Best Practices for Reproducible Research

Arnaud Legrand, Luka Stanisic

PUF/JLPC Summer School, Sophia, June 2014

Outline¹

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

Outline¹

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

As a Reviewer

This may be an interesting contribution but:

- This average value must hide something
- As usual, there is no confidence interval, I wonder about the variability and whether the difference is significant or not
- That can't be true, I'm sure they removed some points
- Why is this graph in logscale? How would it look like otherwise?
- The authors decided to show only a subset of the data. I wonder what the rest looks like
- There is no label/legend/... What is the meaning of this graph? If only I could access the generation script

As an Author

- I thought I used the same parameters but I'm getting different results!
- The new student wants to compare with the method I proposed last year
- My advisor asked me whether I took care of setting this or this but I can't remember
- The damned fourth reviewer asked for a major revision and wants me to change figure 3:(
- Which code and which data set did I use to generate this figure?
- It worked yesterday!
- 6 months later: why did I do that?

My Feeling

Computer scientists have an incredibly poor training in probabilities, statistics, experimental management

Why should we? Computer are deterministic machines after all, right?;)

Ten years ago, I've started realizing how lame the articles I reviewed (as well as those I wrote) were in term of experimental methodology.

- Yeah, I know, your method/algorithm is better than the others as demonstrated by the figures
- Not enough information to discriminate real effects from noise
- Little information about the workload
- Would the "conclusion" still hold with a slightly different workload?
- I'm tired of awful combination of tools (perl, gnuplot, sql, ...) and bad methodology

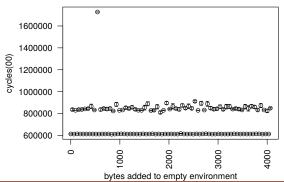
Current practice in CS

Computer scientists tend to either:

- vary one factor at a time, use a very fine sampling of the parameter range,
- run millions of experiments for a week varying a lot of parameters and then try to get something of it. Most of the time, they (1) don't know how to analyze the results (2) realize something went wrong...

Interestingly, most other scientists do the exact opposite.

These two flaws come from poor training and from the fact that C.S. experiments are almost free and very fast to conduct

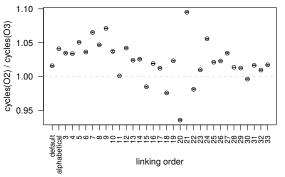

- Most strategies of experimentation (DoE) have been designed to provide sound answers despite all the randomness and uncontrollable factors
- Maximize the amount of information provided by a given set of experiments
- Reduce as much as possible the number of experiments to perform to answer a given question under a given level of confidence

Takes a few lectures on Design of Experiments to improve but anyone can start by reading Jain's book on The Art of Computer Systems Performance Analysis

Is CS Concerned Really With This?

Yes, although designed and built by human beings, computers are so complex that mistakes are easy to do. . .

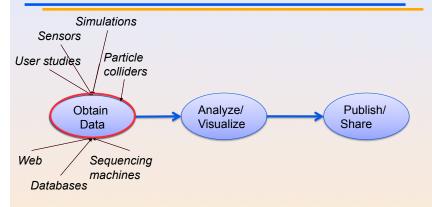
• T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong data without doing anything obviously wrong!. SIGPLAN Not. 44(3), March 2009


Key principles of experiment design

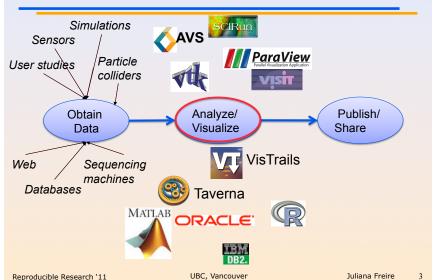
- Randomize to reduce bias
- Replicate to increase reliability

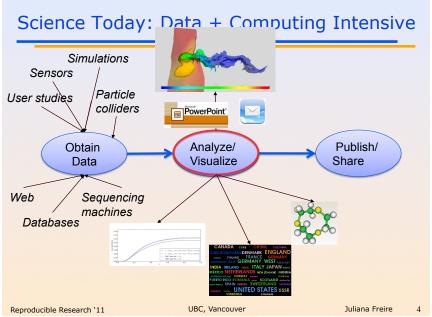
Is CS Concerned Really With This?

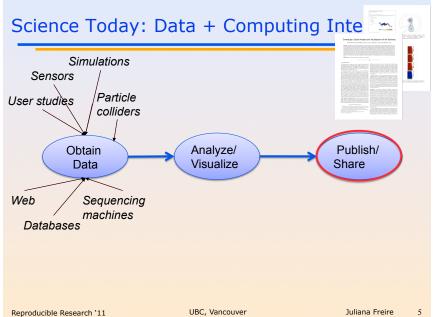
Yes, although designed and built by human beings, computers are so complex that mistakes are easy to do...


• T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing wrong data without doing anything obviously wrong!. SIGPLAN Not. 44(3), March 2009

Key principles of experiment design


- Randomize to reduce bias
- Replicate to increase reliability


Science Today: Data Intensive

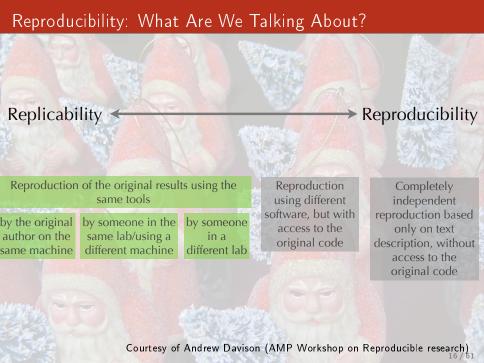


Reproducible Research '11 UBC, Vancouver Juliana Freire 2

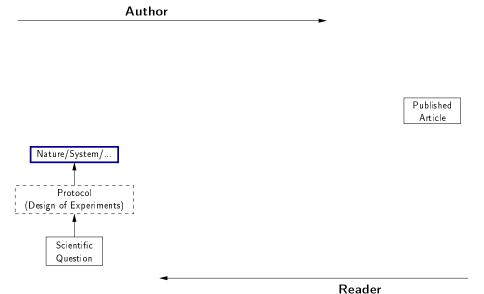
Science Today: Data + Computing Intensive

Science Today: Incomplete Publications

- Publications are just the tip of the iceberg
 - Scientific record is incomplete--to large to fit in a paper
 - Large volumes of data
 - Complex processes
- Can't (easily) reproduce results



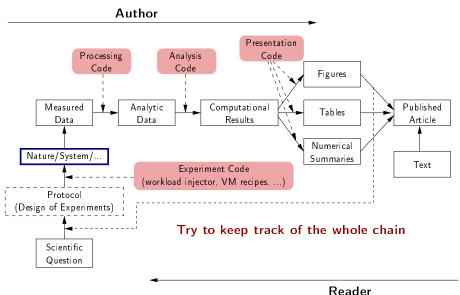
Science Today: Incomplete Publications


- Publications are just the tip of the iceberg.
 - "It's impossible to verify most of the results that computational scientists present at conference and in papers." [Donoho et al., 2009]
 - ^{- L} "Scientific and mathematical journals are filled
 - with pretty pictures of computational experiments
- Car that the reader has no hope of repeating." [LeVeque, 2009]
 "Published documents are merely the advertisement of scholarship whereas the computer programs, input data, parameter values, etc. embody the scholarship itself." [Schwab et al., 2007]

Why Are Scientific Studies so Difficult to Reproduce?

- Publication/Experimental bias
- Rewards for positive results
- Programming errors or data manipulation mistakes
- Poorly selected statistical tests
- Multiple testing, multiple looks at the data, multiple statistical analyses
- Lack of easy-to-use tools

Reproducible Research: Trying to Bridge the Gap


Courtesy of Roger D. Peng (Coursera lecture on reproducible research, May 2014).

Reproducible Research: Trying to Bridge the Gap

Courtesy of Roger D. Peng (Coursera lecture on reproducible research, May 2014_{01}

Reproducible Research: Trying to Bridge the Gap

Courtesy of Roger D. Peng (Coursera lecture on reproducible research, May 2014_{01}

A Difficult Trade-off

Automatically keeping track of everything

- the code that was run (source code, libraries, compilation procedure)
- processor architecture, OS, machine, date, . . .

VM-based solutions and experiment engines

Ensuring others can redo/understand what you did

- Why did I run this?
- Does it still work when I change this piece of code for this one?

Laboratory notebook and recipes

Reproducible Research: the New Buzzword?

H2020-EINFRA-2014-2015

A key element will be capacity building to link literature and data in order to enable a more transparent evaluation of research and reproducibility of results.

More and more workshops

- Workshop on Duplicating, Deconstructing and Debunking (WDDD) (2014 edition)
- Reproducible Research: Tools and Strategies for Scientific Computing (2011)
- Working towards Sustainable Software for Science: Practice and Experiences (2013)
- REPPAR'14: 1st International Workshop on Reproducibility in Parallel Computing
- Reproducibility@XSEDE: An XSEDE14 Workshop
- Reproduce/HPCA 2014
- TRUST 2014

Should be seen as opportunities to share experience.

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

Many Alternative Tools Exist

Naive way: sh + ssh + . . .

```
Expo (2007-, G5K)
XPflow (2012-, G5K)
Execo (2013-, G5K)
```

- Plush (2006-, PlanetLab)
- OMF (2009-, Wireless testbeds and Planetlab)
- Splay (2008, distributed algorithm comparison)
- •

They differ in the underlying paradigms and the platforms for which they have been designed

A taxonomy of experiment management tools for distributed systems,
 T. Buchert, C. Ruiz, L. Nussbaum, O. Richard, FGCS, 2014

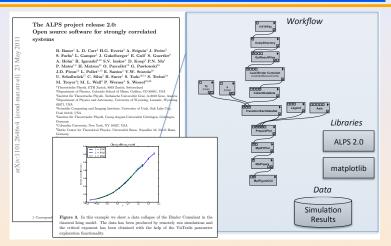
Kameleon

- Grenoble (C. Ruiz, S. Harrache, M. Mercier, O. Richard, ...)
 http://kameleon.readthedocs.org/
- Generate customized appliances (kvm, LXC, Virtualbox, iso, ...)
- Ruby-based, YAML description of recipes with steps and aliases, execution in contexts
- Automatically checkpoints to rebuild only what is required
- Relies on "under development" tools (e.g., qemu-nbd) but I managed to setup working VMs for yesterday without much trouble

Providing not only VMs but also recipe is good!

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy


Vistrails: a Workflow Engine for Provenance Tracking

Our Approach: An Infrastructure to Support Provenance-Rich Papers [Koop et al., ICCS 2011]

- Tools for authors to create reproducible papers
 - Specifications that encode the computational processes
 - Package the results
 Support different approaches
 - Link from publications
- Tools for testers to repeat and validate results
 - Explore different parameters, data sets, algorithms
- Interfaces for searching, comparing and analyzing experiments and results
 - Can we discover better approaches to a given problem?
 - Or discover relationships among workflows and the problems?
 - How to describe experiments?

Vistrails: a Workflow Engine for Provenance Tracking

An Provenance-Rich Paper: ALPS2.0

Chronicing computations in real-time

VCR computation platform Plugin = Computation recorder

```
Regular program code
figure1 = plot(x)
save(figure1,'figure1.eps')
```

```
> file /home/figure1.eps saved
```

Chronicing computations in real-time

VCR computation platform Plugin = Computation recorder

```
Program code with VCR plugin repository vcr.nature.com
```

- verifiable figure1 = plot(x)
- > vcr.nature.com approved:
 > access figure1 at https://vcr.nature.com/ffaaffb148d7

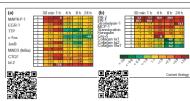
Word-processor plugin App

LaTeX source

LaTeX source with VCR package

\includegraphics{figure1.eps}

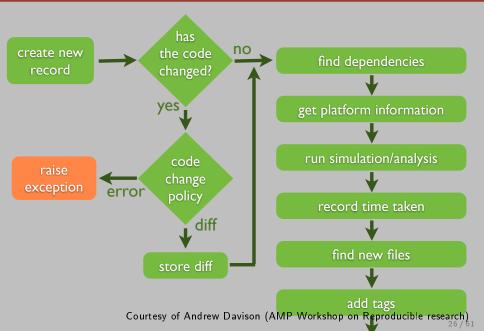
\includeresult{vcr.thelancet.com/ffaaffb148d7}


Permanently bind printed graphics to underlying result content

Courtesy of Matan Gavish and David Donoho (AMP Workshop on Reproducible research)

Research Paper Analysis of replicative senescence Shelton et al. 943

Figure 3


Time course of serum stimulation. (a) Early passage (E: PD30) or late passage (L: PD89) BJ cultures were held in 0.5% serum for 2 days, then stimulated with 10% FBS. RNA levels from cultures at the Indicated time points (Cv5 channel) were compared with the uninduced starting culture (Cy3 channel). Positive values indicate higher expression in induced cells; negative values indicate lower expression in induced cells. Question marks indicate that there was Insufficient signal for detection. A complete listing of serum-responsive genes from this analysis is provided in Supplementary material. (b) The serum-responsiveness of select senescence-regulated genes in early passage (PD30) BJ fibroblasts.

sensexence response appears to overlap substantially with gene expression patterns observed in activated fibroblasts during wound healing [24–26]. MCP-I, Gro-Q, II.-IB and II.-S1 are strong effectors of macrophage and neutral recruitment and activation [27,28]. The upregulation of Toll (TI-d) in sensecent fibroblasts confirms the overall immune response behavior at sensecence. TII-d is an II.-I receptor homolog and is implicated in the activation of the gene regulatory protein NF-RB, a function proposed to the gene regulatory protein NF-RB, a function proposed to II.-IS at senescence is also consistent with an innate immune response, as II.-IS can be induced by NF-RBdependent transcription [30] and also participates in inflammatory disease processes [28].

Deficiencies in the response of senescent cells to serum stimulation have been reported, and include an inability to induce the expression of c-for mRNA [31] and markers of late G1 and S phase [32]. In response to serum, expression of inflammatory chemokines, matrix-degrading proteases and their modulators is induced in early-passage dermal fibroblasts, and expression of matrix collagens is reduced. states overlap substantially with those in telomereinduced senescence (W.F., D.N.S., R. Allsopp, S. Lowe, and G. Ferbeyre, unpublished observations) and thus are likely to use many of the same activation processes.

The pattern of gene expression at senescence varies substantially in different cell types. Although the expression of matrix and structural proteins, such as the collagens, keratins and auxiliary factors, is repressed in RPE cells, inflammatory regulators are not induced, in contrast to dermal fibroblasts, Physiologically, this would make sense, as an acute inflammatory response in a tissue critical for normal vision would be likely to have deleterious consequences. However, as the RPE layer has a central role in the deposition and maintenance of extracellular matrix in the retina, decrements in the ability of senescent RPE cells to maintain appropriate expression patterns, as evidenced by decreased expression of collagens, keratins, aggrecan, transglutaminase and so on, would be predicted to have adverse affects on retinal architecture. Dysfunction of the RPE cell layer is considered to be a substantial factor in the development of age-related macular degeneration [36].

\$ smt comment 20110713-174949 "Eureka! Nobel prize here we come."

\$ smt tag "Figure 6"

TestProject: List of records

Delete	Luber	recusori	Outcome	Duracion	110003303	Jiiidiacoi		Sci.pt			Dutt		. ugs
include data =						Name	Version	Repository	Main file	Version			
	20100709- 154255		'Eureka! Nobel prize here we come.'	0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:42:55	
	20100709- 154309			0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:09	
	haggling	'determine whether the gourd is worth 3 or 4 shekels'	'apparently, it is worth NaN shekels.'	0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:20	foobar
	20100709- 154338	'test effect of a smaller time constant'		0.59 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:38	
	haggling repeat	Repeat experiment haggling	The new record exactly matches the original.	0.58 s		Python	2.5.2	/Users/andrew/tmp/SumatraTest	main.py	396c2020ca50	09/07/2010	15:43:47	

So many new tools

New Tools for Computational Reproducibility

Dissemination Platforms:

ResearchCompendia.orgIPOLMadagascarMLOSS.orgthedatahub.orgnanoHUB.orgOpen Science FrameworkThe DataVerse NetworkRunMyCode.org

Workflow Tracking and Research Environments:

VisTrailsKeplerCDEGalaxyGenePatternSynapseSumatraTavernaPegasus

Embedded Publishing: Courtesy of Victoria Stodden (UC Davis, Feb 13, 2014)

Verifiable Computational Research Sweave knitR

Collage Authoring Environment SHARE

And also: Figshare, ActivePapers, Elsevier executable paper, ...

Sharing Data

What kinds of systems are available?

- "Good" The cloud (Dropbox, Google Drive, Figshare)
- Better Version control systems (SVN, Git and Mercurial)
- "Best" Version control systems on the cloud (GitHub, Bitbucket)

It depends on the level of privacy you want but you should already know this tools. Few handle GB files...

Is this enough?

- ① Use a workflow that documents both data and process
- Use the machine readable CSV format
- Provide raw data and meta data, not just statistical outputs
- Never do data manipulation and statistical tests by hand
- Use R, Python or another free software to read and process raw data (ideally to produce complete reports with code, results and prose)

Literate Programming

Donald Knuth: explanation of the program logic in a natural language interspersed with snippets of macros and traditional source code.

I'm way too 3133t to program this way but that's exactly what we need for writing a reproducible article/analysis!

Org-mode (requires emacs)

My favorite tool.

- plain text, very smooth, works both for html, pdf, ...
- allows to combine all my favorite languages even with sessions

lpython notebook

If you are a python user, go for it! Web app, easy to use/setup...

KnitR (a.k.a. Sweave)

For non-emacs users and as a first step toward reproducible papers:

• Click and play with a modern IDE (e.g., Rstudio)

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

Why R?

R is a great language for data analysis and statistics

- Open-source and multi-platform
- Very expressive with high-level constructs
- Excellent graphics
- Widely used in academia and business
- Very active community
 - Documentation, FAQ on http://stackoverflow.com/questions/tagged/r
- Great integration with other tools

Why is R a pain for computer scientists?

- R is not really a programming language
- Documentation is for statisticians
- Default plots are cumbersome (meaningful)
- Summaries are cryptic (precise)
- Steep learning curve even for us, computer scientists whereas we generally switch seamlessly from a language to another! That's frustrating!
 ;)

Do's and dont's

R is high level, I'll do everything myself

- CTAN comprises 4,334 T_EX, LaT_EX, and related packages and tools. Most of you do not use plain T_EX.
- Currently, the CRAN package repository features 4,030 available packages.
- How do you know which one to use??? Many of them are highly exotic (not to say useless to you).

I learnt with http://www.r-bloggers.com/

- Lots of introductions but not necessarily what you're looking for so I'll give you a short tour.
 - You should quickly realize though that you need proper training in statistics and data analysis if you do not want tell nonsense.
- Again, you should read Jain's book on The Art of Computer Systems Performance Analysis
- You may want to follow online courses:
 - https://www.coursera.org/course/compdata
 - https://www.coursera.org/course/repdata

Install and run R on debian

```
1 apt-cache search r
  Err, that's not very useful:) It's the same when searching on google but once the
  filter bubble is set up, it gets better...
1 sudo apt-get install r-base
1 R.
1 R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
2 Copyright (C) 2013 The R Foundation for Statistical Computing
3 Platform: x86_64-pc-linux-gnu (64-bit)
5 R is free software and comes with ABSOLUTELY NO WARRANTY.
6 You are welcome to redistribute it under certain conditions.
7 Type 'license()' or 'licence()' for distribution details.
9 R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
15 Type 'q()' to quit R.
16 >
                                                                               34 / 61
```

Install a few cool packages

R has it's own package management mechanism so just run R and type the following commands:

 ddply, reshape and ggplot2 by Hadley Wickham (http://had.co. nz/)

```
install.packages("plyr")
install.packages("reshape")
install.packages("ggplot2")
```

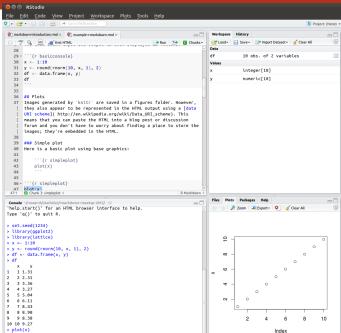
• knitR by (Yihui Xie) http://yihui.name/knitr/

```
install.packages("knitr")
```

IDE

Using R interactively is nice but quickly becomes painful so at some point, you'll want an IDE.

Emacs is great but you'll need Emacs Speaks Statistics


sudo apt-get install ess

In this tutorial, I will briefly show you rstudio (https://www.rstudio.com/) and later how to use org-mode

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

Rstudio screenshot

Reproducible analysis in Markdown + R

- Create a new R Markdown document (Rmd) in rstudio
- R chunks are interspersed with "`{r} and "'
- Inline R code: 'r sin(2+2)'
- You can knit the document and share it via rpubs
- R chunks can be sent to the top-level with Alt-Ctrl-c
- I usually work mostly with the current environment and only knit in the end
- Other engines can be used (use rstudio completion)

```
1 '''{r engine='sh'}
2 ls /tmp/
3 '''
```

- Makes reproducible analysis as simple as one click
- Great tool for quick analysis for self and colleagues, homeworks, ...

Reproducible articles with $\angle ATEX + R$

- Create a new R Sweave document (Rnw) in rstudio
- R chunks are interspersed with <<>>= and @
- You can knit the document to produce a pdf
- You'll probably quickly want to change default behavior (activate the cache, hide code, ...). In the preembule:

```
1 <<echo=FALSE>>=
2 opts_chunk$set(cache=TRUE,dpi=300,echo=FALSE,fig.width=7,
3 warning=FALSE,message=FALSE)
4 0
```

• Great for journal articles, theses, books, ...

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

Data frames

A data frame is a data tables (with columns and rows). mtcars is a built-in data frame that we will use in the sequel

```
1 head(mtcars);
```

```
mpg cyl disp hp drat wt qsec vs am gear car
              21.0 6 160 110 3.90 2.620 16.46 0 1
2 Mazda RX4
3 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
4 Datsun 710
          22.8 4 108 93 3.85 2.320 18.61 1 1
5 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0
6 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0
```

18.1 6 225 105 2.76 3.460 20.22 1 0

You can also load a data frame from a CSV file:

```
1 df <- read.csv("http://foo.org/mydata.csv", header=T,</pre>
         strip.white=TRUE);
```

You will get help by using ?:

```
1 ?data.frame
2 ?rbind
3 ?cbind
```

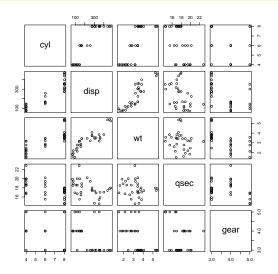
7 Valiant

Exploring Content (1)

```
names(mtcars);
1 [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs"
                                                        "am"
2 [11] "carb"
str(mtcars);
'data frame': 32 obs. of 11 variables:
 $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
3 $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
4 $ disp: num 160 160 108 258 360 ...
5 $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
6 $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
7 $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
8 $ qsec: num 16.5 17 18.6 19.4 17 ...
9 $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
s gear: num 4 4 4 3 3 3 3 4 4 4 ...
2 $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
```

Exploring Content (2)

0.00 0.1 0.00


```
1 dim(mtcars);
2 length(mtcars);
1 [1] 32 11
2 [1] 11
summary(mtcars);
                cyl
                            disp hp
1 mpg
2 Min. :10.40
               Min. :4.000
                             Min. : 71.1
                                            Min. : 52.0
3 1st Qu.:15.43
               1st Qu.:4.000
                             1st Qu.:120.8
                                            1st Qu.: 96.5
4 Median :19.20
               Median :6.000
                             Median : 196.3
                                            Median : 123.0
5 Mean :20.09
               Mean :6.188
                              Mean :230.7
                                            Mean : 146.7
6 3rd Qu.:22.80
               3rd Qu.:8.000
                              3rd Qu.:326.0
                                            3rd Qu.:180.0
7 Max. :33.90
               Max. :8.000
                              Max. :472.0
                                            Max. :335.0
8 drat
               wt
                              qsec
                                                 VS
9 Min. :2.760
               Min. :1.513
                              Min. :14.50
                                            Min. :0.0000
o 1st Qu.:3.080
               1st Qu.:2.581
                             1st Qu.:16.89
                                            1st Qu.:0.0000
n Median :3.695
               Median :3.325
                             Median : 17.71
                                            Median : 0.0000
12 Mean :3.597
               Mean :3.217
                             Mean :17.85
                                            Mean
                                                  :0.4375
                                           3rd Ou +1 0000 44/61
```

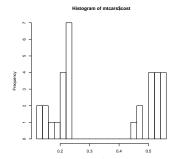
2-4 0- 10 00

2-4 0- 12 610

Exploring Content (3)

plot(mtcars[names(mtcars) %in% c("cyl","wt","disp","qsec","gear")])

Accessing Content

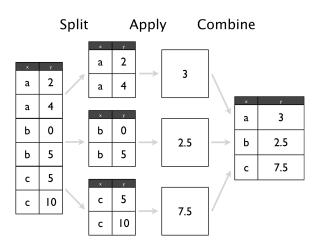

```
1 mtcars$mpg
1 [1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17
2 [16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30
3 [31] 15.0 21.4
1 mtcars[2:5,]$mpg
1 [1] 21.0 22.8 21.4 18.7
1 mtcars[mtcars$mpg == 21.0,]
  mpg cyl disp hp drat wt qsec vs am gear carb
2 Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
3 Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
1 mtcars[mtcars$mpg == 21.0 & mtcars$wt > 2.7,]
  mpg cyl disp hp drat wt qsec vs am gear carb
2 Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
```

Extending Content

```
mtcars$cost = log(mtcars$hp)*atan(mtcars$disp)/
sqrt(mtcars$gear**5);
mean(mtcars$cost);
summary(mtcars$cost);

[1] 0.345994
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    0.1261 0.2038 0.2353 0.3460 0.5202 0.5534

hist(mtcars$cost,breaks=20);
```



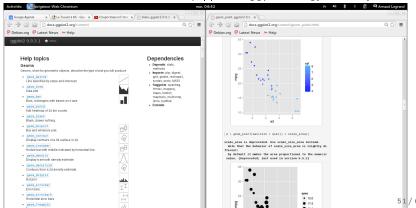
Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

plyr: the Split-Apply-Combine Strategy

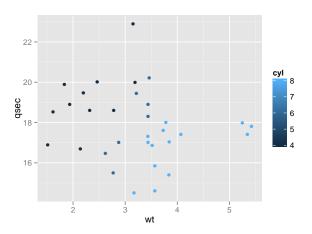
Have a look at http://plyr.had.co.nz/09-user/ for a more detailed introduction.

plyr: Powerfull One-liners


```
1 library(plyr)
mtcars_summarized = ddply(mtcars,c("cyl","carb"), summarize,
      num = length(wt), wt_mean = mean(wt), wt_sd = sd(wt),
      qsec_mean = mean(qsec), qsec_sd = sd(qsec));
5 mtcars_summarized
   cyl carb num wt_mean wt_sd qsec_mean qsec_sd
2 1 4 1 5 2.151000 0.2627118 19.37800 0.6121029
3 2 4 2 6 2.398000 0.7485412 18.93667 2.2924368
4 3 6 1 2 3.337500 0.1732412 19.83000 0.5515433
5 4 6 4 4 3.093750 0.4131460 17.67000 1.1249296
6 5 6 6 1 2.770000
                                15.50000
                      NA
                                               NΑ
     8 2 4 3.560000 0.1939502 17.06000 0.1783255
7 6
8 7
     8 3 3,860000 0,1835756 17,66667 0,3055050
9 8
     8 4 6 4.433167 1.0171431 16.49500 1.4424112
             1 3.570000 NA 14.60000
10 9
                                               NA
```

If your data is not in the right form give a try to reshapeP/melt.

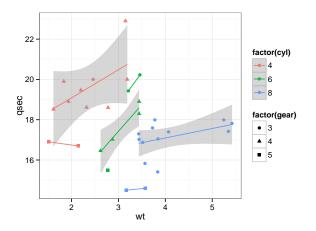
plyr next generation = dplyr


ggplot2: Modularity in Action

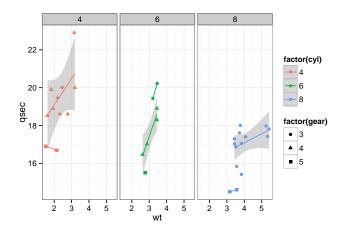
- ggplot2 builds on plyr and on a modular grammar of graphics
- obnoxious function with dozens of arguments
- combine small functions using layers and transformations
- aesthetic mapping between observation characteristics (data frame column names) and graphical object variables
- an incredible documentation: http://docs.ggplot2.org/current/


ggplot2: Illustration (1)

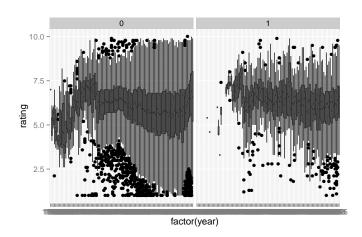
```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=cyl)) +
geom_point();
```



ggplot2: Illustration (2)

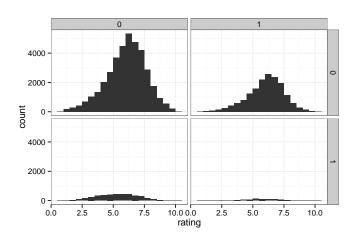
```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl))) +
geom_point();
```



ggplot2: Illustration (3)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl),
shape = factor(gear))) + geom_point() + theme_bw() +
geom_smooth(method="lm");
```



ggplot2: Illustration (4)

```
ggplot(data = mtcars, aes(x=wt, y=qsec, color=factor(cyl),
shape = factor(gear))) + geom_point() + theme_bw() +
geom_smooth(method="lm") + facet_wrap(~ cyl);
```



ggplot2: Illustration (5)

```
ggplot(data = movies, aes(x=factor(year),y=rating)) +
geom_boxplot() + facet_wrap(~Romance)
```


ggplot2: Illustration (6)

```
ggplot(movies, aes(x = rating)) + geom_histogram(binwidth = 0.5)+
facet_grid(Action ~ Comedy) + theme_bw();
```


Take away Message

- R is a great tool but is only a tool. There is no magic. You need to understand what you are doing and get a minimal training in statistics
- It is one of the building block of reproducible research (the reproducible analysis block) and will save you a lot of time
- Read at least Jain's book: The Art of Computer Systems Performance Analysis
- Jean-Marc Vincent and myself give a set of tutorials on performance evaluation to M2R (links provided at the end of these slides)
- There are introductory online courses on coursera (links provided at the end of these slides)

Outline

- Reproducible Research
 - Looks familiar?
 - A few Tools for Experiment Setup and Management
 - Many Different Alternatives for Reproducible Analysis
- R Crash Course
 - General Introduction
 - Reproducible Documents: knitR
 - Introduction to R
 - Needful Packages by Hadley Wickam
- Setting up a Laboratory Notebook
 - Emacs Demo of How to Keep Things Tidy

A few links to learn more (before I forget...)

Emacs/Org-mode

- Org for beginners (worg)
- My emacs configuration
- For Mac OS X users
- These slides and the VM images I prepared with Kameleon

Performance Evaluation Lectures

- Jean-Marc Vincent and myself give a set of tutorials on performance evaluation to M2R
 - 2013 edition (confidence intervals, linear regression, DoE)
 - 2011 edition (visualization, measurement, checklists)
- There are interesting online courses on coursera (101s) By Roger D. Peng
 - Computing For Data Analysis (R)
 - Reproducible Research (actually reproducible data analysis)
 - Exploratory Data Analysis (ggplot2 + lattice)

Literate Programming on a Daily Basis

Mastering Emacs

- C-g: get me out of here!
- C- : undo
- Activate CUA keys in the Options menu

Mastering Org-mode

- Tab will fold/unfold stuff
- C-c C-c: do something (context-sensitive) where you are
- <s + Tab, <b, <1, <r, <h, ... for creating code blocks</p>
- C-c C-e: export
- C-c c: capture content
- C-c C-o / C-c 1 / C-c C-1: open/store/insert links
- C-c C-a: attach a file
- C-c C-d: set deadline, C-c C-t: TODO/DONE