on large-scale platforms and at a rather large time-scale.
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Chapter 10

The Validation Quest

This chapter builds on Pedro Velho’s PhD thesis [Vel11] with whom I have studied the validity of
fluid network models for wide area networks and, which has been published at SimuTools09 [33]
and in TOMACS13 [5] with Pedro Velho, Henri Casanova, and Lucas Schnorr. This chapter also
builds on the more recent work on simulation of MPI applications, which has been published at
PMBS’13 [24] with Augustin Degomme, Martin Quinson, Frédéric Suter and several others. This
work has been conducted in the context of the USS-SimGrid and SONGS ANR project.

It is common (especially in Physics) to judge a scientific theory by its ability to make correct
predictions about the world. Obviously, the simplicity of the theory and how it improves our
understanding of the studied phenomenon is also at stake but I have to say that, from my experi-
ence, most simulation studies of large distributed computing systems have little care for correct-
ness of predictions. Although using valid simulation models seems a prerequisite for developing
a useful simulator, it turns out that many popular grid/cloud simulators use network models
that have not been (sufficiently) validated. Table 10.1 illustrates a few simple experiments that
invalidate four well-known simulators: OptorSim (2.1, 02/2010) [BCM+03], GridSim (5.2 beta,
11/2010) [BM02], GroudSim (0.11, 06/2010) [OPF10], and CloudSim (3.0.2, 11/2012) [CRB+11].
The version we tested were the latest at the time of writing [5]. These simulators have been used
to obtain results published in hundreds of research articles, and also used as building blocks
to develop other simulators [CD12, TYM11, SJY11, JK12]. Each invalidating experiment in Ta-
ble 10.1 can yet be devised through inspection of the simulator’s source code, and some are even
sometimes documented by the developers themselves.

The flow-level model, which is used in SIMGRID and which we presented in the previous
chapter, is a supposedly effective way to account for network topology and contention at low
computational cost. As a result it is implemented in several simulators [BCM+03, OPF10, GB02].
Unfortunately, SIMGRID is the only simulator we are aware of which correctly implements such
flow-level models.

Some model validation results have been published for other simulators, but they typically
consider only a few cases in which simulation models are expected to work well [TLCS09, ZKK04,
ZWL+04] (essentially merely verifying that model implementations are correct). However, it is
accepted in most of the sciences that model invalidation is an important component of the research
activity. Invalidation studies must be conducted that explore a wide range of scenarios for which
a model’s behavior is either unknown or expected to be invalid. Through these invalidation
studies, the model is improved or refuted, leading to increasingly precise knowledge of the range
of situations in which the model’s results are meaningful.

We have thus focused on flow-level network models of the Transmission Control Protocol
(TCP) to be used when simulating large-scale grid/cloud distributed systems. For these systems,
accounting for network proximity and network topology is paramount for ensuring that simu-
lations are valid. The goal of flow-level models is to capture complex network behavior using
tractable mathematical derivations, i.e., that can be computed quickly. In this chapter, we present
a short overview of network models used in discrete-event simulation and of flow-level models.
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Table 10.1: Invalidating experiments for four popular grid/cloud simulators. Network links are
shown as boxes labeled with latencies (L) and/or bandwidth capacities (B). Network flows are
dashed arrows that traverse one or more flows. Bandwidth allocations are shown as gray fills
when applicable, with a different shade for each flow. The table shows both expected results and
flawed results produced by each simulator.

Simulator Setting Expected output Actual output Cause

O
pt

or
Si

m
or

G
ro

ud
Si

m
(fl

ow
m

od
el

)

B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

B = 100 B = 100

B = 20

Each link is shared
fairly among all
traversing flows,
leading to un-
derestimated link
usage.

G
ri

dS
im

(fl
ow

m
od

el
)

B B B

Bandwidth share
is updated incor-
rectly. Flow #1
receives B, flow #2
receives B/2, flow
#3 receives B/3.

C
lo

ud
Si

m
(fl

ow
m

od
el

)

B B B

Fixes the problem in
the row above, but
problems still occur
when flows start at
different times.

G
ri

dS
im

(l
ar

ge
m

es
sa

ge
m

od
el

)

(L,B) (L,B)S Delay ≈ 2L+ S
B

Delay = 2L+ 2 S
B

A large message of
size S is sent us-
ing store and for-
ward, without any
pipelining.

G
ri

dS
im

(s
m

al
lp

ac
ke

tm
od

el
)

S (L,B) (L,B). . .

with B and L � 1

Delay≈
4L+ S

Wmax/RTT
,

where Wmax is the
maximum TCP

window size

Delay≈ 4L+ S
B

Simple packet-level
model that does not
account for TCP
features, such as
congestion window
and RTT-unfairness.

Then, we present the SIMGRID flow-level network model and explain how we came up with it as
well as how, doing so, we invalidated other models proposed in the literature. Finally, we briefly
explain how this model has been extended to the high performance computing setting.

10.1 Background and Related Work on Network Modeling

Network modeling and simulation can be undertaken in many contexts, thus mandating context-
specific discussions of known methodologies and results. For instance, simulations for studying
the fine-grain properties of the TCP protocol may have little in common with simulations for
studying the scalability of some large-scale parallel computing application. In what follows we
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discuss works in the area of network modeling categorized by modeling approaches, highlight-
ing the specific contexts in which each approach has been used.

10.1.1 Packet-level Models

Packet-level network simulations are discrete-event simulations with events for packet emission
or reception as well as network protocol events. These simulations can reproduce the movements
of all network packets and the behavior of the whole TCP stack down to the IP level. Packet-level
simulations have been widely used for studying fine-grained properties of network protocols.

The TCP stack models found in simulators such as GTNetsGTNetS [Ril03], or NS2 [IH08]
are simplified versions of the TCP stack but recent developments [JM07] allow the use of real
TCP stack implementations, which is slower but more realistic (i.e., real TCP stack implemen-
tations might have features/bugs that are absent from simplified versions used exclusively for
simulation purposes). Except maybe for wireless networks, where the modeling of the physical
layer is challenging, packet-level simulation is generally recognized by the network community
as trustworthy, and it serves as a reference.

Unfortunately, as will be illustrated in Section 11.1, in the context of simulation of grids or
clouds, it generally leads to unacceptably long simulation times since the life cycle of each packet
is simulated through all protocol layers all the way to a simulated physical layer. Its use is thus
often restricted to studying network protocols or applications that exchange small messages. To
mitigate such overhead, simulators in the area of grid computing (e.g., GridSim [BM02], early
versions of SIMGRID [Cas01]), have attempted widely simplified packet-level simulation (e.g.,
wormhole routing, no implementation of any network protocol). Unfortunately, these simulators
are easily shown to produce simulated network delays that can be far from those achieved by TCP
communications in real networks (see the last row of Table 10.1). Furthermore, these simplified
packet-level models face the same scalability issues, if not as severe, as more realistic packet-level
simulators.

Finally, for the purpose of simulation, fine-grain network simulation models may be difficult
to instantiate with realistic parameter values when targeting large-scale networks as some of
the parameter values may be unknown or difficult to obtain (e.g., a full description of a large
subset of the Internet). Fortunately, the level of detail provided by packet-level simulation is not
necessary for studying large-scale applications that exchange large amounts of data.

10.1.2 Delay-based Models

In some contexts it is sufficient to simulate simple network delays between pairs of communi-
cating hosts. For instance, a peer-to-peer simulator for studying overlay networks may model
each communication delay as a constant delay or as a sample from a given statistical distribu-
tion [MJ09]. These models do not account for network proximity. As a consequence, some peer-
to-peer simulators [GKL+05, MJ09, BHK07] model network delays using coordinate systems.
Each peer is provided with coordinates in a Euclidean metric space and the simulator simply
computes the corresponding distance in this space to evaluate communication delay. Note that
non-Euclidean spaces can lead to more accurate point-to-point communication delays in Wide
Area networks [DCKM04]. Coordinate-based models provide a good trade-off between com-
pute time and space as they account for network proximity with a Θ(N) memory footprint and a
O(1) computation time for a network delay. Since coordinates may change over time and suffer
from measurements inaccuracies [LGS07], some simulators generally add noise to these coordi-
nates [BHK07]. In the context of simulating High Performance Computing systems (e.g., clusters
of servers), similar models have also been proposed [CKP+93, AISS95, KBV00, IFH01, HSL10a].
These models account for partial asynchrony for small messages. They also include specific pa-
rameters depending on message size making it possible to account for protocol switching, which
can have a large impact on overall performance. These models are extremely scalable since both
description size and delay computation time are in O(1).
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All models above, whether for peer-to-peer application or for HPC systems, ignore network
contention. In the case of peer-to-peer simulations, the rationale is that the amount of exchanged
data is small and that network contention is thus not an important factor in the performance of
the application. In fact, often the metric of interest is the number of exchanged messages, rather
than the data transfer rates achieved. In the case of HPC simulations, the rationale is that the
target platform is provisioned with a bisection bandwidth so large that network contention is
unlikely to occur. While this assumption may be reasonable for high-end systems (e.g., systems
built from high-radix optical switches), it does not hold for all commodity clusters.

10.1.3 Flow-level Models of TCP

When modeling network contention is needed, one cannot use the scalable delay-based models
discussed in the previous section. To achieve scalability higher than that afforded by full-fledged
packet-level models, one needs an abstraction of the network topology that focuses on the part
of the topology in which contention may happen. For instance, when considering the simula-
tion of a peer-to-peer data streaming application or of a volunteer computing infrastructure in
which participants donate compute cycles, a detailed model of the core of the network may not
be needed as most of the contention occurs at the edges of the network (e.g., when streaming
content, when downloading input data for computation). Conversely, when studying collective
communications in a cluster with limited bisection bandwidth, it is necessary to model the core of
the network since it is where the contention will occur. Similarly, in platforms that span wide-area
networks, applications may experience network contention on some wide-area network paths.

An alternative to expensive packet-level modeling, which still makes it possible to account
for network contention, is thus flow-level modeling as explained in Section 9.2. In flow-level
models, which are used by simulators in various domains [BCM+03, 35, OPF10, GB02, ZKK04],
each communication, or flow, is simulated as a single entity rather than as a set of individual
packets. The time needed to transfer a message of size S between hosts i and j is then given by:

Ti,j(S) = Li,j + S/Bi,j , (10.1)

where Li,j (resp. Bi,j) is the end-to-end network latency (resp. bandwidth) on the route connect-
ing i and j. Although determining Li,j may be straightforward, estimating the bandwidth Bi,j
is more difficult as it depends on interactions with every other flow. This is generally done by
assuming that the flow has reached steady-state, in which case the simulation amounts to solving
a bandwidth sharing problem, i.e., determining how much bandwidth is allocated to each flow.
More formally:

Consider a connected network that consists of a set of links L, in which each link l has capacity
Bl. Consider a set of flows F , where each flow is a communication between two network
vertices along a given path. Determine a “realistic” bandwidth allocation %f for flow f , so
that:

∀l ∈ L,
∑

f going through l

%f 6 Bl . (10.2)

Given the computed bandwidth allocation (which defines all data transfer rates), and the size of
the data to be transmitted by each flow, one can determine which flow will complete first. Upon
completion of a flow, or upon arrival of a new flow, the bandwidth allocation can be reevaluated.
Usually, this reevaluation is memoryless, meaning that it does not depend on past bandwidth
allocations. This approach makes it possible to quickly step forward through (simulated) time,
and thus is attractive for implementing scalable simulations of large-scale distributed systems
with potentially large amounts of communicated data. However, it ignores phenomena such as
protocol oscillations, slow start, and more generally all transient phases between two steady-state
operation points. Perhaps more crucially, the whole approach is preconditioned on computing
a bandwidth sharing solution that corresponds to the bandwidth sharing behavior of real-world
network protocols, and in particular of TCP.
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Two approaches are used to build models of a computer system, and thus of the network: in
the bottom-up approach the model is built based on analyzing low-level phenomena; in the top-
down approach the model is built from observations of the full system. The bottom-up approach
should intuitively lead to more accurate models but does not guarantee perfect validity because
analyzing low-level phenomena typically requires that approximations be made. One advantage
of the top-down approach is that deriving the model is easier since understanding the low-level
details of the system is not needed, but the validity of the model is more questionable.

The TCP network protocol is known for its additive increase multiplicative decrease window
size policy, which causes the data transfer rate of flows to oscillate. While such oscillation com-
plicates the modeling of the behavior of TCP, in the last decade, following the seminal work of
Kelly et al. [KMT98], several bottom-up flow-level models and tools for network protocol anal-
ysis have been proposed [MLAW99, MW00, YMR10, LPW02, Low03b]. The goal is to provide a
quantitative understanding of the macroscopic behavior of TCP given its microscopic behavior,
and in particular its window size policy. In these works, the steady-state behavior of the protocol
is often characterized as the solution to an optimization problem. By making an analogy between
the equations governing expected window size that follow from the specification of TCP and a
distributed gradient algorithm, Low et al. [Low03b] have proved that the steady-state through-
puts of network flows are similar to those obtained by solving a global optimization problem
under the constraints in Eq. (10.2).

For example, it is possible to prove that when using the Reno protocol with RED [FJ93] as a
queue policy for routers, the steady-state bandwidth converge to a point that maximizes

∑
f∈F

√
2

df
arctan

(
df%f√

2

)
under constraints in Eq. (10.2), (10.3)

where df be the equilibrium round trip time (propagation plus equilibrium queuing delay) of f ,
and is assumed to be constant. Similarly, it can be proven that TCP Vegas with DropTail achieves
some form of weighted proportional fairness [Low03b], i.e., it maximizes the weighted sum of
the logarithm of the throughput of each flow:∑

f∈F

df log(%f ) under constraints in Eq. (10.2). (10.4)

These bottom-up models are attractive because they capture the specifics of the underlying
network protocol. One drawback for using them as the basis for grid/cloud simulation, admit-
tedly not their intended use, is that they involve parameters that may not be straightforward to
instantiate by users, e.g., the equilibrium round trip time. The model may be of little use in this
context if its instantiation requires in-depth knowledge of networking, or a whole set of complex
experimental measurements (either of which would compel users to use unsound “guesses” as
parameter values).

Top-down flow-level models have also been proposed. These models are not derived from an
analysis of the specification of the TCP protocol, but from observations of the protocol’s macro-
scopic behavior over a range of relevant network topologies. An oft mentioned bandwidth shar-
ing objective, which leads directly to a top-down model, is max-min fairness. This objective is
reached by recursively maximizing

min
f∈F

wf%f under constraints in Eq. (10.2), (10.5)

where wf is a weight parameter generally chosen as the round-trip time of flow f . There are
two rationales for this objective. First, it corresponds to what one would na\"ively expect from
a network, i.e., be “as fair as possible” so that the least favored flows receive as much band-
width as possible while accounting through weights wf for the well-known RTT-unfairness of
TCP [MPP+07]. Second, there is a simple algorithm for solving the optimization problem [BG96],
whereas solving non linear problems (with objectives such as the ones in Eq. (10.3) or Eq. (10.4))
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requires more elaborate techniques (such as lagrangian optimization and gradient descent as we
used in Chapter 5). Previous studies have shown that max-min fairness does not exactly corre-
spond to bandwidth sharing under TCP but that it is a reasonable approximation in many rele-
vant cases [Chi99, CM02] but our goal was to compare these different kind of fluid models and
see whether bottom-up models were significantly better than top-down models for the purpose
of simulation.

10.2 Accuracy of Flow-level Simulation

10.2.1 Toward an Informed Flow-Level Network Model

The overarching question that we study in this work is whether flow-level simulation can provide
accurate results, in particular when compared to packet-level simulation. Some simulators do im-
plement flawed max-min flow-level models that lead to reasonable results in some situations but
also lead to unrealistic bandwidth sharing in other situations (see Table 10.1). Besides such plainly
invalid models, there is a striking dearth of validation studies in the literature. Those works that
do propose flow-level models [LPW02, Low03b] are driven by protocol design goals [LS04], and
thus merely present a few test cases to illustrate the correctness of the models.

Evaluating the validity of flow-level models in complex and diverse scenarios raises practical
difficulties, such as requiring that real-world networks be configured for each scenario of interest.
In the context of grid or cloud computing systems, setting up many network configurations for
the purpose of model validation is simply not possible. One convenient solution is to compare
results obtained with flow-level models to results obtained using packet-level simulation. This
approach raises the question of whether packet-level simulation is representative of real-world
networks. Answering this question is out of the scope of this work. However, based on the
confidence placed by the network community in its packet-level simulators, it is reasonable in
this work to declare packet-level simulation the ground truth. As a result, we talk of the error of
a flow-level model to denote the discrepancy between its results and the results obtained with
packet-level simulators for the same simulated scenario.

Conveniently, SIMGRID provides an interface to the GTNetS packet-level simulator, which
greatly eases the comparison of flow-level and packet-level results. GTNetS is no longer officially
supported and the latest version of SIMGRID also provides an interface to NS3. (Both GTNetS
and NS3 implement the same TCP stack.) The current version of SIMGRID implements flow-
level models based either on max-min fairness or on the model by Low et al. [Low03b]. These
capabilities of SIMGRID make it a convenient framework for studying the validity of flow-level
models. In our work, we took advantage of these capabilities to evaluate and improve upon a
classical top-down max-min flow-level model. In that work the following improvements were
made:

• Linearity: The common approach is to model the execution time of a flow that transfers S
bytes of data as the latency plus S divided by the bandwidth:

Tf (S) = `f + S/%f , (10.6)

where S is the message size, %f is the bandwidth share computed by the bandwidth sharing
model and `f is the end-to-end latency, i.e., the sum of the latencies of the links traversed
by f . However, `f and Bl (used in the computation of %f ) are physical characteristics that
are not directly representative of what may be achieved by flows in practice. The protocol
overhead should be accounted for, which can be done by multiplying all latencies by a
factor α > 1 and all bandwidths by a factor β < 1. α accounts for TCP slow-start and
stabilization, which prevent flows from instantaneously reaching steady-state. β accounts
for packetization and control overheads. A more accurate empirical model is thus

T improved = α`f +
S

β%f
, (10.7)
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where α and β (typically α ∈ [10, 15] and β ∈ [0.8, 1], depending on the version of TCP [33,
5]) are two additional positive real parameters. Packet-level simulations can be used to
calibrate parameter values, i.e., to determine the parameter values that minimize modeling
error for a set of synthetic simulation scenarios. This simple change leads to an excellent
approximation for a single flow on a single link when message size is larger than 100KB [33].

• Flow Control Limitation: TCP’s flow control mechanism is known to prevent full band-
width usage as flows may be limited by large latencies [MSMO97, FF99, JPD03]. This well-
known phenomenon can be captured in a flow-level model by adding, for each flow, the
constraint that:

%f 6Wmax/(2Lf ) , (10.8)

where Wmax is the configured maximum window size and Lf is the sum of latencies along
the path. The validity of this enhancement is demonstrated for a single flow going through
a single link [33].

• Bottleneck Sharing and RTT-unfairness: TCP protocols are known to be RTT-unfair, hence
when two flows contend for bandwidth on a bottleneck link they are assigned bandwidth
inversely proportional to their round trip times [MPP+07]. This round-trip-time is thus
used as the weights of variables in the max-min or in the other optimization problem for-
mulation (the df in Eq. (10.4) and (10.3)). On a simple dumbbell topology, but for a wide
range of bandwidth and latency parameters (including highly contended situations), this
round trip time is well approximated by the following formula:

RTTf =
∑

l traversed by f

Ll +
γ

Bl
, (10.9)

where γ is a fixed value for all flows. Tuning this value from packet-level simulations, it
turns out that γ = 8,775 provides a good approximation [33].

• Reverse Traffic Influence: The data transfer rate of a TCP flow is strongly dependent upon
the rate at which acknowledgment packets arrive, which can lead to surprising situations.
Although Our expectation is that on a single full-duplex link the bandwidth allocated to
flows going in one direction is independent from that allocated to flows going in the re-
verse direction, it is easily demonstrated to be influenced by flows going in the reverse
direction both in packet-level simulation and in real-world experiments. Let us denote by
{B, (n1, n2)} a scenario with a single full-duplex bottleneck link of capacity B, n flows go-
ing through the link in one direction, and p flows going through the link in the reverse
direction. We denote the outcome of the scenario by (B1, B2), where B1 is the bandwidth
allocated to the n flows and B2 is the bandwidth allocated to the p reverse flows (in all
cases all flows in the same direction are allocated the same bandwidth). Fig. 10.1 depicts
five example scenarios, showing approximate results achieved in simulation. The band-
width allocation for {B, (n, 0)} (resp. {B, (0, p)}) is always approximately (B/n, 0) (resp.
(0, B/p)). Since the network link is full-duplex, expectedly simulations also show that
{B, (1, 1)} leads to the allocation (B,B). Likewise, {B, (2, 2)} leads to (B/2, B/2). Sur-
prisingly though, {B, (2, 1)} does not lead to (B/2, B) as one would expect but instead
to (B/2, B/2). More generally, our experiments show that {B, (n1, n2)} leads to allocation
(B/max(n1, n2), B/max(n1, n2)). Note that, as surprising as this result may seem, it is not a
simulation artifact and can easily be observed on real-world networks, with host pairs con-
nected via a direct full-duplex link and host pairs connected via a sequence of full-duplex
links. Using network monitoring tools, namely tcpdump and wireshark, we were able to
understand that link under utilization is due to the interference between acknowledgments
for the traffic in one direction and the traffic in the other direction (the reverse traffic). Ac-
knowledgment packets are queued with data packets from the traffic, thus slowing down
the reverse traffic. It turns out that this phenomenon is known in the network commu-
nity as ACK compression [ZSC91], and is very common for ADSL connections. In perfectly
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Figure 10.1: Five reverse traffic interference scenarios: {B, (n1, n2)} denotes a scenario with one
full-duplex link of capacity B, with n flows in one direction (shown above the dashed lines) and
p flows in the reverse direction (shown below the dashed lines). The bandwidths allocated to the
flows are shown on the right-hand side of each scenario. The last scenario shows an asymmetric
situation.

symmetrical cases, although ACK compression may still occur, delayed ACKs should make
it disappear. As recently noted in [HMBD11], the poor link utilization we observe is more
likely to be explained by a data pendulum effect (also known as ACK-clocking) where data
and ACK segments alternatively fill only one of the link buffers. At any rate, such a phe-
nomenon, which is not modeled by any of the previously mentioned flow-level models,
results in seemingly over-utilized bottleneck links in flow-level simulations.

It turns out that, under the constraints in Eq. (10.2), our flow-level model is inherently in-
capable of capturing such reverse-traffic effect. However, it is surprisingly straightforward
to account for such effect by replacing Eq. (10.2) by the following constraint:

∀l ∈ L,
∑

f going through l

%f + ε ·

 ∑
f ’s ack through l

%f

 6 Bl . (10.10)

Although it can hardly be justified by a bottom-up analysis, such simple modification allied
with max-min sharing reveals particularly effective in our context and greatly improves the
quality of simulations.

As a summary, given a connected network that consists of a set of links L, in which each link
l has capacity Bl and a set of flows F , where each flow is a communication between two network
vertices along a given path, the current model of SIMGRID shares bandwidth according to the
following optimization problem:

MAXIMIZE RECURSIVELY minf (RTTf%f )
UNDER CONSTRAINTS
∀l ∈ L,

∑
f going through l

%f + ε ·

 ∑
f ’s ack through l

%f

 6 Bl
∀f ∈ F , %f 6Wmax/(2Lf )

, where


RTTf =

∑
l traversed by f

(
`l +

γ

Bl

)
Lf =

∑
l traversed by f

`l

(10.11)
Once such shares are determined, completion time is evaluated with Eq. (10.7) (and possibly
reevaluated whenever other flow complete or are created). Note that the notions of RTTf and
Lf could certainly be unified and account more specifically for route asymmetry but no situation
ever motivated such effort yet.
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Figure 10.2: Mean logarithmic error (left) and max logarithmic error (right) for all experimental
scenarios for the reverse-traffic aware model based on max-min, SGreverse-traffic , and the arctan-
based model in [Low03b], SGreno.

10.2.2 Following the (In)validation Path

The earliest flow-level model of SIMGRID [52] used α = 1, β = 1, γ = 0 and no modeling of
reverse traffic. It was proved to be a good approximation for large messages (above 10 MiB) and
relatively large bandwidth values such as the scenarios used in the “validation” of this model
in [CM02]. However, whenever we tried more complex scenarios, we quickly ran into troubles
that were difficult to explain. Therefore, we engaged into a systematic exploration of configu-
rations and investigation of failing scenarios, which led us to identify all the previous possible
improvements.

Indeed, beyond an improved network model for simulation purposes, one of our contribu-
tions is the method we use for accomplishing our goal. Rather than showing that a model is valid
by exhibiting a possibly large set of scenarios in which the model leads to good results, we instead
strive to identify cases that “break” the model. This approach follows the critical method [Pop72],
which places model refutation at the center of the scientific activity. The main implication is
that inductive reasoning, by which one accumulates observations in which the model is valid,
should be banned. Instead, the quality of a model should be established by searching for situ-
ations that invalidate the model. Invalidation is done via crucial experiments that invalidate the
current model, thus motivating the need for a new model. This new model should stand the test
of these crucial experiments and should also explain why the refuted model is invalid in these
experiments. As a consequence, model parameters that do not have clear significance but make
it possible to “fit” a model to a set of observations are to be avoided.

What we present in [33, 5] is thus rather atypical in that we repeatedly show “poor” results,
while the vast majority of published works strive to show “good” results instead. As an illustra-
tion, Fig. 10.3 compares typical outcomes of invalidation studies presented in [5]. Nevertheless,
following our method, we are able to measure and understand the inherent limitations of an
entire class of network modeling techniques.

Therefore, we evaluated our model on a few hundreds of different scenario. Typically, a hun-
dred of 100 MiB transfers are launched between random pairs of endpoints for several dozens of
randomly generated network topologies such as the ones depicted in Fig. 11.1 (see [5] for more
details). Yet, in spite of good average results, occasionally a flow has a throughput that is more
than a factor 20 away from that obtained using packet-level simulation. Consequently, except for
a few ones, many of these scenarios fall into the “accumulating cases in which the model is effec-
tive” category instead of being “crucial experiments.” Inspecting the good scenarios in detail, we
noticed for example that most flows are throughput-limited by their RTTs. Such flows are good
cases for a flow-level model because the constraints in Eq. (10.8) essentially bypass the core of the
bandwidth sharing formulation (i.e. max-min fairness vs. proportional fairness). Therefore, we
modified our set of scenarios by aggressively decreasing network link bandwidth. While such
low bandwidth values are likely uncommon and impractical in today’s (wired) networks, they
increased the number of flows that are not RTT-bound and hence lead to scenarios that stress the
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(a) Typical situation: the SIMGRID flow-level model achieves an excellent prediction when compared to a packet level
simulation.

GTNetS (packet-level)

SimGrid (fluid)

Data rate of flow 66
in the packet-level simulation

Time

(b) The most extreme situation we stumbled upon where the flow-level model significantly differs from a packet-level
model for several flows. The lower part depicts the evolution of the throughput of the last finishing flow in the packet-
level simulation and for which the flow-level model has a large error. Because of high contention, this flow stalls 65% of
the time. When there is no other remaining connection in the network, it does not transmit a single byte for 380 seconds,
and finally completes the transfer in a few seconds.

Figure 10.3: Comparison of flow completion times with flow-level simulation (top timeline) and
packet-level simulation (bottom timeline); lines connecting timeline markers correspond to the
same flow in both simulations and are darker for larger completion time mismatches.

core of the model, i.e., the bandwidth sharing algorithm. Such new topologies where contention
is very common indeed lead to situations with larger errors, making “bad cases” easier to iden-
tify. A careful analysis of such bad cases lead us to identify the reverse traffic influence described
in the previous section.

Such bad cases suggested adjustments and improvements to our model. With the improved
model currently implemented in SIMGRID, most scenarios lead to good accuracy, as seen for
instance in Fig. 10.3(a). Only a few situations remain, as that shown in Fig. 10.3(b), where we seem
to reach the limits of the flow-level approximation. These situations occur for highly contended
scenarios (i.e., with extremely small latencies and low bandwidth capacities). In these scenarios
the high error is due to the discrete nature of the TCP protocol, which, by design, is not captured
by the flow-level approximation.

To the best of our knowledge, our max-min based model augmented with reverse-traffic sup-
port is the best flow-level model of TCP available to date to drive simulations in the context of
grid/cloud computing. By contrast, some of these modifications (in particular the one account-
ing for reverse traffic) seem out of reach for the flow-level models proposed by others in the
literature (see Fig. 10.2 and [5] for more details). In fact, these models were built in a bottom-
up fashion, completely ignoring reverse-traffic effects. Furthermore, their “validation” had been
done by illustrating their accuracy on a few simple cases. It is likely that another model (like our
max-min-based model) would have produced the same results in these simple settings, showing
the inherent problem with a methodology that only explores “good cases.”

Our flow-level network model was originally designed for the grid computing domain, which
involves very large data transfers. However, with the above improvements it is applicable to
other scenarios (e.g., under-provisioned networks, applications that exchange as few as a few
hundreds of KiB of data), thereby making SIMGRID more versatile.

10.3 Adaptation to the HPC Context

The improved model described in the previous section expands the versatility of the simulator
toward a broader range of wide-area networks, provided the simulated applications exchange
messages on the order of a few hundred KiB. At the other end of the spectrum, many users
wish to simulate cluster platforms that consist of compute nodes connected via (a hierarchy of)
switches. The goal is to simulate a single cluster, or to simulate intra-cluster phenomena in a grid
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Figure 10.4: Duration of MPI_Send, MPI_Recv, and a ping-pong (a send immediately followed
by a receive of the same size) vs. message size. Different modes can be seen depending on
message size. Solid lines represent piece-wise linear regressions.

or cloud platform. In such settings the communication workload often comprises many small
messages that consist of a few KiB or even only a few bytes.

The previous flow-level model fails to capture some fundamental aspects of cluster intercon-
nects with TCP and popular MPI implementations, e.g., OpenMPI [GFB+04] or MPICH2 [Gro02],
over Gigabit Ethernet switches. For instance, a message under 1 KiB fits within an IP frame, in
which case the achieved data transfer rate is higher than for larger messages although latency is
generally also larger. More importantly, implementations for MPI_Send typically switch from
buffered to synchronous mode above a certain message size. The former involves an extra data
copy, while the latter avoids it because copying large amounts of data has high overhead. This
“protocol switching” feature is seen in both OpenMPI and MPICH2. Due to such effects, instead
of being a linear function of message size as in Eq. (10.7), communication time is rather piece-wise
linear. Furthermore, depending on the mechanism, communications may be overlapped or not
by computations or other communications, which ideally the simulation model should capture.
Such synchronization and overlapping aspects can be partially accounted for by the classical
LogP family of models [CKP+93, AISS95, KBV00, IFH01], and in particular LogGPS [IFH01].

Fig. 10.4 shows elapsed time vs. message size, using logarithmic scales for both axes, obtained
from an experiment conducted with OpenMPI 1.6 on the graphene cluster of the Grid’5000 exper-
imental testbed. The measurements were obtained as follows. To avoid measurement bias the
message size is exponentially and randomly sampled between 1 byte and 100 MiB, for two types
of experiments: "ping" and "ping-pong". The ping experiments aim at measuring the time spent
in MPI_Send (resp. MPI_Recv) by ensuring that the receiver (resp. sender) is always ready to
communicate. The ping-pong experiment consists in sending a message and immediately receiv-
ing a message of the same size, which allows us to measure the transmission delay. The goal is to
study the behavior of MPI from the application’s point of view, without any a priori assumptions
about the way in which the MPI implementation switches between communication protocols
depending on message size, which is in general difficult to determine based solely on the MPI
configuration parameters.

Protocol switching effects are clearly seen in Fig. 10.4. For messages below 32 KiB fully asyn-
chronous communication is used, for messages above 256 KiB fully synchronous communication
is used, and in between partially synchronous or “detached” communication is used. Each pro-
tocol leads to elapsed times that can be accurately modeled through linear regression. Up to
three linear regressions, however, should be used for asynchronous communication depending
on message size. For instance, a separate mode is required to capture accurately the case when
the message is small enough to fit inside a single TCP frame. Overall, we have five distinct modes
(modes 2 and 3 are almost identical for the MPI_Send and the Ping-Pong results), for an overall
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Figure 10.5: The graphene cluster: a hierarchical Ethernet-based cluster.

behavior that is discontinuous and piece-wise linear. The simple linear model in the previous
section would be reasonably accurate for small and large messages, but largely inaccurate in
between (for more than 30% average error overall, with a worst case at 127%). Likewise, the clas-
sical LogP models [CKP+93, AISS95, KBV00, IFH01] do not model the piece-wise linear behavior
accurately. The closest contender would be LogGPS [IFH01], but it distinguishes between only
two kinds of message sizes (small and large) and is continuous.

In [CSG+11], Clauss et al. have proposed a (non-necessarily continuous) piece-wise linear
simulation model that can be instantiated for an arbitrary number of linear segments. We ex-
tended this model later in [24] to include the overlapping and synchronization aspects, as mod-
eled by LogGPS. This new piece-wise linear model makes it possible to simulate accurately ap-
plications that use a wide range of message sizes [24]. The accuracy improvements due to the
piece-wise linear model rather than the linear model are large enough to justify the increased
number of parameters (2 parameters per mode). In addition, the value of these parameters are
easily determined via straightforward experiments and analysis.

An important implication of such accurate piece-wise linear model of point-to-point commu-
nication is that, when combined with the bandwidth sharing model described in the previous sec-
tion, it leads to an immediate simulation model for collective communication operations. Based
on topological information, we conduct saturation experiments that enable to identify potential
bottlenecks and reverse-traffic interferences to account for (see Fig. 10.5). Such information are
critical to simulate the collective operations, which are accessible to the SIMGRID user via the
SMPI API (Fig. 9.1). Just like any MPI implementation, the SMPI runtime implements collective
communications as sets of point-to-point communications that may contend with each other on
the network. This is to be contrasted with monolithic modeling of collective communications,
as done in [TLCS09] or [BLGE03] for instance, which rely on coarse approximations to model
contention and/or on extensive calibration experiments that must be performed for each type of
collective operation.

Indeed, several algorithms exist for each collective operation, each of them exhibiting very dif-
ferent performance depending on various parameters such as the network topology, the message
size, and the number of communicating processes [FYL06]. A given algorithm can commonly be
almost an order of magnitude faster than another in a given setting and yet slower than this same
algorithm in another setting. Every widely-used MPI implementation thus provides several al-
gorithms for each collective operation and carefully selects the best one at runtime. For instance,
OpenMPI provides a dozen distinct algorithms for the MPI_Alltoall function, and the code to
select the right algorithm for a given setting is several thousand lines long. Note that the selec-
tion logic of the various MPI implementations is highly dependent on the implementation and
generally embedded deep within the source code. To this end, SIMGRID now implements all the
collective algorithms and selection logics of both OpenMPI and MPICH and even a few other
collective algorithms from Star MPI [FYL06]. These different modeling efforts combined with
highly technical developments to enable unmodified applications to run on top of SIMGRID have
allowed us to obtain excellent prediction results, which we briefly present in Section 12.1.1.
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10.4 Conclusion

The network model of all other grid simulators we could test are over-simplistic and can easily
be invalidated. To the best of our knowledge, the max-min based model currently implemented
in SIMGRID and which has been augmented with reverse-traffic support is the most accurate one
to date to drive simulations in the context of grid/cloud computing.

This model has been improved over years thanks to the use of critical method, i.e., thanks
to thorough invalidation campaigns and a careful investigation of pathological scenarios. The
conclusion of this study is twofold:

1. Flow-level models account for network topology and contention and are quite accurate in
a wide range of complex heterogeneous settings. From our experience, they start becoming
blatantly inaccurate when the steady-state assumptions break, which occurs for example in
extremely contended cases.

2. Bottom-up models have a sound justification and were thus much more promising than the
top-down max-min model. Unfortunately, the absence of interference between acknowl-
edgments and data traffic is one of the main assumptions used to build such bottom-up
flow-level models, which makes them difficult to use a basis for simulation. The fact that
the max-min model can actually be modified to (at least in restricted settings) account for
reverse traffic is only a fortunate event (see [5] for more details) and not at all a will to stick
with our initial choice.

Finally, although we were not network protocol experts, it is interesting to mention that the use
or our critical method lead us to rediscover along the way several non trivial phenomenon like
phase effects [FJ92] and reverse traffic influence, as well as the inherent flaw of previously proposed
bottom-up models, which was actually known in the community in which these papers had been
published. Indeed, another interesting conclusion of this work is that it illustrates how much
we should not blindly trust the results of others. Reading the numerous articles published on
bottom-up flow-level models really made it believe that they were exactly answering our needs.
These models had even been validated and compared with packet-level simulations even some-
times in not completely trivial scenarios. However, it is only after we clearly identified the reverse
traffic issue that we realized that none of the scenario tested to validate the bottom-up models
had flows going in reverse directions. Indeed, such scenarios were rather illustrations supporting
the interest of the model and they should hence not be considered as a model validation. Trying
to reproduce the work of others although time-consuming and not easily rewarding turned out
to be very instructive.

Articles attempting to fix the inability of bottom-up models to handle reverse traffic were
published in 2008 [TAJ+08, JAT+08] and 2010 [TAJ+10], i.e., in the middle of our invalidation
campaign but we only noticed this work a couple years after. Such modeling effort is to the best of
our knowledge still ongoing research and although these improved models are very promising, it
is unclear whether they can be used effectively in the context of simulation (this is admittedly not
their intended use, since the aforementioned works focus on understanding TCP behavior rather
than producing instantiable simulation models). First, all these models require solving complex
differential equations, which would likely prove unscalable if used to drive simulations with
hundreds of flows. Second, although such work is motivated by burstiness caused by reverse-
traffic, the reverse-traffic considered in the validation experiments of [TAJ+08, JAT+08, TAJ+10] is
always UDP-based and does not saturate links in the opposite directions, hence leaving room for
acknowledgment packets. This situation does not correspond to all relevant simulation scenarios.
Third, the experimental scenarios used to evaluate the models involve at most three nodes and
three flows, and one may wonder how the models would behave if used for simulating hundreds
of flows. Consequently, although in the future effective bottom-up simulation models could arise,
for the time being our top-down model above appears to be the best available flow-level network
simulation model to date, at least in the context of large-scale grid/cloud computing simulations.



114 SCHEDULING FOR LARGE SCALE DISTRIBUTED COMPUTING SYSTEMS

Again, not being network protocol experts made this study quite difficult, not only because
of understanding protocol peculiarities, but because some of the knowledge and experience can
hardly be found by simply reading articles. Our investigation of flow-level models has somehow
reached its end because the remaining erroneous behaviors we have can be imputed to viola-
tions of the steady-state assumption, which is the central tenet of flow-level modeling. A future
direction would consist of providing sufficient conditions for the steady-state assumption to be
invalid. This would allow us to better identify the validity domain of flow-level models and
allow further investigation of invalidation scenarios. Ultimately, building on such results, a sim-
ulator relying on flow-level models should warn its users when it wanders outside the validity
domain of its simulation models. Defining such domain remains however quite challenging if
not illusive.



Chapter 11

The Scalability Quest

This chapter builds on Pedro Velho’s PhD thesis [Vel11], on an article published at LSAP’10 [31]
with Pedro Velho and Bruno Donassolo, on an article published at CCGrid’12 [27] with Martin
Quinson, Frédéric Suter and other colleagues, and on an article recently published in JPDC’14 [3]
with Henri Casanova , Arnaud Giersch, Martin Quinson, and Frédéric Suter. This work has been
conducted in the context of the USS-SimGrid and SONGS ANR project.

Striving to make SIMGRID more versatile (so that it can be used for, e.g., volunteer computing
or exascale HPC simulations as well as peer-to-peer simulations) has led us to tackling the scala-
bility challenge along several directions. We start by showing that scalability is preconditioned on
the use of an analytical simulation model, such as that described in the previous chapter, instead
of more commonly used packet-level models. Yet, three major scalability concerns, both in terms
of memory footprint and CPU time, remain: (i) the efficiency of the implementation of the simu-
lation model; (ii) the description of large platforms; and (iii) the simulation of large numbers of
concurrent processes. In the next three sections we describe how SIMGRID addresses these three
concerns. We also provide quantitative comparisons to state-of-the-art domain-specific simula-
tors for relevant case studies in the areas of volunteer computing, grid computing, peer-to-peer
computing, and HPC. Together, these case studies illustrate how our scalability solutions devel-
oped for specific domains can in fact be combined and applied to different domains.

11.1 Flow-level Models vs. Packet-level Models

The simulators that are used in the grid/cloud computing domain rely on various simulation
models for compute components (e.g., servers) and network components (e.g., routers, links,
network cards). Models that capture the operation of these components in detail (e.g., cycle-level
simulation of a processor, packet-level simulation of a router) generally prove intractable when
simulating applications with large computation and communication workloads on large-scale
systems with many components. For example, packet-level network simulations are discrete-
event simulations with events for packet emission or reception as well as network protocol
events. These simulations can reproduce the movements of all network packets and the behav-
ior of the whole TCP stack down to the IP level. Packet-level simulations have been widely
used for studying fine-grained properties of network protocols. The most popular packet-level
simulator is NS2 [IH08], while more recent simulators include NS3 [NS3], GTNetS [Ril03] and
OMNet++ [VH08]. The TCP stack models found in simulators such as GTNets or NS2 are sim-
plified versions of the TCP stack. More recent developments [JM07] even allow the use of real
TCP stack implementations, which is slower but more realistic (i.e., real TCP stack implemen-
tations might have features/bugs that are absent from simplified versions used exclusively for
simulation purposes).

Unfortunately, in the context of simulation of grids or clouds, it can lead to long simulation
times since the life cycle of each packet is simulated through all protocol layers all the way to
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a simulated physical layer. Its use is thus often restricted to studying network protocols or ap-
plications that exchange small messages. An example of such application is a peer-to-peer Dis-
tributed Hash Table implementation, and peer-to-peer simulators have been developed that use
standard packet-level simulators [BHK07]. Nevertheless, some simulators provide the option of
using realistic packet-level simulation in spite of its high overhead (e.g., the iCanCloud cloud
simulator [NVPC+11]).

An alternative to expensive packet-level modeling, which still makes it possible to account for
network contention, is flow-level modeling as we described in Section 9.2. In flow-level models,
which are used by simulators in various domains [BCM+03, 35, OPF10, GB02], each communica-
tion, or flow, is simulated as a single entity rather than as a set of individual packets and assuming
that the flow has reached steady-state determining communication time amounts to share band-
width. The superiority in term of speed of one approach over the other obviously depends on
the input workload [YFG+01, YGK+99] and on the quality of the implementation although one
expects fluid simulation to be significantly faster for "stable" situations. The goal of this section
is to provide the reader a feeling of by how much the performance of such models can differ and
why fine grain packet-level models are definitely inadequate for studying large-scale distributed
systems. A similar preliminary study was also done by Casanova et al. [FC07].

To this end, we compare the default SIMGRID model, whose accuracy was discussed in the
previous chapter, with GTNetS [Ril03]. Since GTNetS uses fine grain simulation the GTNetS
model is expected to be much slower than SIMGRID’s analytic models although. The goal of the
following is to evaluate in simple settings whether such speed difference is acceptable or not.

We use two small-scale 50-node platforms. On the left side of Fig. 11.1, we present the results
obtained with a 50-node platform generated with the Waxman model [Wax88] and the BRITE
generator [MLMB01]. In this platform there are several alternate network paths but the un-
structured communication patterns of the simulated application still leads to interference among
communications in the network. On the right side of Fig. 11.1 we present results with a 50-node
platform generated with the Tiers algorithm [CDZ97], which uses a three-step space-based hier-
archical approach. The resulting topology is hierarchical with low bisection bandwidth, and has
thus both global (in the core of the network) and local (on the edges of the network) bottleneck
links.

We simulate a synthetic application that creates several independent transfers of a fixed size
randomly distributed over the platform and waits for all of them to complete. The timings pre-
sented here use an AMD Opteron 248 Dual Core (2.2 GHz) with 1MB of L2 cache and 2 GB of
RAM. Since execution time is slightly variable from one execution to another we performed each
experiment at least 5 times each and the 95% confidence interval based on Student’s distribution.
All graphs are plotted with the confidence interval enclosing each point although most of the
time confidence intervals are too small to be perceived with naked eye.

In our first comparison, we fix the message to 20MB and vary the number of concurrent flows
(see Fig. 11.1). Such message size may seem arbitrarily high but in a grid or HPC context, it
is very common to transfer large amount of data at once. Varying the number of simultaneous
communications directly increases simulation time by increasing the number of variables inside
the Max-Min system. As we can observe, SIMGRID is more than one order of magnitude faster
than GTNetS. As an illustration, simulating 320 concurrent communications on the Tiers platform
requires more than 7 minutes with GTNetS while less than 1 second is required with SIMGRID.

Another major advantage of the macroscopic flow-level model is its independence on mes-
sage size. To illustrate this, we vary the message size of 80 concurrent transfers (see Fig. 11.1). As
expected, SIMGRID simulations are independent of message size while the duration of GTNetS
simulations grows linearly with message size, quickly leading to prohibitive simulation times in
the context of large scale distributed computing systems.
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Figure 11.1: SIMGRID versus GTNetS response time when varying the number of simulated flows
or the size of messages for two 50-node platforms Waxman (left) and Tiers (Right). GTNetS
simulations are much several orders of magnitude slower than SIMGRID in spite of results being
within a few percents except for highly contended situations (i.e., the situations with 320 flows
for Waxman and 80+ flows for Tiers). As expected, GTNetS performance depends on message
size while SIMGRID does not, which is critical when studying communication workloads like
those encountered in Grid or HPC context.
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11.2 Efficient Simulation Kernel

As explained in the previous chapter, the base simulation model in SIMGRID relies on a steady-
state assumption to compute resource shares allocated to pending simulated activities. As a
result, each time the set of these activities changes (a new activity is started, a current activity
completes), the resource shares must be reevaluated, which amounts to solving a linear system
of equations (Eq. (9.1)). The computed resource shares are then used to determine (i) by how
much the simulated clock should be advanced and (ii) the progress of each pending activity.
Such resource sharing approach is somehow involved compared to what can be found in clas-
sical discrete-event simulators. We describe in this section most of the tricks and techniques we
resorted on to obtain a scalable implementation of such model. We conclude by two illustrations
of their effectiveness.

11.2.1 Efficient Resource Sharing

As we explained in Chapter 10, fair-share of network resources at the flow-level is implemented
in several simulators [BCM+03, OPF10, GB02] but incorrectly. The reason for this is that despite
a rather simple formulation a correct and efficient implementation can be quite involved. In
particular, since simulated activities dynamically appear and disappear during the simulation, an
efficient implementation required ad hoc dynamic and sparse data structure to represent Eq. (9.1).
In this section, we describe the main algorithmic and implementation principles underlying the
SIMGRID implementation of resource sharing.

In its simplest form, the max-min version of Eq. (9.1) is written:

MAXIMIZE mini %i
UNDER CONSTRAINTS{
∀r,
∑
i ∈ A using resource r %i 6 Cr,

Let us denote as ε the largest possible value for mini %i. Since it cannot be enlarged, this mean that
at least one constraint of a resource r is tight, i.e., that

∑
i ∈ A using resource r ε = Cr. Such resource

is then said to be saturated. If we denote by nr the load of constraint r, i.e., the number of activities
a using resource r, we have thus ε = Cr/nr and ε 6 Cr′/nr′ for all other r′. Therefore, ε can
simply be defined like minr Cr/nr and the (possibly several) r corresponding to this minimum
are thus saturated constraints. All variables linked to such constraints are saturated variables and
should receive a resource share %i to ε. Other variables could however receive a larger resource
share which has still to be defined. Therefore, once saturated variables have been allotted resource
shares, the remaining capacity of all the other constraints should be updated accordingly. Such
capacity update requires to iterate over all constraints linked to saturated variables. Once this
is done, the same process can be repeated again with free variables until they all have been
saturated.

This leads us to the algorithm given in Fig. 11.2. In the case of SIMGRID, the algorithm is
slightly more complicated as variables i have weightswi and resource usage may not be uniform,
i.e., the previous optimization problem is actually written:

MAXIMIZE mini wi%i
UNDER CONSTRAINTS{
∀r,
∑
i ∈ A using resource r ar,i%i 6 Cr,

The solving principle remains however the same. If we denote by ε the largest possible value for
mini wi%i, then we derive that

ε ≤ Cr∑
i ∈ A using resource r

ar,i
wi

The load on constraint r should thus be defined as
∑

i ∈ r ar,iwi
. The saturated constraints are thus

those reaching this minimum and saturated variables need to be set to ε/wi. Constraint capacities
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1: Let Ra be the set of active constraints, i.e., those linked to variables with a non-negative
weight.

2: repeat
3: for all active constraint r ∈ Ra do
4: Compute the constraint load nr and the constraint demand Cr/nr.
5: Let ε be the smallest demand and Rs be the set of saturated resources, i.e., the ones

achieving such minimum.
6: Let S be the set of saturated variables, i.e., those linked to a saturated resource r ∈ Rs.
7: for all variable i in S do
8: %i ← ε
9: for all constraint r linked to i do

10: Update the capacity of r, i.e., Cr ← Cr − %i
11: Update the load of r, i.e., nr ← nr − 1
12: if Cr = 0 or nr = 0 then
13: Remove r from Ra
14: until there is no more active constraint

Figure 11.2: Sketch of the max-min share algorithm implemented in SIMGRID.

have to be updated with ar,i%i and constraint demands have to be updated with ar,i/wi. Further-
more, a special treatment should be given to variable specific bounds (i.e., those corresponding
to the RTT bounds of Eq. (10.8)) but it does not change the principle of the algorithm either.

The principle of the max-min fair sharing algorithm is thus quite simple although the recur-
sion, the weights and the non-uniform resource usage make it slightly more complicated. Com-
ing up with an efficient implementation that scales gracefully adds however a level of complexity
since we need to maintain and solve such system of equations at minimal cost. From inspecting
the algorithm of Fig. 11.2, we can make the following observations:

• The list of constraints r is defined at the beginning of the simulation although the set of
active constraints evolves upon activity creation;

• Variables %i are regularly created and destroyed upon activity life-cycle;

• The connection between $%i$s and the constraints r is fully known upon the creation of
variable %i;

• We need to iterate over the set of saturated constraints and on the set of active constraints,
which both evolve during the execution of the algorithm;

• To efficiently update constraint demand and capacity, it is required to navigate back and
forth between the variables %i and the constraints r.

These observations motivated the ad hoc sparse data structure depicted on Fig. 11.3.
Such data structure has redundancy that enable to access any needed value in time O(1) and,

allied with a few simple programming tricks to keep useless objects out of sight and to break
loops as soon as possible, it allows to compute the resource shares very efficiently. The only
operation whose complexity may be improved and amortized over the execution of the algorithm
is the computation of the minimum, for example using a heap. However, since such values need
to be updated regularly, they would have to be extracted and reinserted in the heap, hence an
unclear benefit.

The previous implementation is thus optimal in terms of number of operations, but on partic-
ularly large workloads, we realized it suffered from a very poor L1 and L2 cache reuse. To obtain
an efficient cache-oblivious implementation we split the data structure in half so as to group to-
gether the few fields that are heavily used by the bandwidth sharing algorithm in contiguous
arrays. The use of arrays instead of linked lists improves locality and hence the prefetch effi-
ciency. This trimming of data structures is partially done at the beginning of the algorithm while
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Figure 11.3: Illustrating the sparse data structures underlying the max-min resource sharing.

another part is maintained over the calls for a better amortized cost. As one would expect, these
optimization lead to improved cache utilization, and thus significantly lowers simulation time,
but at the cost of increased implementation complexity.

Beside these data structure optimizations, we have also implemented two algorithmic opti-
mizations motivated by actual large-scale simulation scenarios [31], as detailed in the next two
paragraphs.

11.2.2 Lazy Activity Updates

Originally, SIMGRID was intended for the simulation of applications that comprise many com-
municating tasks running on computers connected by hierarchical networks. In this setting any
event related to a simulated activity or resource can impact a large fraction of the other simulated
activities and resources. However, when simulating large-scale platforms, such as those used for
peer-to-peer or volunteer computing applications, most activities are independent of each other.
In this case, reevaluating the full model becomes a performance bottleneck because all activities
are examined even though many can simply be ignored most of the time. Our approach is thus
to avoid solving the whole linear system in Eq. (9.1) by only recomputing the parts of it that are
likely to be impacted by newly arrived or newly terminated activities. Furthermore, if between
two resolution of the linear system only a few variables have changed, then only the state of the
corresponding activities needs to be updated. Using a heap as a future event set, and efficiently
detecting the set of variables that are impacted by activity removal and addition, we are able to
lower the computational complexity of the simulation significantly. We term this technique “lazy
updates,” since the state of a simulated activity is modified only when needed.

11.2.3 Trace Integration

Our second efficiency improvement targets the management of resources whose capacities change
frequently. In SIMGRID, the user can specify the capacity of a resource as a time-stamped trace to
simulate fluctuating availability due to some out-of-band load (a capacity of zero means a down-
time). The linear system in Eq. (9.1) must be reevaluated each time the capacity of a resource
changes. In extreme scenarios, many such reevaluations may occur before a single activity com-
pletes, which would slow the simulation down unnecessarily. For instance, let us consider a
situation in which the capacity of a resource is specified to change 100 times according to a user-
specified time-stamped trace. Furthermore, let us assume that all pending activities still have
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large amounts of remaining work so that the earliest activity completion occurs after the 100th
resource capacity change. In this case, 100 reevaluations of the linear system would take place
even though would be possible to perform a single reevaluation. More formally, given current
remaining work amounts, one can compute the next activity completion date given all future
resource capacity values before this date. This computation can be performed efficiently using
“trace integration" (see Fig. 11.4). Essentially, instead of storing a trace as capacity values, one

Figure 11.4: Integrating availability trace histograms one is able to advance the simulation to
useful actions.

stores its integral. Finding the last resource capacity change before the next activity completion
can then be performed using a binary search, i.e., with logarithmic time complexity.

11.2.4 Illustrating Scalabity With a Volunteer Computing Simulation

The scalability enhancements described in this section were initially motivated by the need to
simulate large volunteer computing systems efficiently [31]. Let us consider a volunteer comput-
ing scenario withN hosts. Each host computes sequentially P tasks, and the compute rate of each
host changes T times before the completion of the simulation. With our original implementation
the time complexity of this simulation is O(N2(P + T )). With lazy activity updates it becomes
O(N(P + T ) logN), and O(NP (log(N) + log(T ))) when adding trace integration. We have im-
plemented such a simulation, using traces of MFlop/sec rates for SETI@home hosts available
from [KJIE10]. Compute tasks have uniformly distributed random compute costs in MFlop be-
tween 0 and 8.1012 (i.e., up to roughly one day for a median host). Note that such simulation
scenarios are commonplace when studying volunteer computing, and in fact this particular sce-
nario was suggested to us by the authors of [HFH08] to highlight scalability issues in previous
versions of SIMGRID. Fig. 11.5 shows simulation time measured on a 2.2 GHz AMD Opteron
processor vs. N for the initial design, the addition of lazy activity updates, and the addition of
trace integration, using a logarithmic scale on the vertical axis. Results make it plain that both
proposed improvements decrease simulation time dramatically. For instance, for a simulation
with 2,560 hosts, the simulation time is almost at 3h without the enhancements, around 1min
with lazy updates, and under 10 s with lazy updates and trace integration. A comparison with
the state-of-the-art SimBA simulator [TKE+07], based on timing results published therein and
the use of a similar benchmark machine, shows that with our improvements SIMGRID achieves
simulation times more than 25 times faster. We refer the interested reader to [31] for more details
on the experimental setup. This is an important result given that SIMGRID is more versatile than
SimBA. In fact, the behaviors of the network and the software are simulated in much more de-
tails in SIMGRID (i.e., flow-level model of TCP, programmatic specification) than in SimBA (i.e.,
fixed latency, finite automata). Such kind of detail is mandatory to conduct studies like the one
of Chapter 7.
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Figure 11.5: Simulation time vs. number of simulated hosts for a volunteer computing simulation
using the initial design, with lazy updates, and with lazy updates and trace integration.

11.2.5 Illustrating Scalability With Unstructured Communications Simula-
tion

The trace integration mechanism is specific to CPU simulation, but the lazy update mechanism
applies across all kind of resources and activities. To quantify the impact of lazy updates on the
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Figure 11.6: Simulation time vs. number of network flows for three different network topologies
without and with lazy updates. On loosely connected platforms (e.g., independent peers), the
lazy updates mechanism reduces simulation time significantly. On more tightly coupled plat-
forms it can increase simulation time.

speed of network simulation, Fig. 11.6 shows simulation times when simulating various numbers
of flows (10, 50, 100, or 150) that are opened and closed at random dates between random pairs
of nodes for 1,000 seconds of simulated time, for three representative platforms. A randomized
factorial set of experiments with 50 measurements for each combination is run on a 3.3 GHz Core
i7 processor and we report the 95% confidence intervals of the average time needed to perform
the simulation (platform description parsing time is not included). The first platform consists of
1,740 independent hosts each with its own upstream link and downstream link. When peer A
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communicates with peer B, a network flow using the upstream link of A and the downstream
link of B is created and the latency of this flow is computed from the link latencies and the Vi-
valdi [DCKM04] network coordinates of the peers. This platform is thus very loosely coupled,
and as such we see in the leftmost graph in Fig. 11.6 that the use of lazy updates reduces the
simulation time significantly. The second platform comprises 90 hosts and 20 routers and was
created with the Tiers algorithm [CDZ97], which uses a three-step space-based hierarchical ap-
proach. The resulting topology is hierarchical with low bisection bandwidth, and has thus both
global (in the core of the network) and local (on the edges of the network) bottleneck links. The
third platform comprises 200 nodes and is generated with the Waxman model [Wax88] and the
BRITE generator [MLMB01]. In this platform there are more alternate network paths but the un-
structured communication patterns of the simulated application leads here also to interference
among flows in the network. The results in Fig. 11.6 for the second and third platforms show that
lazy updates actually increase simulation time. This is because in these platforms the probability
that a random flow interferes with another is high. As a result, our lazy updates implementa-
tion suffers from some slight overhead when determining that the resource shares of most flows
needs to be recomputed. For this reason, lazy updates can be deactivated by the user. However,
since lazy updates only incur marginal slowdowns but bring significant speedup when there is
locality in the communication patterns, SIMGRID enables them by default.

11.3 Efficient Platform Representation

As can be seen on Fig. 9.1, a specification of resources, of their capacities and of their intercon-
nections is required to create and update the linear system (9.1). For example, when creating
a communication from A to B, we need to know the list of network resources used (possibly
in both directions) so as to link the newly created variable to all the constraints corresponding
to such resources. The simplest and most expressive way to describe a network interconnect is
to describe the routing table of each simulated network element explicitly. Unfortunately, this
method is quite memory consuming as it grows quadratically with the number of hosts. There
are however many situations where network topology exhibit some regularity that could be ex-
ploited to reduce memory footprint. For example, when simulating a peer-to-peer system one
may not want to precisely simulate the core of the network (, which is often quite difficult to
model and instantiate anyway) but one may want to model contention occurring on the edge
of the network on ADSL lines. In such case, an effective solution is to assign each host its own
upstream link and downstream link. Then, when peer A communicates with peer B, a network
flow using the upstream link of A and the downstream link ofB is created. Such routing rule can
easily be implementing with Θ(N) memory footprint and a O(1) routing cost. More generally,
SIMGRID uses a scalable, efficient, and modular network representation technique, which also
drastically reduces the platform description burden placed on users.

SIMGRID’s platform representation exploits the hierarchical structure of real-world (large-scale)
network infrastructures [27], relying on the concept of autonomous systems (AS), including local
networks as well as the classical Internet definition. In addition, the representation is recursive
within each AS so that regular patterns can be exploited whenever possible. SIMGRID provides
stock implementations of well-known routing schemes, including Dijkstra, Dijkstra with cache,
Floyd, Flat (i.e., full routing table), Empty routing with Vivaldi network coordinates [DCKM04],
cluster (i.e., a regular topology where each node has its own private links and communicates
with the others through an additional shared link), and classical HPC topologies such as n-
dimensional torus and fat-trees. For the time being, and to favor scalability, SIMGRID assumes
that the routing is static over time. This assumption is reasonable (see for instance the study
in [BMA06], which shows that less than 20% of Internet paths change in a 24-hour period).
Besides, routing changes in real-world networks are known to affect traffic on backbone links.
Usually, these links are not communication bottlenecks. Therefore, routing changes can likely
be ignored without a large impact on simulation accuracy in a Wide area context. In an HPC
context where parallel computers may use dynamic adaptive routing, special adjustments have
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necting a small cluster (AS4), a larger hierarchical cluster (AS5), a subset of a LAN (AS6), and a
set of peers scattered across the Internet (AS3).

to be implemented in the core of SIMGRID. Fig. 11.7 shows an example hierarchical network
representation in SIMGRID.

Each AS declares a number of gateways, which are used to compute routes between ASes
comprised within a higher-level AS. This mechanism is used to determine routes between hosts
that belong to different ASes: simply search for the first common ancestor in the hierarchy and
resolve the path recursively. The network representation and this route computation method pro-
vide a compact and effective representation for hierarchical networks. Since real-world networks
are not purely hierarchical, SIMGRID provides “bypassing” rules that can be used to declare al-
ternate routes between ASes manually.

The above semantic principles of network representation are implemented by the user via an
XML file. For convenience, SIMGRID provides a set of XML tags that simplify the definition of
two standard and ubiquitous ASes: homogeneous clusters and sets of Internet peers. The cluster
tag creates a set of homogeneous hosts interconnected through private links and a backbone,
which all share a common gateway. The peer tag allows for the easy creation of peer-to-peer
platforms by defining at the same time a host and a connection to the rest of the network (with
different upload and download characteristics and network coordinates). SIMGRID also provides
an API for generating in-memory network descriptions directly without requiring an XML file.

11.3.1 Illustrating the Efficiency of Platform Representation With Grid Com-
puting Simulations

SIMGRID’s network description approach makes it possible to describe large platforms with low
memory footprint and without significant computational overhead. It competes in terms of speed
and memory usage with state-of-the-art simulators while relying on much more accurate models
that are generally considered as prohibitive.

For instance, it allows us to represent the full Grid’5000 platform [BCC+06] (10 sites, 40 clus-
ters, 1,500 nodes) with only 61 KiB. By comparison, the flat representation with SIMGRID v3.2
required 1,065 MiB [FQS08]. It takes more than 4 minutes to parse the flat representation on a
1.6 GHz Intel Core2 Duo with 5 GiB of memory and an SSD drive while the current representa-
tion is parsed in less than 150 milliseconds.

We now compare the scalability of SIMGRID to the widely used GridSim toolkit [BM02] (ver-
sion 5.2 released on Nov. 25, 2010). The experimental scenario is a simple master-worker execu-
tion where the master distributes T fixed size tasks to W workers in a round-robin fashion. In
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Simulation Time Peak Memory Footprint

GridSim 56 ms×W + 14 ns× T 2 2.5 GiB + 226 KiB×W + 3 KiB× T
SIMGRID 0.1 ms×W + 26µs× T 5.2 MiB + 80 KiB×W

Table 11.1: Polynomial fits of simulation times and peak memory footprints of GridSim and
SIMGRID for a master-worker simulation with W workers and N tasks. The simulation time
is quadratic with T in GridSim while it is linear in SIMGRID. The peek memory footprint of
GridSim is several orders of magnitude larger than that of SIMGRID.

GridSim we did not define any network topology, hence only the output and input baud rates
are used to determine data transfer rates. By contrast, with SIMGRID we used a full-fledged flow-
level network model and the aforementioned Grid’5000 network representation, which models
clusters and their cabinets as well as the wide area network interconnecting the different sites.
Experiments were conducted using a 2.4 GHz Intel Xeon Quad-core with 8 GiB of RAM. We refer
the interested reader to [27] for more details on the experimental setup.

The number of tasks, T , is uniformly sampled in the [1; 500,000] interval and the number of
workers, W , is uniformly sampled in the [100; 2,000] interval We perform 139 experiments for
GridSim and 1,000 for SIMGRID (as it was significantly faster), and measure the wall-clock time
(in seconds) and the memory consumption (using the Maximum Resident Set Size in KiB as a
measurement). As expected, the size (input and output data, and amount of computation) of the
tasks have no influence. Experimental results are shown as polynomial fits in Table 11.1. The
goodness of fit is high (all coefficients of determinations, or R2, for all fits are above 0.9972).

The simulation time for GridSim is quadratic in T and linear in W . Surprisingly, GridSim’s
memory footprint is not polynomial in T andW . Rather, it appears to be piece-wise linear in both
(with a very steep slope at first, and less steep as values increase). Furthermore there are a few
outlier points that exhibit particularly low or high memory usages (leading to R2 = 0.9871). This
is likely explained by the Java garbage collection. For this reason, in Table 11.1 we only report
results for scenarios where T is larger than 200,000, which removes most outliers.

Analyzing the results for SIMGRID shows that its simulation time and memory footprint are
stable and several orders of magnitude lower. The results reported in Table 11.1 mean that
5.2 MiB are required to represent the Grid’5000 platform and the internals of SIMGRID, with a
payload of 80 KiB per worker. By comparison GridSim uses 2.5 GiB with an additional 226 KiB
payload per worker. Furthermore, in SIMGRID T has no impact on the memory footprint, which
is not the case in GridSim. We conclude that SIMGRID, with its flow network model and a fine-
detailed network topology, is several orders of magnitude faster and more memory efficient than
GridSim, with its simple delay-based model and no network topology. For instance, while Grid-
Sim requires more than one hour and 4.4 GiB of memory to simulate the execution of 500,000
tasks with 2,000 workers, SIMGRID performs this same simulation in less than 14 seconds and
with only 165 MiB.

11.4 Efficient Process Representation and Simulator Archi-
tecture

SIMGRID allows users to describe the simulated application programmatically as a set of inde-
pendent but communicating concurrent processes. The goal is to allow users to implement the
simulated application in a way that is similar to but simpler than the way in which a real applica-
tion would be implemented. Such notion of process was not in the earliest versions of SIMGRID
designed by Henri Casanova and I introduced it in 2002, providing two different backends. The
first one was based on pthread and was quite portable although limited in term of scalability.
The second one was based on System V ucontext and had portability issues on several operat-
ing systems (e.g., Solaris and AIX) but had not other scalability limit than the memory available
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on the system. This implementation of concurrent sequential process was however quite cumber-
some and difficult to maintain. I tried several times, in particular with Bruno Donassolo, to clean
this part but with limited success. The good idea to re-architecture this part of the simulator by
introducing a mechanism similar to the one of system calls and which is presented in this section
came from Martin Quinson, Cristian Rosa and Christophe Thiéry [QRT12].

Due to the optimizations described in the previous sections, for many large-scale simulations
the most computationally intensive portion of the simulation is not the evaluation of the simu-
lation model, but instead the execution and the synchronization of the simulated processes! As
a result, increasing scalability requires going beyond vanilla implementations based on threads
and standard synchronization primitives.

Since the simulation models in SIMGRID can be computed quickly, it is possible and in fact
efficient to have a unique execution context (such as a thread) handle all the simulation model
computations. We call this context the core context, and it interacts with the execution contexts of
the simulated concurrent processes. This has led to the layered design shown in Fig. 9.1. At the
bottom is the SURF component that runs in the core context and deals with the simulation of the
resources and of their usage by the activities issued by the simulated concurrent processes. At
the top are the concurrent processes themselves, implemented as user code that places calls to a
SIMGRID API (MSG or SMPI) to define activities. In between is a synchronization kernel, SIMIX,
that mediates every interaction between the simulated processes and the core context.

The synchronization kernel is conceptually close to the kernel of a classical operating system
and it emulates a system call interface called simcalls. Simcalls are used by simulated processes to
interact with the core context. When a simulated process issues a simcall the request and its argu-
ments are stored in a private memory location. The process is then blocked until the completion
of the request (e.g., completion of the corresponding simulated activity). When all user processes
are blocked in this manner control is passed to the core context. The core context handles the
requests sequentially in an arbitrary but deterministic order based on process IDs, and it is the
only context that accesses the simulation state. A sequential core context makes for simplified
simulation logic due to vastly reduced numbers of context switches between the core context
and the simulated processes. To the best of our knowledge it is the first time that this classical
OS design is applied to distributed system simulation. An alternate design in which simulated
entities actively interact with each other, such as that used for instance in GridSim [BM02], may
seem more intuitive but leads to more complex simulation logic due to multi-step interactions
between processes/threads.

Our design is scalable only if mechanisms are available to execute thousands or even mil-
lions of processes on a single host (standard virtual machine techniques cannot be used to ex-
ecute our simulated processes as at most dozens of virtual machines instances can run effi-
ciently on a host). The use of regular threads seems like a natural approach, with the code of
each simulated concurrent process running in its own thread. But with standard threads, one
can scale up to “only” a few thousands simulated processes, thus severely limiting the scale of
the simulation. For instance, GridSim, which uses threads, cannot simulate more than 10,000
processes/hosts [DDMVB08]). Instead, we employ cooperative, light-weight, non-preemptive
threads (known as continuations). They are ideally suited to our needs since our synchronization
kernel has to finely control the scheduling of the simulated processes anyway. Additionally, they
are much simpler to implement than regular threads. The Windows operating system provides
such light-weight execution contexts as fibers, while they are called ucontexts (for user-contexts) on
Unix operating systems, including Mac OSX. In SIMGRID we have aggressively re-implemented
a similar mechanism directly in assembly so as to remove a costly and unnecessary system call
found in standard implementations.

11.4.1 Illustrating Process Scalability with Peer-to-peer Simulations

In [QRT12], Martin Quinson et al. compare the scalability of SIMGRID for a peer-to-peer sim-
ulated scenario to that of two popular and reported-to-be-scalable simulators in that domain:
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Figure 11.8: Simulation time vs. number of peers for a Chord simulation with SIMGRID (with con-
stant and precise network models), OverSim (with a simple underlay and using the OMNeT++
bindings), and PeerSim.

OverSim [BHK07] and PeerSim [MJ09]. Fig. 11.8 shows the simulation time of the Chord pro-
tocol [SMLN+03] vs. the number of simulated peers. For SIMGRID and OverSim they used the
experimental scenario initially proposed in [BHK07]: each peer joins the Chord ring at time t = 0,
then performs a stabilize operation every 20 seconds, a fix fingers operation every 120 seconds,
and an arbitrary lookup request every 10 seconds. The simulation ends at t = 1000 seconds. For
PeerSim, the implementation that is publicly available does not make this experimental scenario
possible since there are not stabilize or fix fingers operations. So in the PeerSim experiments a
single lookup was generated every 120 seconds.

They used the Chord implementations that are publicly available for OverSim and PeerSim,
while they have implemented the Chord protocol themselves for SIMGRID. Therefore, there may
be differences (parameters, features, optimizations, or even bugs) among the three implementa-
tions of the protocol. To ensure that experiments are comparable in spite of such differences, they
tuned the simulated scenario parameters to make sure that the numbers of application messages
exchanged during the simulation, and thus the load on the simulator, were comparable across
experiments (10,000 peers, 25 million messages). More specifically, they conservatively ensured
that more messages are exchanged in the SIMGRID simulation than in the OverSim and Peer-
Sim simulations. Note that the three simulators recorded different information (i.e., simulation
event traces), leading to different tracing overheads. However, as seen hereafter, the results show
orders of magnitude improvements for SIMGRID over its competitors.

Experiments were conducted on one core of a two-CPU 1.7 GHz AMD Opteron 6164 HE (12
cores per CPU) with 48 GiB of RAM running Linux. OverSim (v20101103) is implemented in C++
(gcc v4.4.5), SIMGRID (SimGrid v3.7-beta, git revision 918d6192) in C (gcc v4.4.5), and PeerSim
(v1.0.5) in Java (HotSpot JVM v1.6.0-26). In the experiments, they configured PeerSim so that its
simulation model assumes that every communication takes a uniform random amount of time.
They configured OverSim to use a simple model in which communication times are based on
the Euclidean distance between processes (instead of the less scalable OMNeT++ bindings). By
contrast, for this experiment SIMGRID used its full-fledged flow-level model that accounts for
more complex network behavior (i.e., contention and TCP congestion avoidance). Therefore, the
simulation model of SIMGRID subsumes and is strictly more realistic than the simulation models
in OverSim and PeerSim. We refer the interested reader to [QRT12] for full details.

Results (see Fig. 11.8) show that the largest scenario that they managed to run in less than
12 hours using PeerSim was for 100,000 peers (4h36min). This poor result is likely due to the
Java implementation. With OverSim, they managed to simulate 300,000 peers in 10 hours. With
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SIMGRID they were able to simulate 2,000,000 peers in 6h43min. Simulating 300,000 peers took 32
minutes. The memory footprint for simulating 2 million peers with SIMGRID was about 36 GiB,
which amounts to 18 KiB per peer, including 16 KiB for the stack devoted to the user code.

We conclude that SIMGRID leads to drastic scalability improvements when compared to state-
of-the-art peer-to-peer simulators, even though these simulators were designed specifically for
scalable simulations. For instance, SIMGRID is 15 times faster than OverSim and can simulate sce-
narios that are 10 times larger even though it uses much more sophisticated (network) simulation
models. The reasons for these large performance improvements over domain-specific simulators
are the various optimizations/designs of the simulation engine described in this work, which
were driven by the need for simulation versatility.

11.5 Future Work

The previous sections illustrate the efforts we conducted to make SIMGRID faster and more scal-
able than domain-specific simulators in the context of grid computing, volunteer computing and
peer-to-peer networks. Although we only present the solutions we came up with, many other
developments would have been possible. In our case, the key element in designing effective
strategies has been to start from workloads revealing actual limitations. Whenever we tried to
guess what may go wrong and what could need to be improved, our guess turned out to be not
really judicious. That is why we took care in USS-SimGrid and more particularly in SONGS to
incorporate both simulation developments and actual case studies depending on simulation.

The current state of SIMGRID is thus now sufficient for most volunteer computing studies
even for complex ones like those presented in Chapter 7. Regarding peer-to-peer systems, al-
though I am not aware of real peer-to-peer studies based on SIMGRID, we somehow achieved
our goal since SIMGRID not only scales much better than classical peer-to-peer simulators but it
is also now cited as a viable alternative in recent surveys on peer-to-peer simulators [BFS+13]. In
the context of grid computing, SIMGRID was selected over other simulators by colleagues from
the CERN to study data movement policies at LHC due to its scalability and its ability to account
for network contention. Several researchers [KAdBM+13, PIB14] have also used it for studying
Map-Reduce applications.

I think little developments will be needed for the cloud context in term of scalability and
that further work in this direction can only be motivated by specific use cases where SIMGRID
scalability is demonstrated to be not satisfactory. The HPC and exascale domain is likely to raise
a few challenges of its own but again, I think only actual case studies and workloads should
motivate new developments as the wrong optimization is likely to be developed otherwise.



Chapter 12

Ongoing and Future work

12.1 Accurate and Scalable Simulation of HPC Applications

12.1.1 The SMPI Project

In Section 10.3, we explained how we adapted the SIMGRID fluid network model to MPI work-
loads and in Section 11.3, we explained how we exploited topology regularity and hierarchy to
achieve scalable network representation. Developing a simulator that makes it possible to simu-
late a few standard HPC benchmarks with reasonable accuracy requires a fair amount of effort,
and has merit to demonstrate the potential of the simulator. However, the ultimate goal is for the
simulator to be usable (i.e., accurate and scalable) for simulating real applications. For this rea-
son, we also ensured SMPI could also be used to simulate both benchmarks and complex applica-
tions (both in FORTRAN and C), including the full LinPACK suite [DLP03], the Sweep3D [BK98]
benchmark, the BigDFT Density Functional Theory application [GNG+08], and the SpecFEM3D
geodynamics application [PKL+11] that is part of the PRACE benchmark. SMPI is tested on a
daily basis for 80% of the MPICH2 test suite and against a large subset of the MPICH3 test suite.
We can thus claim that SMPI is not limited to toy applications but can effectively be used for the
analysis of real scientific applications.

In [24] we have demonstrated the ability of SMPI to simulate a real, large, and complex MPI
application and we report here a part of these results to illustrate the effectiveness of the models
presented in Section 10.3. To this end, we use BigDFT, which is the sole electronic structure code
based on systematic basis sets that can use hybrid supercomputers and has good scaling (95%
efficiency with 4,096 nodes on the Curie supercomputer). For this reason, BigDFT was selected
as one of the eleven scientific applications in the Mont-Blanc project [Mon] (see Section A.1.2).
The goal of this project is to assess the potential of low-power embedded components, such as
commercially available ARM processing and network components, for building exascale clus-
ters. The first Mont-Blanc prototype is expected to become available during 2014. It will include
Samsung Exynos 5 Dual Cortex A15 processors with an embedded Mali T604 GPU and will be
using Ethernet for communication. To evaluate the applications before the prototype is avail-
able, a small cluster of ARM systems-on-chip was built at the Barcelona Supercomputing Center,
Tibidabo [RVV+13], which uses NVIDIA Tegra2 chips, each with a dual-core ARM Cortex A-9
processor. The PCI Express support of Tegra2 is used to connect a 1 GbE NIC, and the boards
are interconnected hierarchically using 48-port 1 GbE switches. The application execution results
that are presented in this section have been obtained on Tibidabo. The OpenMP and GPU exten-
sions of BigDFT were disabled so as to focus on the behavior of the MPI operations. We used
MPICH 3.0.4 [TRG05] and we refer the interested reader to [24] for more details on the experi-
mental setup.

BigDFT alternates between computation bursts and intensive collective communications. The
collective operations that are used are diverse and can change depending on the instance, hence
requiring accurate modeling of a broad range of collective communications for the purpose of
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simulating BigDFT executions. BigDFT can be simulated with SMPI with minimal source code
modification. BigDFT has a large memory footprint, which precludes running it on a single ma-
chine. However, thanks to the memory folding and partial execution techniques implemented
as part of SMPI (see [CSG+11]), we were able to simulate the execution of BigDFT with 128 pro-
cesses, with a peak memory footprint estimated at 71 GiB, on a 1.6 GHz Intel Core2 Duo processor
with less than 2.5 GiB of RAM.

Fig. 12.1 shows parallel speedup vs. number of compute nodes, as measured on the Tibid-
abo cluster for an instance of the BigDFT application. This instance has a relatively low com-
munication to computation ratio in spite of Tibidabo’s relatively slow compute nodes (around
20% of time is spent communicating when using 128 nodes), and uses the following collec-
tive operations: MPI_Alltoall, MPI_Alltoallv, MPI_Allgather, MPI_Allgatherv and
MPI_Allreduce. This particular instance is a difficult case for simulation. This is because the
large number of collective communication operations severely limits the scalability of the ap-
plication, thus requiring precise simulation of these operations. Yet, accurately assessing such
scalability limits in simulation is crucial for deciding how to provision a platform before it is
actually purchased and deployed.

In addition to the real speedup measurements, Fig. 12.1 shows the speedup computed based
on simulation results obtained with SIMGRID, as well as the speedup computed according to
the more standard LogGPS model [IFH01]. As expected, both are more optimistic than the real
execution. However, while SIMGRID tracks the trend of the real measurements well (within
8%), LogGPS is overly optimistic (up to 40% error). As explained in Section 10.3, unlike mod-
els from the LogP family, SIMGRID relies on a model that combines flow-level models (to ac-
count for contention on arbitrary network topologies), a piece-wise linear model (to model the
protocol switching feature of MPI implementations), and a LogP model (to model the compu-
tation/communication overlap and the communication synchronization semantic). The results
in Fig. 12.1 show that this model is significantly more accurate than the LogGPS model. In par-
ticular, unlike LogGPS, it successfully accounts for the slowdown of BigDFT incurred by the
hierarchical and irregular network topology of the Tibidabo platform.
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Figure 12.1: Parallel speedup vs. number of
compute nodes for BigDFT on Tibidabo, for real
executions, SIMGRID simulations, and LogGPS
models.

0.01

0.1

1

10

100

1000

10 12 14 16 18 20 22 24

S
im

ul
at

io
n

Ti
m

e
(s

)

SimGrid
LogGoPSim

Log2 of the Number of Nodes

Figure 12.2: Simulation time vs. num-
ber of simulated nodes for SIMGRID and
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To further demonstrate the usability of SMPI, we want to mention that simulating 64 nodes of
tibidabo, which is made of relatively slow ARM processors, on a Xeon 7460 with partial on-line
simulation takes twice as less time (10 minutes) than running the code for real (20 minutes). This
can obviously imputed to the slow speed of ARM processors but still shows that such approach
can somehow compete with real experiments when debugging code or conducting scalability
studies.
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One interesting question is whether the higher accuracy of SIMGRID when compared to the
use of the simpler delay-based LogGPS model comes at an acceptable loss in simulation scal-
ability. To answer this question we compare the scalability of SIMGRID to that of LogGOPSim
1.1 [HSL10b], a recent simulator designed specifically to simulate the execution of MPI appli-
cations on large-scale HPC systems. LogGOPSim relies on the LogGPS model. We use the
same experimental setting described in Section 4.1.2 of [HSL10b], i.e., the execution of a bino-
mial broadcast on various numbers of nodes. Unfortunately, as the input traces used therein
were not available, we compare our results to the published results instead of reproducing the
experiments with LogGOPSim. We use SIMGRID v3.7-beta (git revision 918d6192 and gcc v4.4.5)
to simulate a platform interconnected with a hierarchy of 64-port switches. The binomial broad-
cast is implemented with the SimDAG API. The original evaluation of LogGOPSim was done on
a 1.15 GHz Opteron workstation with 13 GiB of memory. Instead, we use one core of a node with
two AMD Opteron 6164 HE 12-core CPUs at 1.7 GHz with 48 GiB of memory, which we scale
down to 1 GHz to allow for a fair comparison. We refer the interested reader to [27] for more
details on the experimental setup.

Fig. 12.2 shows simulation time vs. the number of simulated nodes for both SIMGRID and
LogGOPSim. While using significantly more elaborate platform and communication models,
and thus leading in general to much improved accuracy (see Fig. 12.1), SIMGRID is only about
75% slower than LogGOPSim. This percentage slowdown is almost constant up to large scales
with millions of simulated nodes. SIMGRID’s memory usage for 223 nodes in this experiment is
15 GiB, which is larger than what is achieved in [HSL10b] (whose experiments were conducted
on a machine with 13 GiB of RAM). The incurred scalability penalties in terms of simulation
time and memory footprint are likely worthwhile for most users given the large improvement in
simulation accuracy.

12.1.2 StarPU over SIMGRID

Hybrid multi-core architectures comprising several GPUs have become mainstream in the field
of High-Performance Computing. However, obtaining the maximum performance of such het-
erogeneous machines is challenging as it requires to carefully offload computations and manage
data movements between the different processing units. In the past few years, it has become
very common to deal with that through the use of an additional software layer, a runtime sys-
tem, based on the task programming paradigm [ATNW11, ABI+09, BBD+11]. Applications are
expressed as a task graph with data dependencies, i.e., a Directed Acyclic Graph (DAG), and
provide both CPU and GPU implementations for the tasks. The runtime can then schedule the
tasks over all available computation units, and automatically initiate the entailed data transfers.
Scheduling heuristics such as HEFT or work stealing are used to automatically optimize that ex-
ecution [ATNW11]. Application programmers are thus relieved from scheduling concerns and
technical details.

As a result, the concern becomes choosing the right task granularity, task graph structure,
and scheduling strategies optimizations. Task granularity is of a particular concern on hybrid
platforms, since a tradeoff must be found between large tasks which are efficient on GPUs but
expose little task parallelism, and a lot of small tasks for CPUs but are less efficient on GPUs.
The task graph structure itself can have an influence on execution time, by requiring more or less
communication compared to computation, which can be an issue depending on the available
bandwidth on the target system.

Getting accurate measurement results for all combinations is not trivial and it requires reserv-
ing the target system for a long period, which can become prohibitive. Moreover, experimenting
over a wide range of different platforms is also necessary to make sure that the resulting strat-
egy choices are generic, and not only suited to the few target systems which were available to
developers. Finally, since execution time on real machine exhibit variability, dynamic sched-
ulers tend to make varying scheduling decisions, and the obtained performance is thus far from
deterministic. This makes performance comparisons more questionable and debugging of non-
deterministic deadlocks inside such runtimes even harder.
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Table 12.1: Machines used for the experiments
Name Processor Number of Cores Frequency Memory GPUs
hannibal Intel Xeon X5550 2× 4 2.67GHz 2× 24GB 3×QuadroFX5800
attila Intel Xeon X5650 2× 6 2.67GHz 2× 24GB 3×TeslaC2050
conan Intel Xeon E5-2650 2× 8 2.0GHz 2× 32GB 3×TeslaM2075
frogkepler Intel Xeon E5-2670 2× 8 2.6GHz 32GB 2×K20

Simulation can be an effective technique to address such challenges although the workload
induced by such runtimes is very different from what we had been dealing with SIMGRID so far.
It may be worth mentioning that studying such application through classical and simple trace-
based simulations (as it is commonly done when simulating MPI applications) is not possible
as the behavior of the application is completely dynamic. The whole logic of the application
scheduler needs thus to be embedded in the simulation. Recently, Luka Stanisic, Samuel Thibault,
Brice Videau, Jean-François Méhaut, and myself explained at Europar’14 [23] how we crafted a
coarse-grain hybrid simulation/emulation of StarPU [ATNW11], a dynamic runtime system for
heterogeneous multi-core architectures, on top of SIMGRID.

We followed a systematic (in)validation approach similar to the one we used in Chapter 10.
All conclusions were drawn from analyzing and comparing GFlop/s rate, makespans and traces
of StarPU on one hand (called Native in the following), and StarPU on top of SIMGRID on the
other.

To study the validity of our models, we used the systems described in Table 12.1. These
NVIDIA GPUs have distinct characteristics and belong to different generations, which intends
to demonstrate the validity of our approach on a range of diverse machines. Regarding ap-
plications, we decided to focus on two common dense linear algebra kernels: cholesky and LU
factorization.

As shown in [23], a careless modeling of any aspect of runtime, communications or compu-
tations, can lead to gross inaccuracies for particular combinations of machines and applications.
Our systematic investigation of discrepancies allowed to cover the most important issues, which
enables us to obtain excellent prediction of performances. Fig. 12.3 depicts the performance as
a function of the size of the matrix for the two applications LU and Cholesky and for the four
different hybrid systems we described in Table 12.1. For most combinations, the prediction ob-
tained with SimGrid is very accurate. The only two scenarios where the error is larger than a few
percents is for the LU kernel on conan and frogkepler when our prediction slightly overestimates
the (bad) performances for large matrices. The trend is however perfectly predicted as well as
the size beyond which performance drops.

A closer look at traces (see Fig. 12.4) allows to see that this approach does not only provide
a good estimation of the total runtime but also offers an accurate simulation of the scheduling
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Figure 12.4: Comparing execution traces (native execution on top vs. simulated execution at
the bottom) of the Cholesky application with a 72, 000 × 72, 000 matrix on the Conan machine.
Traces are not perfectly identical since the execution is not deterministic but the behavior of the
simulation is representative of the real execution

details. Since even with the same parameters, native traces differ from an execution to another,
a point-to-point comparison with a simulation trace would not make sense. However, we can
check that both traces are indeed extremely close, which allows to study and understand the
potential weaknesses of a scheduler.

It is important to mention that the time to run each simulation typically takes few seconds
compared to sometimes several minutes for a real experiment. Compared to architecture-level
simulators whose average slowdown of simulations versus native execution is of the order of
magnitude of several dozens of thousands, our coarse-grain simulation allows to obtain a speedup
of ten to a hundred depending on the workload and on the speed of the machine. Furthermore,
since the target system is not required anymore, it is easy to run series of simulations in parallel.

Such a tool is extremely interesting for both StarPU developers and users as it allows (i) to
easily and accurately evaluate the impact of various parameters or scheduling alternatives (ii) to
tune and debug applications on a commodity laptop (instead of requiring a dedicated access to a
high-end machine) in a reproducible way (iii) to obtain reliable comparison of performance estima-
tions that may allow to detect problems with some real experiments (perturbation, configuration
issue, etc.).

12.1.3 And Beyond

Our broad conclusion, from this and the other case studies presented in this document, is that a
simulator can have both high accuracy and high scalability. It is interesting to note that SIMGRID
initially targeted grid computing applications, which led to the development of flow-level net-
work models that account for network contention (Chapter 10) in heterogeneous settings. SIM-
GRID then began being used for peer-to-peer and volunteer computing simulations (Chapter 7),
which required an optimization of the simulation model evaluation algorithm (Section 11.2), the
design of efficient platform models and representations (Section 11.3), and the optimization of
the simulation of concurrent processes (Section 11.4). Targeting the simulation of HPC systems
required improving the network model (Section 10.3). In the end, while these advances were mo-
tivated by various domains, their benefits are felt across all these domains. The results achieved
for the HPC case study presented in this section would not have been possible had not all these
advances been accomplished within a single versatile simulation framework. Fig. 12.5 illustrates
the different variations we developed to obtain faithful simulations of HPC scenarios.

Our achievements in the HPC domain can thus be summarized as follows:
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Figure 12.5: Illustration of how the different simgrid components/models have been modified
and extended to target specific HPC use cases

• The current version of the SMPI runtime (v3.11) makes it possible to simulate the execution
of unmodified MPI applications while accounting for network topology and contention in
high-speed TCP networks. Results in [24] show that SIMGRID can simulate collective com-
munications effectively and has consistently a better predictive power than classical LogP-
based models for a wide range of scenarios including both established HPC benchmarks
and real applications.

• The StarPU/SIMGRID simulator enables to accurately predict the actual running time of
dense linear algebra kernels on hybrid nodes [23]. in a large variety of settings. We in-
tend to continue such effort in two main directions. First, StarPU was recently extended
to exploit clusters of hybrid machines by relying on MPI [AAF+12]. Since we demon-
strated SimGrid’s ability to accurately simulate MPI applications, combining both works
should allow to obtain good performances predictions of complex applications on large-
scale high-end HPC infrastructures. Second, many numerical applications have been re-
cently ported on top of StarPU, including dense (MAGMA/MORSE) and sparse linear al-
gebra (QR-MUMPS), and FMM methods. Such applications are less regular and are thus
likely to be more challenging to model but our initial results are very promising.

Our [in]validation experiments allowed us to improve our models and the quality of our
prediction to the point where whenever we face a discrepancy between real experiments and
simulation, we also have to question the relevance of real experiments. We can list at least a few
examples of situations where this happened:

• When conducting the Tibidao experiments of Section 12.1.1, our initial prediction with the
fluid model and with the standard LogGPS model were identical and we were thus unable
to identify the scalability issue. It turned out that this discrepancy was not due to the model
but to the tibidabo machine that was not conforming to its specification. The two cabinets
were connected by 7 1 Gb links but due to some machine misconfiguration, only one of
them was used. When we modified our platform model accordingly, everything went back
to normal and we obtained the prediction presented in Section 12.1.1.

• Additionally, during the Tibidabo experiments, the MPI_Alltoallv collective operation
happened to be significantly slower than its simulation counterpart. A careful investigation
of the corresponding MPI code was mentioning a buffering optimization, which turned out
to be very counter-productive in this particular setting. Removing it allowed to achieve the
performance predicted by SMPI and which were actually much better.
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• Finally, when comparing the execution of the NAS PB with our estimations [24], our scal-
ability predictions are overoptimistic when reaching 128 nodes. However, such bad scala-
bility can be imputed to network collapse that freeze the whole application for about 0.2 s
several dozens of time. Although we do not know for sure yet, we think the timeout issues
we encountered could be somehow similar to what is known as the TCP incast problem and
which has been observed in cloud environments [CGL+09]. Such protocol collapse would
clearly need to be fixed in a production environment and if it were, the new execution time
would perfectly match our predictions. In the case where such phenomenon is too difficult
to fix, modifying SimGrid to account for it should be quite easy and may allow to study how
much an application is sensitive to such effect, which can help the application developer to
improve his code.

• When conducting the StarPU/SIMGRID experiment campaign, some discrepancies could
sometime be imputed to GPU not behaving as expected. Such systematic comparison is
thus very instructive even for advanced developers and users of such platforms as it can
allow to detect hardware or software misconfigurations and unexpected performances that
should be fixed.

Most of the work on simulation for exascale that can be found in the literature focuses primar-
ily on how to simulate such very large infrastructures in a reasonable time. As a consequence,
the models underlying such simulators are often over simplistic and ignore many important phe-
nomenon such as network contention, network topology or performance peculiarities (e.g., non
linearity). Most authors are perfectly aware of such limitations and the study of the validity of
the model and of the predictive power of the simulator is generally a secondary objective, which
is often left for future work.

The work accomplished on SMPI allows us to seriously envision in the near future the use of
simulation as a faithful tool to answer questions that could hardly be addressed with simulators
relying on simple delay-based models like LogGPS and simple modeling of collective operations.
In particular, we believe, it could be effectively used by application developers as it allows non-
intrusive tracing and repeatable execution. It also allows to save resources by allowing to test
their code on simple laptops under a wide variety of situations before full scale deployment.
It could also be useful to application users by providing them with sound run time estimates,
which can help them to study configuration and deployment trade-offs in simulation rather than
by wasting precious resources. Finally, such tool could be used to conduct capacity planning
studies and to decide how hardware should be upgraded while truly taking into account the
characteristics of the codes running the most often.

Simulation can obviously not completely replace real experiments but we think we can im-
prove its quality and usability to the point where it becomes part of the standard set of tools used
in the HPC community. Yet, despite all that has been accomplished, a lot remains to be done to
address HPC challenges, regardless of the targeted scale. Here are a few examples of topics we
intend to address in a near future:

1. Ethernet-based cluster are used in commodity clusters and are one of the envisioned pos-
sibility for exascale platforms but Infiniband is also a widespread interconnect technology,
whose behavior is not only different in term of performance but also in term of contention
management. As shown on Fig. 12.5, a model for Infiniband based on the work of Vi-
enne et al. [VMVM08] has been implemented and validated against micro-benchmarks but
a broader (in)validation study remains to be conducted. Likewise, many communications
take place through shared memory and we are thus currently investigating the design of
new models that will widen the application domain of SMPI.

2. The performance interference between computations and computations is currently ig-
nored in SMPI or in StarPU/SIMGRID but the generalization of multi-core processors and
the increase of NUMA effects makes it a significant factor to account for. The complexity
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of such architectures and of cache mechanisms makes me think that predicting such slow-
downs is illusive. However, measuring it and accounting for it in simulations is reasonable
although it mandates a specific methodology .

3. When addressing exascale simulation challenges, specific characteristics of applications
will have to be exploited. For example, although StarPU applications are currently sim-
ulated at a fine-grain level, simulating the execution of every single kernel and ignoring the
structure of applications, it should be possible to come up with good models of "macro"-
tasks and thus to have multi-scale simulation.

12.2 Methodological Aspects

Finally, the main lesson learned from the SIMGRID project is probably the importance and the
interest of methodological questions. The use of critical method for (in)validating models and
which has been explained in detail in this part is one of these methodological issues but it is not
the only one. In particular, during these years, we also worked on the following themes:

Visualization of Large Distributed Systems Initially, unlike many specialized simulators, SIM-
GRID did not have any tracing and visualization capability (it merely offered a colored
text output). It is indeed difficult to provide such mechanism for a generic-purpose sim-
ulation toolkit and we had little experience in this domain. The collaboration with Lucas
Schnorr and Jean-Marc Vincent on this subject was very fruitful and allowed me to realize
both the importance and the difficulty of such feature. Indeed, a simulation is generally
a complex trajectory which is summarized by simple figures (e.g., the average throughput
of the system, the convergence time of the algorithm, . . . ), which are then aggregated over
a series of simulations. However, such figures generally only make sense when some hy-
pothesis are verified. Although formally checking them can be quite cumbersome, failing
to do so can endangers the conclusions drawn from the simulation campaign. For exam-
ple, when studying the fairness of a resource sharing protocol, we should at least ensure
that the different application/users which may originate from different locations actually
interfere with each others and compete for resources. We should also ensure that steady-
state was reached. Custom visualization of the simulation trajectory is the most effective
way to check all these different hypothesis and I have to confess that when we applied
such techniques to some of my previously published work, we discovered that some of the
simulations used to draw our conclusions were actually meaningless. It turned out that
modifying the simulation setup to obtain more meaningful scenarios did not modify our
initial conclusion but this was still a rather unpleasant surprise.

Likewise, when we developed the BOINC simulator, early visualization of the simulations
allowed us to detect non-trivial bugs and behaviors that would probably never have been
noticed otherwise [7]. Such behaviors would have been impossible to detect by computing
simple statistics and with classical visualization. Only interactive and highly configurable
visualization tools like the ones developed by Lucas Schnorr could allow to grasp such
behaviors. Yet, there is a surprising dearth of tools allowing such exploration.

Looking into such visualization issues revealed me a whole new field of investigation with
its own unanticipated challenges. In particular, I learned that just like many simulators
should not be trusted when the underlying model has not been validated, many visual-
izations should be questioned too as they generally aggregate data in a implicit way that
may strongly bias visualizations [68]. Designing meaningful visualization of distributed
computing systems or comparing two traces of parallel applications can be particularly
challenging even at small scale. At large scale, everything remains to be invented. I be-
lieve that the understanding obtained from designing faithful simulations and thus faithful
models of such complex systems can be leveraged to design meaningful analysis and visu-
alizations. Although I do not know what will be my contribution to this field, I intend to
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keep working on this domain at least to improve my use of such non-trivial technique as
well as the one of my colleagues.

Reproducibility of Experiments As explained in Chapter 5 or in Chapter 10, in the past years,
I have tried several times to build on the work of others and thus to reproduce their re-
sults. Every time, even when trying to reproduce the work of very close colleagues that
were sensible to such reproducibility issues (e.g., when Pedro Velho and myself tried to re-
produce the results of Casanova and Fujiwara [FC07] on the comparison of SIMGRID with
GTNetS, despite our long-term collaboration within the same project and the fact that they
gave us access to all the code and data they had), it turned out to be extremely difficult
not to say impossible. Several times, we came to (sometimes slightly but also sometimes
radically) different conclusions. Although it was often instructive and we were not al-
ways able to explain these differences. Without even mentioning how time consuming
this has been, the results of such work is generally very hard to publish and can easily
be considered as offensive to the original authors. I quickly realized that my own work
was no better and that even myself was sometimes unable to repeat some previous stud-
ies. Making experiment code publicly accessible and writing a documentation afterwards
is insufficient and generally proves barely of any help. Therefore I spent a lot of time trying
to improve my own methodology both in term of design of experiments, conduct of experi-
ments, and provenance tracking. The last three articles we have published [4, 24, 23] have
gradually improved in term of quality thanks to this. We now use laboratory notebooks and
literate programming on a daily basis, which considerably smooth the writing of articles. For
example, in the StarPU/SIMGRID study [23], not only the whole software (StarPU and Sim-
grid) are free software available online but all experiment results are publicly available on
figshare [SPU14] as well as supplementary data, which is not presented due to space limi-
tation, along with all the scripts, raw data files and traces needed to regenerate this article.
The raw data files we provide not only contain experiment outputs but also experimental
meta-data such as all the code revision and configuration information, architectural infor-
mation about the machine (cache hierarchy, CPU type, . . . ) and operating system informa-
tion (linux version, frequency governor, compiler version and options, . . . ). Such method-
ology greatly increased the confidence we have in our experiments and makes it possible
for others to find all the details needed to reproduce our work. We described our approach
in various events and articles [22, 1]. The learning curve of such approach is quite steep but
the time gained by having access to all relevant information when in doubt or simply when
presenting final results largely compensates for the time spent learning and using the right
tools. Again, I do not know what could be my contribution, beyond the proselytism I have
undertaken, in term of experimental methodology since in the end the techniques we use
are generally "relatively simple" and should be the basis of common scientific practice. But
just like for simulation and visualization, there is still room for improvement in my own
methodology as well as the one of my colleagues.
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Appendix A

Collaborations and Grants

During these years I have been heavily involved in the following national or international projects,
which I briefly describe here as they may give an idea of the kind of collaborations I had.

A.1 Projects and Grants

A.1.1 ANR SONGS (Simulation of Next Generation Systems): 2012–2015

The SONGS project was funded for four years (2012–2015) by the The French National Research
Agency (ANR) under contract no. ANR-11-INFRA-13. It was the largest project (1.8M€) funded
for the INFRA ("Infrastructures matérielles et logicielles pour la société numérique") call and was
a platform project, which means that we aimed at building a shared, generic and open infras-
tructure that tackles a technological lock. This project was lead by Martin Quinson helped by
Frédéric Suter, Lionel Eyraud, Stéphane Genaud, Olivier Dalle and myself.

The goal of the SONGS project was to extend the applicability of the SimGrid simulation
framework from Grids and Peer-to-Peer systems to Clouds and High Performance Computation
systems. Building on the experience of the USS-SimGrid project, each type of large-scale com-
puting system was be addressed through a set of use cases and lead by researchers recognized
as experts in this area. I had mainly the responsibility of the work packages on the simulation
of HPC systems, on the analysis/visualization of simulations, and on support to experimental
methodology.

This project involved colleagues from many laboratories (Algorille/LORIA, MESCAL/LIG,
CC/IN2P3, AVALON/LIP, CEPAGE-HIEPACS-RUNTIME/LABRI, ICPS/LSIIT, ASCOLA/LINA-
Inria Rennes, MASCOTTE-MODALIS/I3S) among which Martin Quinson, Arnaud Legrand Der-
rick Kondo, Jean-François Méhaut, Jean-Marc Vincent, Frédéric Suter, Frédéric Desprez, Lionel
Eyraud-Dubois, Denis Barthou, Olivier Beaumont, Nicolas Bonichon, Brice Goglin, Abdou Guer-
mouche, Samuel Thibault, Emmanuel Agullo, Stéphane Genaud, Julien Gossa, Adrien Lèbre,
Olivier Dalle, and Hélène Renard as well as colleagues from CERN, Bull, . . . Collaborating with
so many people was a incredibly fruitful experience.

During this period I had the chance to advise and collaborate with Luka Stanisic and Augustin
Degomme.

A.1.2 European Mont-Blanc projects: 2012–2016

Energy efficiency is a primary concern for the design of any computer system and it is clear that
designing the envisioned Exascale systems within a reasonable power envelope will require to
fully redesign software and architecture. Since October 2011, the aim of the European project
called Mont-Blanc has been to design a new type of computer architecture capable of setting fu-
ture global HPC standards, built from energy efficient solutions used in embedded and mobile
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devices such as ARMv8 64-bit processors. This project is coordinated by the Barcelona Supercom-
puting Center (BSC) and is funded by the European Commission. Two years later, the European
Commission granted additional 8 million Euro funds to extend the Mont-Blanc project activities
until September 2016.

My role in these projects is to improve performance evaluation and simulation techniques to
conduct network and resource provisioning studies raised by such context as well as possibly
improve the parallel software development process.

A.1.3 ANR USS-SimGrid (Ultra-Scalable Simulations with SimGrid): 2009–
2012

USS-SimGrid was an ANR Project from the "Systèmes embarqués et grandes infrastructures
(ARPEGE)" theme, which was lead by Martin Quinson, Frédéric Suter and myself.

Computer Science differs from other experimental sciences, such as biology of physics, in the
way experimental results are presented in articles. In those other disciplines articles always begin
with a detailed presentation of the methods employed to produce the results that often rely on
previously described and acknowledged procedures. In computer science, and more particularly
in the field of application simulation, only a short description of a (sometime unavailable) ad-hoc
simulation framework is provided. This prevents reproducibility of published results and thus
objective comparisons between new research results and the state of the art. To reduce this gap
between computer science and other experimental sciences, there is need for powerful, validated,
available and well advertised tools and methods.

The general goal of this project was to provide such an application simulation framework that
meets the needs of both the High Performance Computing and the Large Scale Distributed Com-
puting communities. In this project, we worked on extending SimGrid to target the Large Scale
Distributed Computing community, increasing simulation realism, and improving the analysis
methodology of such discrete event simulations.

This project involved colleagues from many laboratories (Algorille/LORIA, ASAP/Inria-Saclay,
Cepage/LABRI, GRAAL/LIP,MESCAL/LIG, Syscom/CReSTIC) among which Martin Quinson,
Frédéric Suter, Stéphane Genaud, Fabrice Lefessant, Lionel Eyraud-Dubois, Olivier Beaumont,
Nicolas Bonichon, Frédéric Vivien, Frédéric Desprez, Jean-Marc Vincent, Alain Bui, Olivier Flauzac.

During this period I had the chance to advise and collaborate with Pedro Velho on simula-
tion accuracy, Lucas Schnorr on visualization, and Sascha Hunold on design of experiments and
experimental methodology.

A.1.4 ADT SimGrid for Human Beings: 2010–2012

From 2010 to 2012, the SimGrid project received support from the Inria to improve the quality of
our codebase. I coordinated this project in collaboration with Martin Quinson (Algorille/LORIA)
and we two young engineers, whose role has been to set up a quality continuous integration
infrastructure, to answer the user questions and improve the documentation, to improve code
portability (java, windows) and rewrite/stabilize some prototype parts that had been developed
during the ANR USS-SimGrid project.

During this period I supervised and coordinated the work of Pierre Navarro.

A.1.5 ANR DOCCA (Design and Optimization of Collaborative Computing
Architectures): 2007–2011

The DOCCA project was a young researcher ANR project lead by Florence Perronnin (Associate
Professor, Université Joseph Fourier) and which involved Corinne Touati (Research scientist, IN-
RIA),Fanny Pascual (Associate Professor, Université Pierre et Marie Curie), Olivier Richard (As-
sociate Professor, Polytech’Grenoble), and Lucas Nussbaum (Associate Professor, Lorraine Uni-
versity).
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The goal of the project was to design a peer-to-peer collaborative computing protocol with a
strong emphasis on theoretical aspects of fairness issues and collaboration incentives. Our target
system was a fully decentralized architecture, where desktops are both volunteers and clients
(i.e., they can submit jobs). Our goals were to:

1. Leverage the pluridisciplinarity of the team to combine theoretical tools and metrics from
the parallel computing community and from the network community, and to explore al-
gorithmic and analytical solutions to the specific resource management problems of such
systems.

2. Design a P2P architecture based on the algorithms designed in the second step and to create
a novel P2P collaborative computing system.

During this period, I advised Bruno Donassolo, Rémi Bertin, and Rémi Vannier.

A.1.6 ANR ALPAGE (Algorithms for Large-Scale Platforms): 2005–2008

ALPAGE was an ANR project from the "Masse de données: Modélisation, Simulation, Applica-
tions" theme, which was lead by Olivier Beaumont.

The new algorithmic challenges associated with large-scale platforms have been approached
from two different directions. On the one hand, the parallel algorithms community has largely
concentrated on the problems associated with heterogeneity and large amounts of data. Algo-
rithms have been based on a centralized single-node, responsible for calculating the optimal so-
lution; this approach induces significant computing times on the organizing node, and requires
centralizing all the information about the platform. Therefore, these solutions clearly suffer from
scalability and fault tolerance problems.

On the other hand, the distributed systems community has focused on scalability and fault-
tolerance issues. The success of file sharing applications demonstrates the capacity of the result-
ing algorithms to manage huge volumes of data and users on large unstable platforms. Algo-
rithms developed within this context are completely distributed and based on peer-to-peer com-
munications. They are well adapted to very irregular applications, for which the communication
pattern is unpredictable. But in the case of more regular applications, they lead to a significant
waste of resources.

The goal of the ALPAGE project was to establish a link between these directions, by gathering
researchers (MESCAL, LIP, LORIA, LaBRI, LIX, LRI) from the distributed systems and parallel
algorithms communities: Philippe Baptiste, Olivier Beaumont, Philippe Duchon, Christoph Dürr,
Pierre Fraigniaud, Cyril Gavoille, Nicolas Hanusse, Anne-Marie Kermarrec, Martin Quinson,
Yves Robert, Sébastien Tixeuil, and Frédéric Vivien.

During this period, I advised Lionel Eyraud-Dubois.

A.2 Collaborations and Joint Laboratories

A.2.1 Joint laboratory on petascale and extreme-scale computing: 2011–
2015

The joint laboratory between University of Illinois at Urbana-Champaign, Inria, the CNRS, Ar-
gonne National Laboratory, Barcelona Supercomputing Center and Jülich Supercomputing Cen-
ter targets software and hardware issuers raised by the design and exploitation of supercomput-
ers. I participate since 2011 to this joint laboratory in particular on topics related to modeling and
performance evaluation.

In this context, I organized the summer school on Performance Metrics, Modeling and Simulation
of Large HPC Systems funded by thePartner University Fund and the joint laboratory in June 2014
in Sophia Antipolis1.

1http://mescal.imag.fr/membres/arnaud.legrand/research/events/puf_jlpc_workshop_14.php

http://mescal.imag.fr/membres/arnaud.legrand/research/events/puf_jlpc_workshop_14.php
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A.2.2 Action d’Envergure Inria HEMERA (developing large scale parallel
and distributed experiments): 2010–2014

HEMERA is an Inria research action, which started in 2010 and whose goal is to federate the
research efforts linked to large-scale experimentation, particularly in the context of the Grid’5000
infrastructure. One of the goals of this action was to animate the high performance/distributed
computing French research community. This project was lead by Christian Pérez and I was re-
sponsible with Martin Quinson of the {Modeling Large Scale Systems and Validating their Simu-
lators} theme.

A.2.3 Grenoble - Berkeley Associated Team: 2009–2013

The MESCAL team has been associated to several researchers from the Bay area and in particu-
lar David Anderson, the leader of the BOINC project but also Walfredo Cirne from Google Inc.
This collaboration was initially lead by Derrick Kondo and then by myself and focused on many
performance evaluation aspects of very large scale computing systems such as volunteer com-
puting systems and cloud computing systems. Derrick Kondo and Jean-Marc Vincent worked on
statistically characterizing the availability and unavailability of resources in such systems based
on traces collected by our American colleagues. Such models can then be used to predict load
or improve replication strategies and collective availability. On my side I worked rather on how
scheduling and game theory could be applied to possibly better understand such systems as well
as on how to simulate them efficiently. This collaboration was initially lead by Derrick Kondo. I
became the coordinator in 2012 and I organized the BOINC workshop in 2013.

A.2.4 Grenoble - Porto Alegre Associated Team and Joint Laboratory

Grenoble and Porto Alegre Universities (in particular the Universidade Federal do Rio Grande
do Sul) have a long standing collaboration that dates back from the end of the 1970s. There has
been several associated teams and research/student exchanges (through Inria, CNRS, CAPES,
CNPq, FAPERGS, . . . ) and these collaborations have recently evolved into the LICIA (Laboratoire
International en Calcul Intensif et Informatique Ambiante), a joint laboratory between the computer
science department of UFRGS and the LIG. I have thus visited regularly Porto Alegre in the last
decade to give lectures and collaborate with Philippe Navaux, Nicolas Maillard, Claudio Geyer,
Alexandre Carrissimi. This gave me the opportunity to advise many Brazilian students during
the Msc, PhD or postdoc among which Pedro Velho, Lucas Schnorr, Bruno Donassolo, Wagner
Kolberg, Rafael Tesser, . . .
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