
Performance Evaluation
Master 2 Research Tutorial: High-Performance Architectures

Arnaud Legrand et Jean-François Méhaut

ID laboratory, arnaud.legrand@imag.fr

November 29, 2006

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation 1 / 46

arnaud.legrand@imag.fr


Code Performance

I We will mostly talk about how to make code go fast, hence the
“High Performance”.

I Performance conflicts with other concerns:

Correctness. You will see that when trying to make code go
fast one often breaks it

Readability. Fast code typically requires more lines! Modularity
can hurt performance (e.g., Too many classes)

Portability.
I Code that is fast on machine A can be slow on machine B
I At the extreme, highly optimized code is not portable at all,

and in fact is done in hardware!

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation 2 / 46



Why Performance?

I To do a time-consuming operation in less time
I I am an aircraft engineer
I I need to run a simulation to test the stability of the wings at

high speed
I I’d rather have the result in 5 minutes than in 5 hours so that I

can complete the aircraft final design sooner.

I To do an operation before a tighter deadline
I I am a weather prediction agency
I I am getting input from weather stations/sensors
I I’d like to make the forecast for tomorrow before tomorrow

I To do a high number of operations per seconds
I I am the CTO of Amazon.com
I My Web server gets 1, 000 hits per seconds
I I’d like my Web server and my databases to handle 1, 000 trans-

actions per seconds so that customers do not experience bad
delays (also called scalability)

I Amazon does “process” several GBytes of data per seconds

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation 3 / 46



Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs
The Memory Bottleneck

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation 4 / 46



Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs
The Memory Bottleneck

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 5 / 46



Performance as Time

I Time between the start and the end of an operation
I Also called running time, elapsed time, wall-clock time, response

time, latency, execution time, ...
I Most straightforward measure: “my program takes 12.5s on a

Pentium 3.5GHz”
I Can be normalized to some reference time

I Must be measured on a “dedicated” machine

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 6 / 46



Performance as Rate

Used often so that performance can be independent on the “size”
of the application (e.g., compressing a 1MB file takes 1 minute.
compressing a 2MB file takes 2 minutes ; the performance is the
same).

MIPS Millions of instructions / sec = instruction count
execution time×106 = clock rate

CPI×106 .
But Instructions Set Architectures are not equivalent

I 1 CISC instruction = many RISC instructions
I Programs use different instruction mixes
I May be ok for same program on same architectures

MFlops Millions of floating point operations /sec
I Very popular, but often misleading
I e.g., A high MFlops rate in a stupid algorithm could have poor application

performance

Application-specific
I Millions of frames rendered per second
I Millions of amino-acid compared per second
I Millions of HTTP requests served per seconds

Application-specific metrics are often preferable and others may
be misleading

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 7 / 46



“Peak” Performance?

Resource vendors always talk about peak performance rate

I computed based on specifications of the machine
I For instance:

I I build a machine with 2 floating point units
I Each unit can do an operation in 2 cycles
I My CPU is at 1GHz
I Therefore I have a 1*2/2 =1GFlops Machine

I Problem:
I In real code you will never be able to use the two floating point

units constantly
I Data needs to come from memory and cause the floating point

units to be idle

Typically, real code achieves only an (often small) fraction of the
peak performance

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 8 / 46



Benchmarks

I Since many performance metrics turn out to be misleading,
people have designed benchmarks

I Example: SPEC Benchmark
I Integer benchmark
I Floating point benchmark

I These benchmarks are typically a collection of several codes
that come from “real-world software”

I The question “what is a good benchmark” is difficult
I If the benchmarks do not correspond to what you’ll do with the

computer, then the benchmark results are not relevant to you

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 9 / 46



How About GHz?

I This is often the way in which people say that a computer is
better than another

I More instruction per seconds for higher clock rate

I Faces the same problems as MIPS
Processor Clock Rate SPEC FP2000 Benchmark

IBM Power3 450 MHz 434

Intel PIII 1.4 GHz 456

Intel P4 2.4GHz 833

Itanium-2 1.0GHz 1356

I But usable within a specific architecture

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 10 / 46



Program Performance

I In this class we’re not really concerned with determining the
performance of a compute platform (whichever way it is de-
fined)

I Instead we’re concerned with improving a program’s perfor-
mance

I For a given platform, take a given program
I Run it an measure its wall-clock time
I Enhance it, run it an quantify the performance improvement (

i.e., the reduction in wall-clock time)
I For each version compute its performance

I preferably as a relevant performance rate
I so that you can say: the best implementation we have so far

goes “this fast” (perhaps a % of the peak performance)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance: Definition? 11 / 46



Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs
The Memory Bottleneck

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 12 / 46



Speedup

I We need a metric to quantify the impact of your performance
enhancement

I Speedup: ratio of “old” time to “new” time
I new time = 1h
I speedup = 2h / 1h = 2

I Sometimes one talks about a “slowdown” in case the “enhance-
ment” is not beneficial

I Happens more often than one thinks

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 13 / 46



Parallel Performance

I The notion of speedup is completely generic
I By using a rice cooker I’ve achieved a 1.20 speedup for rice

cooking

I For parallel programs one defines the Parallel Speedup (we’ll
just say “speedup”):

I Parallel program takes time T1 on 1 processor
I Parallel program takes time Tp on p processors
I Parallel Speedup: S(p) = T1

Tp

I In the ideal case, if my sequential program takes 2 hours on 1
processor, it takes 1 hour on 2 processors: called linear speedup

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 14 / 46



Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire appli-
cation data resides in cache (vs. RAM) or in RAM (vs. Disk)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 15 / 46



Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire appli-
cation data resides in cache (vs. RAM) or in RAM (vs. Disk)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 15 / 46



Speedup

sub-linear

linear

su
pe

rli
ne

ar
number of processors

sp
ee

du
p

Superlinear Speedup? There are several possible causes

Algorithm with optimization problems, throwing many processors at
it increases the chances that one will “get lucky” and find the
optimum fast

Hardware with many processors, it is possible that the entire appli-
cation data resides in cache (vs. RAM) or in RAM (vs. Disk)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 15 / 46



Bad News: Amdahl’s Law

Consider a program whose execution consists of two phases

1 One sequential phase : Tseq = (1− f)T1

2 One phase that can be perfectly parallelized (linear speedup)
Tpar = fT1

Therefore: Tp = Tseq + Tpar/p = (1− f)T1 + fT1/p.

Amdahl’s Law:

Sp =
1

1− f + f
p

f = 20%
f = 50%
f = 80%

f = 10%

0

1

2

3

4

5

10 20 30 40 50 60

S
p
ee

d
u
p

Number of processors

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 16 / 46



Lessons from Amdahl’s Law

I It’s a law of diminishing return

I If a significant fraction of the code (in terms of time spent in
it) is not parallelizable, then parallelization is not going to be
good

I It sounds obvious, but people new to high performance com-
puting often forget how bad Amdahl’s law can be

I Luckily, many applications can be almost entirely parallelized
and f is small

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 17 / 46



Parallel Efficiency

I Efficiency is defined as Eff (p) = S(p)/p

I Typically < 1, unless linear or superlinear speedup
I Used to measure how well the processors are utilized

I If increasing the number of processors by a factor 10 increases
the speedup by a factor 2, perhaps it’s not worth it: efficiency
drops by a factor 5

I Important when purchasing a parallel machine for instance: if
due to the application’s behavior efficiency is low, forget buying
a large cluster

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 18 / 46



Scalability

I Measure of the “effort” needed to maintain efficiency while
adding processors

I Efficiency also depends on the problem size: Eff (n, p)
I Isoefficiency: At which rate does the problem size need to be

increase to maintain efficiency
I nc(p) such that Eff (nc(p), p) = c
I By making a problem ridiculously large, on can typically achieve

good efficiency
I Problem: is it how the machine/code will be used?

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Speedup and Efficiency 19 / 46



Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs
The Memory Bottleneck

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 20 / 46



Performance Measures

This is all well and good, but how does one measure the performance
of a program in practice?
Two issues:

1 Measuring wall-clock times (We’ll see how it can be done shortly)
2 Measuring performance rates

I Measure wall clock time (see above)
I “Count” number of “operations” (frames, flops, amino-acids:

whatever makes sense for the application)
I Either by actively counting (count++)
I Or by looking at the code and figure out how many operations

are performed

I Divide the count by the wall-clock time

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 21 / 46



Measuring time by hand?

I One possibility would be to do this by just “looking” at a clock,
launching the program, “looking” at the clock again when the
program terminates

I This of course has some drawbacks
I Poor resolution
I Requires the user’s attention

I Therefore operating systems provide ways to time programs
automatically

I UNIX provide the time command

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 22 / 46



The UNIX time Command

I You can put time in front of any UNIX command you invoke

I When the invoked command completes, time prints out timing
(and other) information

surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null
4.17user 4.34system 2:55.83elapsed 4%CPU
(0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (0major+1344minor)pagefaults 0swaps

I 4.17 seconds of user time
I 4.34 seconds of system time
I 2 minutes and 55.85 seconds of wall-clock time
I 4% of CPU was used
I 0+0k memory used (text + data)
I 0 input, 0 output output (file system I/O)
I 1344 minor pagefaults and 0 swaps

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 23 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end

I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



User, System, Wall-Clock?

I User Time: time that the code spends executing user code (i.e.,
non system calls)

I System Time: time that the code spends executing system calls

I Wall-Clock Time: time from start to end
I Wall-Clock ≥ User + System. Why?

I because the process can be suspended by the O/S due to con-
tention for the CPU by other processes

I because the process can be blocked waiting for I/O

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 24 / 46



Using time

I It’s interesting to know what the user time and the system time
are

I for instance, if the system time is really high, it may be that the
code does to many calls to malloc(), for instance

I But one would really need more information to fix the code (not
always clear which system calls may be responsible for the high
system time)

I Wall-clock - system - user ' I/O + suspended
I If the system is dedicated, suspended ' 0
I Therefore one can estimate the ecost of I/O
I If I/O is really high, one may want to look at reducing I/O or

doing I/O better

I Therefore, time can give us insight into bottlenecks and gives
us wall-clock time

I Measurements should be done on dedicated systems

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 25 / 46



Dedicated Systems

I Measuring the performance of a code must be done on a “quies-
cent”, “unloaded” machine (the machine only runs the standard
O/S processes)

I The machine must be dedicated
I No other user can start a process
I The user measuring the performance only runs the minimum

amount of processes (basically, a shell)

I Nevertheless, one should always present measurement results
as averages over several experiments (because the (small) load
imposed by the O/S is not deterministic)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 26 / 46



Drawbacks of UNIX time

I The time command has poor resolution
I “Only” milliseconds
I Sometimes we want a higher precision, especially if our perfor-

mance improvements are in the 1-2% range

I time times the whole code
I Sometimes we’re only interested in timing some part of the code,

for instance the one that we are trying to optimize
I Sometimes we want to compare the execution time of different

sections of the code

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 27 / 46



Timing with gettimeofday

I gettimeofday from the standard C library

I Measures the number of microseconds since midnight, Jan 1st
1970, expressed in seconds and microseconds

struct timeval start;
...
gettimeofday(&tv,NULL);
printf("%ld,%ld\n",start.tv sec, start.tv usec);

I Can be used to time sections of code
I Call gettimeofday at beginning of section
I Call gettimeofday at end of section
I Compute the time elapsed in microseconds:

(end.tv sec*1000000.0 + end.tv usec -
start.tv sec*1000000.0 - start.tv usec) / 1000000.0)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 28 / 46



Other Ways to Time Code

I ntp gettime() (Internet RFC 1589)
I Sort of like gettimeofday, but reports estimated error on time

measurement
I Not available for all systems
I Part of the GNU C Library

I Java: System.currentTimeMillis()
I Known to have resolution problems, with resolution higher than

1 millisecond!
I Solution: use a native interface to a better timer

I Java: System.nanoTime()
I Added in J2SE 5.0
I Probably not accurate at the nanosecond level

I Tons of “high precision timing in Java” on the Web

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Measures 29 / 46



Outline

1 Performance: Definition?
Time?
Rate?
Peak performance
Benchmarks

2 Speedup and Efficiency
Speedup
Amdahl’s Law

3 Performance Measures
Measuring Time

4 Performance Improvement
Finding Bottlenecks
Profiling Sequential Programs
Profiling Parallel Programs
The Memory Bottleneck

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 30 / 46



Why is Performance Poor?

Performance is poor because the code suffers from a performance
bottleneck
Definition:

I An application runs on a platform that has many components
(CPU, Memory, Operating System, Network, Hard Drive, Video
Card, etc.)

I Pick a component and make it faster

I If the application performance increases, that component was
the bottleneck!

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 31 / 46



Removing a Bottleneck

There are two may approaches to remove a bottleneck:

Brute force Hardware Upgrade

I Is sometimes necessary
I But can only get you so far and may be very costly (e.g.,

memory technology)

Modify the code

I The bottleneck is there because the code uses a “resource”
heavily or in non-intelligent manner

I We will learn techniques to alleviate bottlenecks at the soft-
ware level

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 32 / 46



Identifying a Bottleneck

I It can be difficult
I You’re not going to change the memory bus just to see what

happens to the application
I But you can run the code on a different machine and see what

happens

I One Approach
I Know/discover the characteristics of the machine
I Instrument the code with gettimeofdays everywhere
I Observe the application execution on the machine
I Tinker with the code
I Run the application again
I Repeat
I Reason about what the bottleneck is

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 33 / 46



A better approach: profiling

I A profiler is a tool that monitors the execution of a program
and that reports the amount of time spent in different functions

I Useful to identify the expensive functions
I Profiling cycle

I Compile the code with the profiler
I Run the code
I Identify the most expensive function
I Optimize that function (i.e. call it less often if possible or make

it faster)
I Repeat until you can’t think of any ways to further optimize the

most expensive function

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 34 / 46



Using gprof

I Compile your code using gcc with the -pg option
I Run your code until completion
I Then run gprof with your program’s name as single command-

line argument
I Example: gcc -pg prog.c -o prog; ./prog gprof prog

> profile file
I The output file contains all profiling information (which fraction

of the code is spent in which function)

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 35 / 46



Callgrind

I Callgrind is a tool that uses runtime code instrumentation frame-
work of Valgrind for call-graph generation

I Valgrind is a kind of emulator or virtual machine.
I It uses JIT (just-in-time) compilation techniques to translate

x86 instructions to simpler form called ucode on which various
tools can be executed.

I The ucode processed by the tools is then translated back to the
x86 instructions and executed on the host CPU.

I This way even shared libraries and dynamically loaded plugins
can be analyzed but this kind of approach results with huge slow
down (about 50 times for callgrind tool) of analyzed application
and big memory consumption.

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 36 / 46



Callgrind/Kcachegrind

Data produced by callgrind can be loaded into KCacheGrind tool for
browsing the performance results.

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 37 / 46



mpiP

I mpiP is a link-time library (it gathers MPI information through
the MPI profiling layer)

I It only collects statistical information about MPI functions

I All the information captured by mpiP is task-local

sleeptime = 10;

MPI Init (&argc, &argv);

MPI Comm size (comm, &nprocs);

MPI Comm rank (comm, &rank);

MPI Barrier (comm);

if (rank == 0) sleep (sleeptime);

MPI Barrier (comm);

MPI Finalize ();

Task AppTime MPITime MPI%

0 10 0.000243 0.00
1 10 10 99.92
2 10 10 99.92
3 10 10 99.92
* 40 30 74.94

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 38 / 46



vaMPIr

I generate traces (i.e. not just
collect statistics) of MPI calls

I These traces can then be vi-
sualized and used in different
ways.

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 39 / 46



Removing bottlenecks

I Now we know how to
I identify expensive sections of the code
I measure their performance
I compare to some notion of peak performance
I decide whether performance is unacceptably poor
I figure out what the physical bottleneck is

I A very common bottleneck: memory

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 40 / 46



The Memory Bottleneck

The memory is a very common bottleneck that programmers often
don’t think about

I When you look at code, you often pay more attention to com-
putation

I a[i] = b[j] + c[k]
I The access to the 3 arrays take more time than doing an addition
I For the code above, the memory is the bottleneck for most

machines!

I In the 70’s, everything was balanced. The memory kept pace
with the CPU (n cycles to execute an instruction, n cycles to
bring in a word from memory)

I No longer true
I CPUs have gotten 1,000x faster
I Memory have gotten 10x faster and 1,000,000x larger

I Flops are free and bandwidth is expensive and processors are
STARVED for data

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 41 / 46



Memory Latency and Bandwidth

I The performance of memory is typically defined by Latency and
Bandwidth (or Rate)

I Latency: time to read one byte from memory (measured in
nanoseconds these days)

I Bandwidth: how many bytes can be read per seconds (measured
in GB/sec)

I Note that you don’t have bandwidth = 1 / latency!

I There is pipelining: Reading 2 bytes in sequence is much cheaper
than twice the time reading one byte only

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 42 / 46



Current Memory Technology

Memory Latency Peak Bandwidth

DDR400 SDRAM 10 ns 6.4 GB/sec

DDR533 SDRAM 9.4 ns 8.5 GB/sec

DDR2-533 SDRAM 11.2 ns 8.5 GB/sec

DDR2-800 SDRAM ??? 12.8 GB/sec

DDR2-667 SDRAM ??? 10.6 GB/sec

DDR2-600 SDRAM 13.3 ns 9.6 GB/sec

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 43 / 46



Memory Bottleneck: Example

I Fragment of code: a[i] = b[j] + c[k]
I Three memory references: 2 reads, 1 write
I One addition: can be done in one cycle

I If the memory bandwidth is 12.8GB/sec, then the rate at which
the processor can access integers (4 bytes) is: 12.8 × 1024 ×
1024× 1024/4 = 3.4GHz

I The above code needs to access 3 integers

I Therefore, the rate at which the code gets its data is ' 1.1GHz

I But the CPU could perform additions at 4GHz!
I Therefore: The memory is the bottleneck

I And we assumed memory worked at the peak!!!
I We ignored other possible overheads on the bus
I In practice the gap can be around a factor 15 or higher

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 44 / 46



Dealing with memory

I How have people been dealing with the memory bottleneck?
I Computers are built with a memory hierarchy

I Registers, Multiple Levels of Cache, Main memory
I Data is brought in in bulk (cache line) from a lower level (slow,

cheap, big) to a higher level (fast, expensive, small)
I Hopefully brought in in a cache line will be (re)used soon

I temporal locality
I spatial locality

I Programs must be aware of the memory hierarchy (at least to
some extent)

I Makes life difficult when writing for performance
I But is necessary on most systems

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 45 / 46



Memory and parallel programs

I Rule of thumb: make sure that concurrent processes spend
most of their time working on their own data in their own
memory (principle of locality)

I Place data near computation
I Avoid modifying shared data
I Access data in order and reuse
I Avoid indirection and linked data-structures
I Partition program into independent, balanced computations
I Avoid adaptive and dynamic computations
I Avoid synchronization and minimize inter-process communica-

tions

I The perfect parallel program: no communication between pro-
cessors

I Locality is what makes (efficient) parallel programming painful
in many cases.

I As a programmer you must constantly have a mental picture of
where all the data is with respect to where the computation is
taking place

A. Legrand (CNRS-ID) INRIA-MESCAL Performance Evaluation Performance Improvement 46 / 46


	Performance: Definition?
	Time?
	Rate?
	Peak performance
	Benchmarks

	Speedup and Efficiency
	Speedup
	Amdahl's Law

	Performance Measures
	Measuring Time

	Performance Improvement
	Finding Bottlenecks
	Profiling Sequential Programs
	Profiling Parallel Programs
	The Memory Bottleneck


