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ABSTRACT

Compared to more traditional disciplines, such as the natural sci-
ences, computer science is said to have a somewhat sloppy relation-
ship with the external repeatability of published results. However,
from our experience the problem starts even earlier: In many cases,
authors are not even able to replicate their own results a year later, or
to explain how exactly that number on page three of the paper was
computed. Because of constant time pressure and strict submission
deadlines, the successful researcher has to favor timely results over
experiment documentation and data traceability.

We consider internal repeatability to be one of the most important
prerequisites for external replicability and the scientific process. We
describe our approach to foster internal repeatability in our own
research projects with the help of dedicated tools for the automa-
tion of traceable experimental setups and for data presentation in
scientific papers. By employing these tools, measures for ensuring
internal repeatability no longer waste valuable working time and
pay off quickly: They save time by eliminating recurring, and there-
fore error-prone, manual work steps, and at the same time increase
confidence in experimental results.

1. INTRODUCTION
Over the course of centuries, traditional disciplines, such as the

natural sciences, have developed a strong sense for reproducibility.
Compared to that, computer science, as a much younger discipline,
is said to have a somewhat sloppier view on reproducibility – and
thereby on the scientific process itself. There seems to be some truth
in this: Basically, every computer scientist could share an anecdote
of a failed attempt to replicate the results of a some top-notch paper.
In a recent report, Collberg et al. [3] describe their (in many cases
failed) attempts to systematically replicate artifacts from highly
ranked research papers. Their methodology to assess repeatability
and their quantitative results, however, have been criticized (and also
partly rebutted) by the community [17] and Collberg and colleagues
are working on a new version of their report. Nevertheless, their
report triggered an important public discussion about the issue of
repeatability in computer science.

In the area of reproducible research, researchers often argue about
the correct terminology. Although the differences between repeti-
tion, replication, and reproduction of scientific findings is subtle, it
exists and is import. In this article, we use the terminology defined
by Feitelson [6], which appeared together with this article in the
same issue of the SIGOPS Operating System Review. Briefly sum-
marized: For repetition, the researcher reruns the experiment with
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the original artifacts; For replication, the researcher re-builds and
uses the experiment apparatus in order to retain equivalent artifacts;
For reproduction, the researcher implements the gist of the original
experiment in order conceive results that confirm or refute the origi-
nal findings in a different setting. In this article, we mainly focus on
repeatability.

Commonly, if we talk about repeatability, what we typically have
in mind is external (or universal) repeatability: Eventually, other
scientists should be able to run the experiments and repeat the pub-
lished results. This view, naturally, supports the understanding of
repeatability as task to be done at the end of a research project – as
some kind of keystone. This task is scheduled shortly before the
paper has been submitted (in the best case), accepted, or “when
there is time”. Unfortunately, the latter appears to be the standard:
The results are half-hearted, sloppy, or just incomplete experiment
descriptions that are neither validated nor reviewed by the commu-
nity.

However, the problem starts earlier: Besides external repeatabil-
ity, there is also internal (or personal) repeatability: At any time,
the researcher and her colleagues should be able to repeat their own
results consistently, without too much overhead, and in a compre-
hensible manner. Compared to the natural sciences, who teach their
students rigorous standard procedures for experimental work (such
as maintaining a laboratory protocol that details each and every step
and input parameter), practical computer science as a discipline has
not yet developed a notion of internal repeatability: Our experiments
(run and measure a piece of software) are, in comparison, very cheap
to carry out, but also employ a very large number of (easy to change)
external input variables, such as the employed compiler, OS config-
uration, and so on. Our major venues are prestigious conferences
with strict deadlines. All this fosters, especially if we come close
to a paper deadline, a quick-and-dirty trial-and-error experimen-
tation approach that favors quick results over documentation and
traceability.

Clearly, internal repeatability is an important prerequisite for
external replicability (and a quality-driven scientific process). Nev-
ertheless – deadlines are deadlines and time is short. We need au-
tomation and tool support to reduce the short-term costs of internal
repeatability.

1.1 Our Contributions
We describe our experience with internal repeatability and how it

culminated in the development of two tools:
versuchung is a Python-based scripting framework to code exe-

cutable and traceable experiments for systems software. Al-
though it is easy to use, versuchung provides powerful mech-
anisms for orchestrating and journalizing complex experimen-
tal setups and their dependencies, from bootstrapping the
tools involved over executing the experiment to aggregating
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the resulting data and metadata.

dataref is a LATEX package for the symbolic and intensional de-
scription of data points (i.e., numbers) in LATEX documents.
During document compilation, symbolic data points and their
derivatives (such as differences, ratios, or percentages) are
substituted by their actual or calculated value. Data points
can be annotated with further metadata, and their usage is
tracked throughout the document. Each data point can even
be validated through assertions to uncover discrepancies from
the expected results.

Basically, versuchung provides automation of internal repeata-
bility for all experimental results, while dataref extends the scope
of this automation into the documents that describe results, such as
the paper, technical report, or thesis currently being authored. In our
own research we came to the conclusion that – thereby – the goal of
internal repeatability no longer waste valuable work time, but on the
contrary quickly pays off: It saves time and headache and increases
ones own confidence in experimental results.

1.2 Structure
The rest of the article is structured as follows: We start with our

problem analysis in Section 2, which is followed by the description
of the versuchung and dataref software packages in Section 3
and Section 4. In Section 5 and Section 6, we present two case-
studies using these packages in data-intensive research projects. We
discuss our experience with this approach in Section 7, present some
related work in Section 8, and finally conclude in Section 9. After
the list of references, we additionally provide a datagraphy, which
contains all data points used within the article.

2. PROBLEM DESCRIPTION
Scientists often find themselves in an ongoing conflict between a

constant lack of time and their own aspiration to do good and valid
research. To illustrate this problem, we collected three scenarios
that have occurred repeatedly in our scientific process:

SCENARIO 1 (FOUR HOURS TO THE PAPER DEADLINE).
Robin is a young PhD student and her supervisor has asked her to
write about her latest research for a systems conference. Shortly
before the deadline, she discovers a bug in the implementation – she
has to rerun all experiments. Although each tool runs without much
interaction, Robin has to orchestrate them manually. Afterwards,
she has to update all numbers in the LATEX code of her paper and
resubmit the document in time. But how was that percentage on
page 3 computed again?

SCENARIO 2 (THE CONTRIBUTION IS ACCEPTED).
After the notification, a very happy Robin reads the reviews for her
first accepted contribution. All reviewers were impressed by the
approach and only one reviewer complains about the outdated com-
piler version Robin has used. Therefore, Robin reruns all analyses
again with a more recent compiler. Again, she replaces all numbers,
updates all tables, and recalculates all percentages.

SCENARIO 3 (WRITING THE PHD THESIS).
Years later, Robin is working hard on her PhD thesis. In chapter 5,
she wants to explain the approach from her first published paper.
Unfortunately, Robin does not remember which version of her soft-
ware and which parameters were used. While grepping through
her home directory for magic comments and README files, she
discovers two datasets, but only one seems to match the numbers in
the paper. Robin bisects different version of her tool to replicate the

numbers, until she spots a source-code repository with changes that
were never put under version control.

All described scenarios are examples of a scientific process that
lacks internal repeatability. Of course, the researcher can publish the
raw datasets and some description, but this will not automatically
lead to results that are easy to replicate. The external repeatability
suffers significantly from the poor internal repeatability. In order to
improve both, internal and external repeatability, we will identify
the problems in the described scientific process.

Her constant lack of time tempted Robin to track the experiment
work flow manually. Work-flow automation takes time and it is
not obvious the cost will amortize later on. Several problems arise
from this manual work-flow tracking. The correct invocation and
parametrization of the tools is often kept in short-term memory;
months or years later this knowledge has vanished. Additionally, the
stack of software used is often an arcane mixture of self-developed
programs and common-off-the-shelf software. When invoked man-
ually, their orchestration needs expert knowledge, takes time, and
is prone to error. We state that this is especially true for systems
software, because here repeatability cannot be achieved as easily as
in a closed system.

In the scenarios described, not only the work flow but also the
datasets were tracked manually. When replicating the scientific
process, questions such as “Which version of the tool was used to
produce this dataset?” or “What command-line arguments were
used?” arise. Automatic tracking of datasets and input parameters
answers these questions and assists archiving and retrieving the raw
data.

The next problem for repeatability arises from unclean execution
environments. The researcher starts the analysis in her own working
copy of the code and in its own working environment. Environment
variables might influence the analysis execution and changes to
the code base might not be put under version control, or even the
executable in the changed code base is not rebuilt. The problem
of unclean build environments has already been recognized by the
continuous-integration community [8]. In systems, however, we
typically have to face an additional burden: Most of our software is
highly configurable at compile time. Linux, for instance, provides
thousands of compile-time configuration options – the configuration
actually employed may have a larger impact on the results than the
Linux version number, which in many cases is the only information
provided. In their “Ten years later” paper [20], Palix and colleagues
describe the enormous difficulties to figure out the Linux v2.4.1
configuration used by Chou in [2] in order to reproduce their results.
Eventually, they had to apply source-code statistics and other heuris-
tic measures to figure out some configuration “that is closest to that
of Chou et al.” [20]. The takeaway here is: Our experiments have
many many input variables – often more than we are aware of.

Besides the problem with the dataset generation, repeatability
includes also the tracking of data points within the published doc-
ument. Often data points are inserted as explicit numbers, and not
symbolically, into the document. For a high information density
and to assist the fast comprehension of the results, authors have
to aggregate data, draw graphs, and calculate percentages. These
document-preparation tasks are also part of the scientific process and
are time consuming and error prone, when done manually. This is es-
pecially true, if the underlying data is updated during the document
writing process. Additional tension comes into the process when
data acquisition and writing is done by different researchers. Com-
munication overhead and misunderstandings in the interpretation of
numbers are a possible result.
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Figure 1: Schema of a versuchung experiment. Three input

parameters are defined here: a Git repository, an executable,

a plain string. For each invocation, these parameters are used

to produce a hash value. The formal output parameters, which

are produced by the experiment body, are tagged with this hash.

Additional metadata provides further information about the ex-

periment invocation.

3. THE VERSUCHUNG FRAMEWORK
In the natural sciences, experiments often involve interaction

with the physical world that has to be done manually. Therefore,
these disciplines developed the notion of laboratory protocols as
part of good laboratory practice. In these documents, standardized
procedural methods are described with all input parameters, the
experiment setup, and the desired measurement points. During
the experiment application, standardized notes and observations
are written down. These note artifacts can be shared with other
researchers from the same or another laboratory to replicate the
experiment.

In computer science, we are often in a much more comfortable
situation: Our experiments neither involve the physical world nor
manual interaction. Therefore, we did not evolve such a sophisti-
cated notion of experiment protocols. Nevertheless, we already have
strict formalisms at hand that suit the purpose of expressing experi-
ment protocols well: programming languages. Computer scientists
have the chance to make their experiment protocols executable.
versuchung1 is a framework written in the Python scripting lan-

guage to encode experiment protocols, which can be instrumented
and executed afterwards. versuchung provides an application pro-
gramming interface that allows the researcher to codify the exper-
iment procedure. Figure 1 depicts the schema of a versuchung
experiment. Every experiment consists of three parts: Input pa-
rameters, output parameters, and an experiment body. The input
parameters, which may include Git repositories, executables, ZIP
archives, and many more, are made available to the experiment
body. Additionally, a hash value, which is calculated over the input
parameters, is used to identify this concrete experiment invocation.
For the placement of the output artifacts, a directory is named with
the experiment name and the calculated hash value. An additional
metadata file contains information about the input parameters and is
placed within the artifact directory.

Figure 2 shows the experiment description as a versuchung
experiment. Every experiment is a Python class that inherits from

1versuchung is a pun in the German language. “Versuch” trans-
lates to “experiment” and “versuchung” translates to “temptation”.
Normally, the suffix “-ung” makes a noun from a verb (entdecken
→ Entdeckung; discover → discovery).

1 class AnalyzeLinux(Experiment):
2 inputs = {
3 "linux": GitArchive("/srv/git/linux.git"),
4 "tool" : Executable("~/bin/analyzer"),
5 "arch" : String("x86")
6 }
7 outputs = {
8 "results": CSV_File("results.csv"),
9 "logfile": File("terminal.log"),

10 }
11 def run(self):
12 linux_path = with self.linux.path
13 stdout = shell("cd %s; %s -a %s 2> %s",
14 linux_path,
15 self.analyzer.path,
16 self.arch.value,
17 self.logfile.path)
18 for line in stdout:
19 fields = line.split(" ")
20 name = fields[0]
21 count = len(fields[1:])
22 self.results.append([name, count])
23

24 if __name__ == "__main__":
25 # Initialize and Execute
26 experiment = AnalyzeLinux()
27 experiment(sys.argv)

Figure 2: A versuchung Experiment. The experiment defines

three input parameters and assigns them a name. When access-

ing these parameters in the experiment body, the underlying

data is made available. For example, the Git archive is checked

out into a temporary directory. All underlined words are de-

fined by versuchung.

Usage: experiment.py <options>
[...]

--tool=TOOL (default: ~/bin/analyzer)
--arch=ARCH (default: x86)
--linux-clone-url=LINUX-CLONE-URL

(default: /srv/git/linux.git)
--linux-ref=LINUX-REF

(default: refs/heads/master)

Figure 3: The command-line interface. For the input parame-

ters from Figure 2, a command-line interface is automatically

generated by versuchung.

a versuchung base class (line 1). At the class level, the input
and output parameters are declared and filled with default values
(line 2ff.). These parameters are common among all experiment
invocations. The run() method (line 11) contains the experiment
body and is executed after the input parameters are set up.

Upon experiment invocation (line 27), the framework constructs
a command-line interface from the declared parameters (see Fig-
ure 3). Through this interface, the default values can be overridden to
choose different input parameters. For example, --linux-clone-url
determines the location of the Git source-code repository for the
linux input parameter.

The identifier for one concrete experiment invocation is calculated
from the input parameters and stored in the metadata file, which is
located in the artifact directory. An example metadata file, which
is a plain-text representation of a Python data structure, is shown
in Figure 4. Besides the start and the end time of the experiment
invocation and information about the experiment file itself, detailed
information about the input parameters is recorded. For example,
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{
"date-end": "2014-09-03 15:18:00.819147",
"date-start": "2014-09-03 15:18:00.815746",
"experiment-hash": "cfe02370[...]",
"experiment-name": "AnalyzeLinux",
"experiment-version": 1,
"arch": "x86",
"linux-clone-url": "/srv/git/linux.git",
"linux-hash": "ddb68e510612c1[...]",
"linux-ref": "refs/heads/master",
"tool-md5": "970be6a05c1ccbadbcece0c6db9b3882"

}

Figure 4: AnalyzeLinux-cfe0237[...]/metadata – Each ex-

periment artifact is accompanied by a metadata file, which

gives information about the concrete arguments used.

1 class VisualizeResults(Experiment):
2 inputs = {
3 "analysis": AnalyzeLinux()
4 }
5 outputs = { ... }
6 def run(self):
7 for row in self.analysis.results.value:
8 filename, count = row
9 ...

Figure 5: A chained versuchung Experiment. Experiments can

use other experiments as input parameters. The depicted ex-

periment references the “AnalyzeLinux” experiment from Fig-

ure 2.

the hash of the commit used from the Git source repository identifies
the software version exactly.

Before and within the experiment body, versuchung automates
various tasks: First, versuchung creates a temporary directory as a
working space for the experiment. When the experiment requests
the path of the linux input (line 12), the source-code repository
is checked out into the temporary directory. This ensures a clean
working copy of the used source-code base. versuchung provides
similar automated accessors for different classes of input parameters
(e.g., ZIP archives, automatically downloaded URLs).

The versuchung API provides tools to write very dense experi-
ment code. For example, the shell() function (line 13) wraps the
invocation of programs and takes care of proper argument escap-
ing and return-value checking; optionally, all shell() commands
can be tracked in detail. Another tool provided by versuchung is
the MachineMonitor that monitors the environment (e.g., network
activity, processor utilization,. . . ) during the experiment.

Another key aspect of versuchung are the rich output types,
which abstract different output formats and provide easy-to-use
interfaces to the experiment author. For example, the CSV_File
output type (line 8, 22) abstracts the construction of a Comma-
Separated–Value file. versuchung ensures that the collected data is
correctly dumped after the successful termination of the experiment.
Different rich output types include SQLite2 databases, compressed
files, and data points used by dataref.

In addition to the input parameter types already mentioned, the
artifacts of other versuchung experiments can be used as input
parameters. This mechanism allows the decomposition of complex
experiment and analysis work-flows into smaller reusable parts. Fig-
ure 5 shows an example experiment that uses the experiment from

2An SQL database that uses a single file as data storage.
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Figure 6: Schema of dataref. Symbolic names for data points

from the repository can be referenced by several dataref com-

mands within the output document.

Figure 2 as input parameter (Figure 5, line 3). The experiment
body uses the name of the output parameter (Figure 2, line 8) as
an input parameter (Figure 5, line 7). By using the experiment
hash of the AnalyzeLinux experiment to calculate the hash of the
VisualizeResults experiment, versuchung tracks all input pa-
rameters of all referenced experiments. The dependency is recorded
in the metadata file of “VisualizeResults”:

{
"date-end": "2014-09-03 15:22:00.819147",
"date-start": "2014-09-03 15:24:00.815746",
"experiment-hash": "12d5fa[...]",
"experiment-name": "VisualizeResults",
"analysis": "cfe02370[...]"

}

The hash of the referenced experiment (cfe02370. . . ) identifies
the experiment artifact employed and is used to calculate the hash of
the current experiment (12d5fa. . . ). Result directory names contain
the experiment’s hash, and therefore the researcher can retrieve the
correct experiment artifact with little effort.
versuchung tries not to capture all possible influences the en-

vironment has on the experiment execution, but rather leaves the
explicit parameter declaration to the experimenter. Software pack-
ages like CDE [11] are a possible addition to make experiments
fully self-contained.

The versuchung framework is freely available3 and published
as Free Software under the GPLv3.

4. THE DATAREF LATEX PACKAGE
The dataref package for the LATEX typesetting system is a com-

panion to the versuchung framework. Both projects can be used
individually, but they work nicely with each other, since versuch-
ung has support to output dataref data-point definitions directly.
dataref supports the author of a LATEX document to express data

points intensionally; during the document compilation, dataref
replaces the symbolic data-point names with the actual numbers.
Figure 6 shows the general approach of dataref. The symbolic
data points are declared in the data-point repository, which is a
usual TEX file with \drefset{<key>}{<value>} commands (see
Figure 7).

3https://github.com/stettberger/versuchung
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\drefset{/linux features/hardware/v2.6.12}{4122}
\drefset{/linux features/software/v2.6.12}{583}
\drefset{/linux features/hardware/v3.15}{12076}
\drefset{/linux features/software/v3.15}{1880}

\drefsethelp{/linux features/hardware/.*}{%
The number of Linux features that are related
to hardware abstraction. This includes drivers/,
arch/, and sound/. Numbers are raw data from
\textcite{ruprecht:14:gpce}.}

\drefsethelp{/linux features/software/.*}{%
The number of Linux features that are included
in software components that are not directly
related to hardware. This includes kernel/ and
net/.}

Figure 7: A dataref Data-Point Repository. Besides the data

points, dataref gives the researcher the possibility to give de-

scriptions for the results.

Within the document, several dataref commands are available
to reference the values from the data-point repository. \dref{}
references a single value and inserts it directly into the text. Numbers
can be formatted in different formats (e.g., scientific notation, digit
grouping, precision,. . . ).

The author can use the \drefrel command to express the inten-
tion to calculate some relation, such as percentages, between two
data points. dataref calculates the desired value directly within
LATEX during the compilation process. For example, the growth of
features from Linux v2.6.12 to Linux v3.15 as a factor is expressed
as

\drefrel[factor,percent,
prefix=/linux features/software/,
base=v2.6.12]{v3.15}

and results in “322.46” in the document. By using this intensional
approach, mixing up numbers is less likely, everyone with access to
the document’s TEX source understands where the numbers come
from, and the percentages are always up-to-date with the underlying
data. If more complex calculations are desired, the \drefcalc
command evaluates arbitrary arithmetic expressions, which in turn
can reference dataref data points.

Results are not always inserted as bare numbers, but also qual-
itative statements, such as “more than half”, are expressed. With
dataref, the bare numbers are updated when the underlying data
is replaced. This may lead to inconsistencies between qualitative
and quantitative statements. dataref does not aim to avoid this
problem, but with \drefassert it provides a command to detect
such inconsistencies (see Figure 8). The command works like an
assertion in other programming languages and ensures that an arith-
metic expression evaluates to true. The author can add an assertion
to the qualitative statement, and dataref ensures that the assertion
holds when the document is compiled.

Often, results are presented as tables. The generation of complex
tables filled with data is an annoying and error-prone task in LATEX.
dataref supports the (partial) generation of data-filled tables (see
Figure 9). Most of the control over the table formatting is left in the
user’s hands, since only single table cells are generated. In Figure 9,
more columns can be shown by editing the comma-separated list
\versions.

With the \drefsethelp command, dataref supports the provi-

\drefassert{( data("/linux features/hardware/v3.15")
+ data("/linux features/software/v3.15"))

>13000}
The Linux kernel exposes more than 13000 features...

Figure 8: Usage of \drefassert. Assertions validate qualita-

tive statements by checking quantitative data points.

% A comma-separated list of Linux versions
\def\versions{v2.6.12,v3.15}
% Set a dref prefix for shorter keys
\drefprefix{/linux features/}
\begin{tabular}{rll}

& \drefrow*{\versions}{#1} \\
HW-Features & \drefrow{\versions}{hardware/#1} \\
SW-Features & \drefrow{\versions}{software/#1} \\

\end{tabular}

v2.6.12 v3.15

HW-Features 4,122 12,076
SW-Features 583 1,880

Figure 9: A table filled with \drefrow. The \drefrow com-

mand iterates over a comma-separated list and replaces #1 in

the template (second argument) with the value. Each list item

results in one table cell.

sioning of annotated descriptions for groups of data points. These
descriptions can be used to communicate the semantics of a data
point between the experimenter, who might be using versuchung,
and the author of the paper. Since the description is stored together
with the data points, it cannot get lost over the years.

The data-point descriptions are also used when dataref is or-
dered to typeset a usage report. The usage report lists all data points
that were used in the document with page number, value and descrip-
tion. Figure 10 shows an example usage report for two data points
that are grouped by one data-point description. The dataref usage
report is similar to a bibliography, which lists referenced literature,
but for used data points; a datagraphy. At the end of this document,
a datagraphy for this paper is included. Of course, the datagraphy is
not necessarily intended to be included into the publication, but it
could be published as a separate document.

For proof-reading purposes, dataref supports an annotation
mode; referenced keys and derived values are commented with
the origin of the value: 434, 0.785, 0.396. These annotations are
intended to help the author during the writing process.
dataref is a self-contained LATEX package. No additional tools

or compilation steps are required. Everything is calculated within
the typesetting system. dataref is freely available from the Com-
prehensive TEX Archive Network (CTAN)7 and is published as open-
source software under the LPPL1.3.

4\dref{/sum/A}
5\drefcalc{data("/sum/A")/data("/sum/B")}
6\drefrel[base=/count,factor]{/sum/A}
7http://www.ctan.org/pkg/dataref
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Figure 11: The VAMOS versuchung pipeline. The versuchung experiments are automatically executed by the Jenkins continous-

integration tool. Jenkins distributes the experiment invocations onto several machines and keeps track of the dependencies.

Pages Value
/linux features/hardware/v2.6.12 5 4122
/linux features/hardware/v3.15 5 12076
The number of Linux features that are related to hardware abstrac-
tion. This includes drivers/, arch/, and sound/. Numbers are
raw data from Ruprecht, Heinloth, and Lohmann [22]

Figure 10: Example of a dataref usage report which prints the

page numbers of the used data points, their values, and their

description.

5. CASE STUDY 1: VAMOS
The presented software packages, versuchung and dataref,

support the management of experiment work flows, datasets, and the
connection to research articles. versuchung manages the data ac-
quisition and aggregation steps, while dataref assists the document-
preparation phase. Although both packages can be used separately,
they integrate nicely with each other. In order to demonstrate a pos-
sible work flow, using versuchung and dataref, we will present
the VAMOS tool pipeline.

As a first case study, we will examine the use of the presented
tools in the context of the VAMOS project [29]. VAMOS examined
the static variability, in terms of compile-time configurable features,
in Linux. The configuration model of Linux exposes over 13,000
features [27, 28], which are interconnected by a complex web of de-
pendencies and constraints. Among these features, the user chooses
a subset at compile time to tailor a specific Linux variant. All config-
urations that fulfill the model constraints form the software family
of Linux. Goals of VAMOS were: (1) Extraction of a formal variabil-
ity model [25, 4]. (2) Identification of inconsistencies between the

model and the implemented variability8. (3) Automatic generation
of configurations towards different nonfunctional properties [28,
22].

Over the years, the team members developed a rich stack of tools
to analyze the variability in Linux. The orchestration of these tools
and their repeatable application became an increasingly complicated
problem. During the research, we developed versuchung and da-
taref as a response to the identified hassles. With versuchung, we
constructed an automated experiment pipeline consisting of several
chained experiments.

The (simplified) VAMOS build pipeline is shown in Figure 11.
The run time of the experiments varies significantly and scatters
from a few seconds on a single machine to several hours on multiple
machines. We manage the pipeline activation and the distribution
onto several machines with the Jenkins9 continous-integration ser-
vice. Jenkins monitors the execution of repeated jobs and distributes
different invocations onto a pool of machines. It is mainly focused
on the automatic building of software products, but in our case it
allows us to trigger the whole VAMOS pipeline with a single click.
versuchung assists us in tracking the dependencies between the

experiments. For example, the “Vampyr Analysis” requires a dataset
of the “Linux File List” and the “Linux Models” experiment. In
reverse, we know that we have to retrigger the “Inconsistency Anal-
ysis” experiment when one of the dependencies was updated. The
metadata, stored by versuchung, indicates outdated result datasets.
With an automatic schedule, we trigger the pipeline once a week to
analyze the current development version of Linux. This is a trade-off
between resource consumption and density of the result sets.

The dependency tracking allows the reuse of datasets for follow-

8Static variability in Linux is expressed with Makefiles and the C
preprocessor
9http://jenkins-ci.org
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Figure 12: The DanceOS experiment work flow. The fault-

injection campaigns contain a rupture in experiment automa-

tion, since the operation of the computing cluster requires man-

ual intervention. After this rupture, the automated analysis is

resumed.

up experiments. At all times, we know exactly which tool version
or which Linux version was used. The reuse of datasets is of special
interest for long-running experiments, such as “Linux Models”,
which extracts the variability models from the Linux source base.

Another key principle which has become obvious over the years is
the separation between analysis and aggregation experiments. Anal-
ysis experiments are long-running experiments that generate many
detailed reports; aggregation experiments aggregate the reports into
comprehensible results. This separation allows the fast adaption of
buggy aggregation experiments and exposes the raw tool reports
as well as the aggregated results. In the VAMOS pipeline, we used
dataref data-point repositories as a common aggregation format.

The generated data-point repositories have been used in two the-
ses and four peer-reviewed publications [19, 4, 28, 5]. dataref
connects the data points to our LATEX documents. These documents
include not only research papers, but also detailed graphical reports.
The placement of dataref at the end of this pipeline allows a quick
update of all numbers in the connected documents. For example,
the draft version of Dietrich et al. [4] included data for Linux v3.1,
while the final version used updated data for Linux v3.2. This up-
date process entailed almost no manual intervention. For the final
version, the data-point repositories were committed alongside the
document to freeze the result.

6. CASE STUDY 2: DANCEOS
In the DanceOS research project, software-based measures are

developed against transient hardware faults, such as bit flips. The
project focuses mainly on dependability measures in system soft-
ware. For example, the researchers investigated the influence of
the general operating-system API design on the rate of silent data
corruptions [15] and developed an aspect-oriented object protection
for operating-system data structures [1]. Currently, we are working
on a fault-tolerant operating system [13].

One of the most common evaluation scenarios is a fault-injection
campaign. For this, the system-under-test (SUT) is traced without
faults to generate a golden run. From the golden run, we determine
which fault injections have to be done to cover the entire fault space.
For each of the planned fault injections, we start the SUT, stop its ex-
ecution at the time of the fault, and inject the fault pattern in the right
location. Afterwards, we observe the SUT’s behavior and record
the result alongside with the planned experiments. For covering the
entire fault space, we developed the FAIL* framework [23].

FAIL* provides tools for all steps of the fault-injection campaign.
The experiment work flow is depicted in Figure 12. We used ver-

suchung to automate the construction of the SUTs, the tracing of
the golden run, and to generate the experiment plan. Nevertheless,
our fault-injection campaigns take a lot of computing power and
are carried out on our local computing cluster consisting of several
hundred machines. As yet, the cluster operation is not automated
with versuchung because the cluster’s management software re-
quires manual interaction. Although this step could be automated in
the future, the need for manual operation opened a rupture in our
versuchung work flow.

Nevertheless, after this rupture, we resumed the usage of ver-
suchung and dataref to postprocess and aggregate the results.
Using the file-system hierarchy as storage unit for experiment arti-
facts enabled us to easily invoke steps manually within the rupture.
versuchung allows the step-wise migration to an automated work
flow and does not force the experimenter to switch completely to
versuchung in the first step. Of course, in a partially automated
work flow, versuchung cannot track the parameters completely.
Nevertheless, we can manually add a dependency between the last
experiment before the rupture and the first one after. This will bridge
the gap in terms of parameter tracking.

For the document-preparation phase, not all data points are the
results of automated versuchung experiments; some data must
be gathered manually – for example, referenced data from other
publications and manual classifications. The data-point–repository
interface between versuchung and dataref is well suited to inject
manually gathered data points as a separate repository. Hence,
manual and automatic experiment results can be treated equally in
the document-preparation phase, while the origin of the data is still
well documented.

Within the DanceOS project, versuchung has been used in four
peer-reviewed publications [12, 15, 14, 16], with a fifth currently
being under review.

7. DISCUSSION
As a team, versuchung and dataref assist the computer scien-

tist in his everyday life. versuchung provides a rich toolbox for
expressing traceable experimental work flows. The explicit defi-
nition of input and output parameters provides a unified interface
for experiment invocation and dataset management. Additionally,
versuchung tracks the software versions used and the given input
parameters together with the resulting datasets.

The usage of versuchung gives the researcher more confidence
in his own results, since the formalized experiment procedure will
always be executed in the same sequence. Manual, error-prone tool
invocation is not necessary. Even if there is a bug in the experiment
description or in any other component, at least the misbehavior
is consistent and the stored metadata helps to identify defective
datasets.

The experiment artifacts generated by versuchung as datasets
are self-contained. Within a single directory, metadata as well as
experiment outcomes are collected. The artifacts are easy to move
around and can be stored alongside research articles in a source-code
control system, such as Git or Subversion.

An automatic pipeline reveals another benefit of automating ex-
periments: Results can be generated continuously. For VAMOS, the
analysis basis was Linux, which is a moving target. The weekly
pipeline execution did not only test our software continuously, but
also delivered continuously updated data. In the VAMOS project, we
were able to monitor the development progress of Linux. It also
made it easy to provide the reviewers of our papers with simple-
to-use access to all experiments that provided the data of the paper
under review. Even though we never got any explicit feedback on
that, we are convinced that being able to observe these experiments
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in action greatly increases the credibility of our results.
Using dataref closes the semantic gap between experiment re-

sults and the numbers in a LATEX document. The symbolic reference
of data points makes not only the update of results easy, but also
prohibits confusion of data points. The intensional notation of data-
point relations, like percentages and factors, makes the connection
between the data points used visible to all writers. Annotations and
the datagraphy make the connections even visible to a reviewer.

Nevertheless, using versuchung does not come for free. Like
any other software package, versuchung needs an initial training.
The researcher, or the student who is forced by his supervisor to
use versuchung, has to learn Python and has to get used to the
versuchung API. Although the learning curve is not very steep, it
is understandable to be afraid of the effort.

Another hurdle we often encounter in our everyday lives is the
continuous consideration whether some task is complicated enough
to be worth the effort of automation. Wrapping a single invocation of
a single tool into versuchung results in another level of abstraction.
If the benefits of versuchung, such as automatic dataset tracking,
are not needed, it is tempting to invoke the toolchain manually this
once. Nevertheless, often the invocation frequency does not stay at
the level of “this once”, but tends to be dozens of times.
versuchung does not prevent the developer from writing exper-

iments that are not easily repeatable. It only provides a toolbox
which can be used to write more robust and repeatable experiments.
As another drawback, versuchung does not encapsulate the com-
plete execution environment of the experiment. Here, CDE [11],
which captures the whole execution environment, is a noteworthy
addition and can be used together with versuchung.
dataref misuses TEX as a mathematical and numerical engine,

therefore it inherits the limitations of TEX. TEX was not intended as
a number-crunching engine, and the extensive use of in-document
calculations will slow down the document compilation. Also, the
use of arbitrarily large integers or floats is not supported. For more
complex operations on data points, such as statistical analyses, the
user should use either versuchung or other a proper programming
language.

Literate-programming packages, such as Sweave [18], are used to
make statistical research repeatable. Sweave mangles the statistical
language R and LATEX together into one document; it couples the
data-aggregation and the document-preparation phases. Although
we think this tight coupling is problematic for long-running aggre-
gation steps, the idea of literate programming can be an addition to
versuchung: Making the experiment’s source code literate opens
up the possibility to create a detailed experiment description as a
well-formatted document, while still being able to use all versuch-
ung features for the actual work flow.

In this work, we mainly focused on the repeatability of experi-
ments, as defined by Feitelson [6]. Automation of experiments and
document preparation allow an easy rerun of the work flow in the
same environment; we achieve internal repeatability. Nevertheless,
the codified experiment description and the parameter tracking make
it easier to run the actual versuchung experiment in a different en-
vironment; there, other scientists can replicate the experimental
artifacts. The explicit definition of input parameters and the gener-
ated command-line interface allow the variation of the experiment
execution. Actual reproducibility is indirectly fostered by versuch-
ung, since it acts as an executable laboratory protocol that catches
the coarse-grained essence of the experimental apparatus.

8. RELATED WORK
Similar to the dataset-hash calculated by versuchung, Gavish

and Donoho [10] identify verifiable computational results (VCRs)

with a unique identifier, the verifiable resource identifier (VRI). Each
input parameter is retrieved from a VCR repository by its VRI and
the experiment outcome is uploaded again to a repository, retrieving
a new VRI. Together with the VCR, the process of computation is
recorded in terms of called function, arguments, and code. VCRs can
be included directly into LATEX by referencing their VRI. Unlike ver-
suchung, this approach depends heavily on a complex infrastructure
and does not assist the researcher in the process of experiment
creation. In contrast to dataref, the inclusion of VCRs is on the
granularity of tables and graphics, and not on single numbers and
relations within in the text body.

Schwab and Schroeder [24] use GNU make to model the ex-
periment work flow. Each step is implemented as a make target
that contains the invocation sequence, and dependencies are ex-
pressed as make prerequisites. Their approach does not assist the
experimenter in doing complex operations within the experiment
description. Also, no tracking of input or output parameters is done.

With VisTrails, Freire et al. [9] capture the whole experiment work
flow. It supports multiple scripting languages to write experiment
steps, records a history of results, and can include visualizations
in LATEX. VisTrails is an all-in-one solution with a strong focus
on visualization. Furthermore, it relies heavily on its graphical
interface for defining work flows. In the document preparation
phase, VisTrails works on the granularity of whole figures, and not
within the text body itself. Compared to VisTrails, versuchung and
dataref are light-weight, focused on single problems, and do not
force the whole work flow into one system that is only accessible
with a single user interface. Nevertheless, it should be possible to
use versuchung within VisTrails experiment steps, since Python is
already supported as a scripting language.

Quite a number of LATEX packages are available to help the authors
of a data-intensive document to automate the transformation of
raw data into graphs or formatted LATEX tables. Examples include
pgfplots [7] for automatic graph creation, or pgfplotstable
[7] and datatool [26] for tables. These packages also provide
means to calculate and typeset derived values such as sums, averages
or percentages. Others provide an interface to external tools for
more complex calculations and analyses, such as the reporttools
package [21] that interfaces to the powerful R system for statistical
computing. However, while all these packages automate the process
of updating larger tables and graphs, they do not reach into the main
text of a document. In a computer-science paper, we typically do
not only present “the data”, but also discuss single data points in the
main text, subsume them into qualitative statements, and even repeat
the most interesting data points in the introduction and conclusions.
For these cases, dataref provides automated consistency – and
additionally assists the authors through the possibility to annotate
data points or sets, a hierarchical naming scheme of data points,
automated bookkeeping of all referenced data points, and assertions
to ensure the validity of qualitative statements.

9. CONCLUSIONS
Practical computer science is missing a strong attitude towards

the repeatability of results, a keystone of the scientific process. Even
though our experiments should in theory be easy to replay – they
are just computer programs – actual experiments tend to reside in
some former student’s home folder, have never been documented
thoroughly, and require arcane knowledge about tool X regarding
“that workaround applied shortly before the paper deadline”. The
reasons for this sloppiness are manifold, but time pressure is one
of them: Explicit measures for experiment documentation and data
traceability take valuable work time, while “publish or perish” and
strict conference deadlines call for timely results.
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We have presented tooling and automation support to reduce the
short-term costs of internal repeatability: versuchung provides easy
but powerful means to formalize complex executable and traceable
experimental setups in practical computer science, while dataref
brings automated updating, documentation, and traceability of data
points and their derivatives into scientific documents written in
LATEX. Both are freely available and have been published under
open-source licenses.10

In our own research projects, the efforts for automation and in-
ternal repeatability of results have quickly paid off exactly through
this combination: We frequently discovered bugs that required to
rerun the experiments while writing the respective paper. However,
thanks to versuchung and dataref it was sufficient to fix the bug
and restart the experiment to update all results – including the paper
being written – automatically.
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Datagraphy

Page Value
/splc2012/linux version/original 7 v3.1
/splc2012/linux version/final 7 v3.2
The final version of Dietrich et al. [4] was delivered with a more
recent version of Linux than it was originally written for.

Page Value
/linux features/hardware/v2.6.12 5 4122
/linux features/hardware/v3.15 5 12076
The number of Linux features that are related to hardware abstrac-
tion. This includes drivers/, arch/, and sound/. Numbers are
raw data from Ruprecht, Heinloth, and Lohmann [22].

Page Value
/linux features/software/v3.15 5 1880
/linux features/software/v2.6.12 5 583
The number of Linux features that are included in software com-
ponents that are not directly related to hardware. This includes
kernel/ and net/. Numbers are raw data from Ruprecht, Heinloth,
and Lohmann [22].

Keys without Description Page Value
/count 4, 5 110
/sum/A 4, 5 43
/sum/B 4, 5 55
For these keys, no description was given
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