
THE TAPE/PVM MONITOR AND THE PROVE VISUALIZATIONTOOLP�ETER KACSUK AND J. CHASSIN DE KERGOMMEAUX AND �E. MAILLET AND J.-M.VINCENT1. Introdu
tion. Performan
e visualization is a new bran
h of program devel-opment not used in the
ase of sequential programs. Performan
e visualization aimsat dis
overing performan
e bottle-ne
ks in logi
ally
orre
t parallel programs. Su
hbottle-ne
ks
an lead ba
k to previous stages of the parallel program developmenta

ording to the nature of the bottle-ne
k. Performan
e visualization is based onintensive run-time monitoring. In the GRADE parallel program development envi-ronment two tools have been integrated in order to realize performan
e visualizationsupport. These tools are:� Tape/PVM monitor� PROVE visualization toolThe
urrent
hapter des
ribes these tools and their usage in the GRADE programdevelopment environment.2. Stru
ture of performan
e visualization systems. Performan
e visual-ization systems typi
ally
onsist of four stages as shown in Figure 2.1. The �rst stage,the sour
e
ode instrumentation stage, serves for instrumenting the
ode with thene
essary
alls to the operating system or to the underlying extended
ommuni
ationlibrary. The se
ond stage serves to
olle
t tra
e events during the exe
ution of theparallel program. These
olle
ted events are typi
ally stored in one or several log �lesthat are analysed after the exe
ution of the program. This third stage,
alled tra
eanalysis stage is important in order to establish the physi
al or logi
al timing orderof the
olle
ted events. Finally, the ordered events are visualised by several displayviews in order to give easily
on
eivable explanation of the nature of parallel programexe
ution.
Analysis
Trace

MonitoringSource Code
Instrumentation

Visualisation

Run-time

(Data Acquisition)

Fig. 2.1. Stages of performan
e visualizationPerforman
e visualization systems
an be
lassi�ed a

ording to how they sup-port the four stages of performan
e measurement. Sour
e
ode instrumentation isde
isive
on
erning the
onvenient use of the system or simply from the point ofview of usability. S
alability is another important aspe
t of performan
e visualizationsystems.S
alability is strongly related to the se
ond and third stages of performan
e vi-sualization. A tool is s
alable if it enables the analysis of large, long running parallelprograms. It requires spe
ial te
hniques to avoid the generation of too large tra
e1

�les at run-time. Finally, versatility is another key issue that de�nes the variousdisplay views that the performan
e visualization system
an provide as well as theinteroperability with other visualization tools. In the next se
tions we give a de-tailed des
ription of all these three aspe
ts and show how they are supported by theTape/PVM monitor and the PROVE visualization tool in the GRADE programmingenvironment.3. Sour
e
ode instrumentation. Sour
e
ode instrumentation has four ma-jor
omponents that should be
onsidered in
lassifying performan
e visualizationsystems:1. Instrumentation mode2. Filtering3. Support for monitoring modes4. Support for
li
k-ba
k fa
ilityThe instrumentation mode
an be manual or automati
. All the state-of-the-artperforman
e visualization systems provide automati
 instrumentation. It means thatthe user has not to tou
h the sour
e
ode, it is the task of the
ompiling/linking systemto transform the original sour
e
ode or to
all extended instrumented
ommuni
ationlibraries that support run-time monitoring. In the
ase of GRADE it is the GRP2Cpre-
ompiler and the GRAPNEL Library that are responsible for supporting automati

ode instrumentation. The GRAPNEL Library
an
all either instrumented PVM orMPI library
alls for tra
ing
ommuni
ation events. It also provides instrumented
alls for the graphi
al blo
ks of GRAPNEL enabling the GRAPNEL graphi
al blo
klevel event generation and visualization.Filtering means that the user
an spe
ify for the
ompiling/linking system theinteresting program
omponents for whi
h the run-time events should be generatedand
olle
ted. The la
k of su
h a fa
ility makes the tra
e �le unne
essarily big.Oppositely, �ltering makes the tra
e �le
ustomisable to the parti
ular interest ofthe programmer. The size of the tra
e �le is one of the most
ru
ial problem ofperforman
e visualization systems and hen
e all fa
ilities that
an redu
e its size areworth supporting. In GRADE, �ltering is supported at the level of GRAPNEL as abuilt-in feature of GRED. In a pull-down menu all the GRAPNEL graphi
al blo
k types
an be �ltered. In default, PROVE will
olle
t events on the entry and exit point ofea
h GRAPNEL graphi
al blo
k. However, if the user is interested for example, onlyin the SEQ, CAI, CAO and CAIALT blo
ks, he
an �lter out all the other graphi
alblo
ks (LOOPS, LOOPE, et
.) by the Filter Types pull-down menu as shown inFigure 3.1. Moreover there is a possibility to individually turn on or o� �ltering onea
h graphi
al blo
k of the GRAPNEL program. In this way, the programmer is able to
ustomise the monitoring system to his parti
ular interest and to fo
us on the eventsmost interesting for him.Basi
ally two monitoring modes are supported in performan
e visualization sys-tems. The �rst one is the
olle
tion of individual events, the se
ond one is the
ol-le
tion of statisti
al information. The former one is supported by Tape/PVM. The
urrent version of PROVE
annot provide statisti
al information. However, in thenew version of GRADE,
alled P-GRADE (Professional GRADE) both the monitoringsystem and PROVE will support the
olle
tion and visualization of statisti
al infor-mation. The appli
ation of statisti
al information helps in redu
ing the size of thetra
e �le and hen
e its usage is highly advantageous.Although, the
li
k-ba
k fa
ility is one of the most important fa
ilities of per-forman
e visualization systems, there are only very few systems that support this2

Fig. 3.1. Filter Types pull-down menufeature. The general problem with performan
e visualization systems is that theyprovide various graphi
al views on the program exe
ution based on
olle
ted eventsbut they
annot explain whi
h part of the sour
e
ode is responsible for the generationof the visualised events. The
li
k-ba
k fa
ility applied in advan
ed tools is a remedyfor the problem. It means that when
li
king on a visualised event, the system
anhighlight the part of the sour
e
ode that is responsible for the generation of the event.The
li
k-forward fa
ility is the opposite of the
li
k-ba
k fa
ility and it meansthat when
li
king on a sour
e
ode line, the visualization tool
an indi
ate on itsgraphi
al views whi
h events were generated by the sele
ted sour
e
ode line.The pair-wise use of
li
k-ba
k and
li
k-forward fa
ilities ensure the perfe
t iden-ti�
ation of the role of program
omponents during the parallel program exe
ution.The
li
k-ba
k fa
ility of GRADE is illustrated in Figure 3.2. The verti
al timebar in the spa
e-time diagram of PROVE in Figure 3.2 is used to realize the
li
k-ba
k fa
ility. The time bar sele
ts the interesting or relevant moment of the exe
utiontime. Cli
king on the
ross point of any pro
ess line and the time bar will result inhighlighting (making red) the
orresponding pro
ess in the appli
ation window andthe
orresponding graphi
al blo
k in the pro
ess window. Vi
e versa,
li
king ona graphi
al blo
k in the pro
ess window, the time bar will move in the spa
e-timediagram to the next event that was generated by the sele
ted graphi
al blo
k.The
li
k-ba
k fa
ility of PROVE is strongly supported by the Tape/PVM mon-itor. In order to allow users to qui
kly �nd the statement in their sour
e
ode thatgenerated a parti
ular event, Tape/PVM's events
ontain the line number of thatstatement and the identi�er of the sour
e
ode �le. In fa
t, the user's sour
e
ode isinstrumented by Tape/PVM's pre-pro
essor (tapepp, tapeppf) whi
h knows the nameof the �le it pro
esses and the
urrent line number. Ea
h time a probe is inserted intothe user's
ode (at a
all of a PVM library fun
tion, for instan
e) the informationabout �le name and line number is given to that probe (in a way similar to Aims [8℄).Thus, a visualization tool, like PROVE,
an feature sour
e
ode
li
k-ba
k based onTape/PVM tra
es.4. Data a
quisition. Data a
quisition is realized by the Tape/PVM run-timemonitoring system. Tape/PVM1 is a tool to generate event tra
es of PVM appli-
ations for post-mortem performan
e analysis, e.g. dis
rete event simulation and1The manual and Tape/PVM's distribution are available atftp://ftp.imag.fr/imag/APACHE/TAPE 3

Fig. 3.2. Cli
k-ba
k fa
ility in PROVEvisualization. It
omprises the tool to generate the tra
es, as well as a utility totransform the tra
es into the PICL format. It also
ontains a library of C fun
tionswhi
h allows to easily read the generated tra
es.Tra
e generation and post-mortem analysis of tra
es are two di�erent resear
hareas, ea
h with its own spe
i�
 problems. The main problem of tra
e analysis is thedesign of an appropriate model and a simulator based on that model. The simulatortakes a tra
e �le (set of events) as input and re
onstru
ts the su

essive global statesof the system on whi
h the tra
es were generated. Su
h a simulator
an be
oupledwith a visualization tool to give a global view of the system under study. However, the4

simulation is only as a

urate as its input - the tra
e �le. Su
h a tra
e �le has to berepresentative of what really happened in the parallel system under study. Thus, themain problem in designing a tra
ing tool is to guarantee the representative quality ofthe generated tra
es. The design of Tape/PVM parti
ularly fo
used on the followingtwo points:1. Pre
ise,
ausally
oherent event dating,2. Minimal perturbation of analyzed appli
ations.Some existing tra
ing tools for PVM fo
us on tra
e visualization and \real-time"intera
tion rather than on the representative quality of the generated tra
es. XPVM[3℄ for example, is a graphi
al
onsole and monitor for PVM. It uses the event
ol-le
tion me
hanism integrated in PVM V3.3.0 or later. Events are routed to XPVMby the PVM kernel during run-time of the instrumented appli
ation. Thus, XPVM
an update its views in \real time". XPVM
an also be used for post-mortem tra
eanalysis using the events of previous exe
utions saved into a �le. However, whateverthe mode in whi
h XPVM is used, real-time or post-mortem, its tra
es represent po-tentially perturbed appli
ations due to on-line event message routing. These messagesin
rease the load of the network whi
h
an infer a
hange in behaviour of the observedappli
ation (in fa
t, many parallel appli
ations are non-deterministi
). In addition,the tra
ing me
hanism of the PVM kernel relies on a globally syn
hronized system
lo
k. Not many systems have a global time referen
e whi
h is suÆ
iently a

urateto avoid dating anomalies.In Tape/PVM a non-intrusive, statisti
al method is used to estimate a pre
iseglobal time referen
e [5℄ (see Chapter 6 for more information on global time im-plementation in Tape/PVM). Rather than doing post-mortem ta
hyon removal, an apriori ta
hyon prevention is a
hieved through the use of a global time referen
e. Datedevents are
ausally
oherent. However, the estimated global time is only available atthe end of the instrumented appli
ation whi
h prohibits on-line dating. This is nota drawba
k be
ause Tape/PVM is intended for post-mortem tra
e analysis only. Inaddition to this, at generation, an event is not routed to a
entral
olle
tor task, likein XPVM, in order to avoid additional network load. Instead, the events are storedin lo
al event bu�ers, whi
h are
ushed to lo
al event �les. The
olle
tion of eventsinto a single �le is only done at the end of the user's appli
ation to avoid interferingwith it.The problem of perturbation of parallel appli
ations due to the presen
e of atra
ing tool is a diÆ
ult one. The approa
h of Tape/PVM is similar to the oneadopted in the Aims environment [8℄. Although intrusion
an be redu
ed by
arefulimplementation of the tra
ing tool, it
an not be eliminated. The main
auses ofintrusion are the
ushing of lo
al event bu�ers, the a

umulation of the delays ofea
h individual event generation, as well as the additional messages ex
hanged by thetra
ing tool. To limit the intrusion due to Tape/PVM the following te
hniques areused: � On-line
ompa
ting of events. This allows a gain of about 50% with respe
t toa non-
ompa
ted text representation of events. The number of bu�er
ushesis signi�
antly redu
ed and so is the perturbation of the appli
ation.� The number of messages ex
hanged by Tape/PVM is redu
ed to a minimum.Only events like PVM addhost and PVM kill whi
h
hange the
on�gurationof the parallel virtual ma
hine need su
h additional messages.� The additional tasks used by Tape/PVM (for global
ontrol, for
lo
k syn
hro-nisation) are not a
tive while the instrumented user appli
ation is running.5

5. Tra
e analysis. The third stage of performan
e visualization is devoted totra
e analysis. The physi
al
lo
ks of the pro
essors in a distributed system are usuallynon syn
hronized or even in the
ase of syn
hronisation they
an be drifted to ea
hother. Hen
e the data
olle
ted at run time and time-stamped by the ti
ks of thephysi
al
lo
ks
annot be
onsidered as strongly and pre
isely ordered. The �rst taskof the data analysis is to
reate an at least logi
al ordering among the
olle
ted events.The most frequently used ordering
riteria is based on the happened-before relationintrodu
ed by [4℄. In the GRADE system the Tape/PVM monitor is applied whi
hguarantees the physi
al ordering of events in the tra
e �le a

ording to a non-intrusive,statisti
al
lo
k syn
hronisation algorithm [5℄.The tra
e analysis phase should also support some displaying features that aremost relevant for the user. Su
h fa
ilities are zooming and �ltering. Zooming meansthat the user
an fo
us on any part of the whole exe
ution and the visualization viewshows the sele
ted part in a mu
h more detailed way. The zooming fa
ility of PROVEis shown in Figure 5.1 and Figure 5.2 for the same program that is shown in Figure 3.2.Total view of the
omplete program is given in Figure 5.1 but in su
h a
ondensed�gure the details of
ommuni
ation and other events
annot be observed. A zoomedversion of Figure 5.1 is shown in Figure 5.2 where only three pro
esses were sele
tedin the time interval of 3144-3156. Noti
e that su
h a zoomed �gure
an give detailson the ports applied in the
ommuni
ation events as well as on the
hange of state ofpro
esses during and among
ommuni
ations. The di�erent
olours in the horizontalpro
ess bars represent di�erent pro
ess states like idle, waiting for
ommuni
ationand busy.

Fig. 5.1. The
omplete spa
e-time diagram of the
ight simulation programThe role of post-mortem �ltering is di�erent from the role of the �ltering during
ode instrumentation. Post-mortem �ltering helps in sele
ting relevant informationfrom the
olle
ted data similarly to the zooming feature. However, �ltering is moresele
tive than zooming and hen
e it
an help in sele
ting the required pro
esses,pro
essors,
ommuni
ation events, et
. and to visualise only these sele
ted eventsand units. In order to help the user in sele
ting post-mortem �lters and to rearrangethe order of pro
esses and pro
essors in the spa
e-time diagram PROVE provides the6

Fig. 5.2. The zoomed spa
e-time diagram of the
ight simulation programdialog window shown in Figure 5.3.

Fig. 5.3. Event �lter dialog window in PROVE6. Visualization. Most performan
e visualization tools (Paragraph [2℄ Pablo[7℄ VAMPIR [6℄) provide a signi�
ant number of various display views to visualise thevarious aspe
ts of program exe
ution. The
urrent version of PROVE gives detailedspa
e-time diagram whi
h des
ribes the
ommuni
ation aspe
ts of parallel pro
essesas well as the
hange of their state in time. It also shows on whi
h pro
essor thepro
esses were exe
uted and when they were
reated on the pro
essor. The spa
e-time diagram of PROVE is shown in Figure 5.1 and Figure 5.2.PROVE provides three additional windows for statisti
al purposes. One of themshows the pro
essor utilization by representing pro
ess states in a
ommon window.When all the pro
esses that were exe
uted on a parti
ular pro
essor are shown by thePro
ess State Window, the utilisation of the sele
ted pro
essor is well demonstrated.The other two statisti
al windows are related to
ommuni
ation. The Pro
ess Com-7

muni
ation window shows the amount of pro
ess
ommuni
ation as fun
tion of time.The Host Communi
ation window displays the amount of
ommuni
ation among se-le
ted hosts in the
ommuni
ation network or among sele
ted pro
essors in a parallel
omputer. The time range of the three windows are jointly syn
hronized togetherwith the spa
e-time diagram. The statisti
al windows are shown in Figure 6.1.

Fig. 6.1. Statisti
al windows of PROVE
.c .f

_t.c _t.f

_t.o _t.o

tapepp tapeppf

cc

libtape.a libftape.a

libpvm3.a

fc

Fig. 7.1. Tape/PVM system ar
hite
ture7. Tape/PVM instrumentation ar
hite
ture. So far we have des
ribed Ta-pe/PVM and PROVE from the user's point of view. In the
urrent se
tion we givesome insight into the Tape/PVM instrumentation of GRAPNEL programs whi
h ispra
ti
ally hidden from the user. The only feature whi
h is important for the useris the way how to set the Tape/PVM instrumentation option when he/she starts theGRADE system.In Chapter 11, it is explained how to generate C sour
e
ode from GRAPNELprograms and how to extend them with the ne
essary PVM or MPI fun
tion
alls8

through GRAPNEL Library fun
tions. In the
urrent se
tion we show how to
reatethe ne
essary instrumentation for the Tape/PVM tra
e generation system. The mainidea of the instrumentation is that every PVM
all is repla
ed in a pre-pro
essingphase with its instrumented version taken from the Tape/PVM library. Instrumentinga parallel appli
ation for Tape/PVM
omprises three phases whi
h will be dis
ussedin the following subse
tions.7.1. Pre-pro
essing phase. Tape/PVM proposes a tra
e format along with aseries of tools operating on this format. Users are also allowed to de�ne their owntra
e format. In this se
tion we assume pre-pro
essing is done in order to generatetra
es in the Tape/PVM format.The Tape/PVM software distribution
ontains spe
ial pre-pro
essing tools whi
h
an automati
ally insert instrumentation points (probes) in C and Fortran appli
ationsour
e �les2. The pre-pro
essing phase
onsists essentially of inserting a
all to theTape/PVM initialization fun
tion (tapestart or tapefstart) and in inter
epting
alls tothe PVM library. For ea
h PVM library fun
tion there is an asso
iated inter
eptingfun
tion whi
h re
ords the tra
e information before passing
ontrol to the a
tual PVMfun
tion.The Tape/PVM pre-pro
essor is
alled tapepp or tapeppf depending on whetheryou want to instrument C or Fortran
ode. Usetapepp[f ℄ [options℄ sour
e:(f j
)to
reate an instrumented sour
e
ode. The resulting instrumented sour
e �le is
alled sour
e:t:(f j
)3. The tapepp tools asso
iate a unique sour
e �le identi�er toea
h sour
e �le they pro
essed and keep these identi�ers in a database. The generatedTape/PVM events
ontain pointers to the line number and �le identi�er whi
h
ontainthe statement that generated the event. Thus, analysis tools based on Tape/PVMtra
es
an feature sour
e
ode
li
k-ba
k.7.2. Compiling phase. The instrumented sour
e �les (t:(f j
)) are
ompiledlike the non instrumented �les with few ex
eptions:� The t.
 �les need a spe
ial in
lude �le.� Due to instrumentation insertion, the t.f �le may
ontain lines longer thanthe 72
hara
ters allowed by standard Fortran (a spe
ial option has to beused in order to permit longer lines - unfortunately, there is no standard wayin Fortran to do so).7.3. Linking phase. Like the PVM library, the Tape/PVM library
omprisestwo modules: a main library libtape.a and the asso
iated Fortran interfa
e librarylibftape.a. The dependen
ies between the di�erent modules are shown in Figure 7.1.The name of the instrumented exe
utable has to be the same as the name of the
orresponding non-instrumented exe
utable suÆxed by t. When inter
epting PVMspawn
alls, Tape/PVM automati
ally suÆxes the task's name by t. If this naming
onvention is not respe
ted, all the spawns in the instrumented appli
ation will fail.8. Tape/PVM as a stand-alone tool. The Tape/PVM monitor
an be usedindependently from GRADE as a stand-alone tool for monitoring PVM programs andits output
an be
onne
ted to stand-alone visualization tools like Paragraph. The2User
ode pre-pro
essing is required be
ause Tape/PVM does not use PVM's run-time event
olle
tion me
hanism.3(f j
) means that the extension is either .f or .
.9

tra
e format output by Tape/PVM is
lose to the PICL format [1℄. A tool (t2p , t2np)
an be used to transform the tra
es to the PICL format so that they
an be visualisedwith Paragraph [2℄. A spe
ial feature of t2p is that it models the overhead due tobu�er
ushes by the \overhead" state. Thus, with Paragraph, the overhead due tobu�er
ushes is
learly outlined on the \Task Gantt Chart" so that users
an studythe intrusion by
omparing di�erent exe
utions using di�erent bu�er sizes (whi
h
anbe parameterised in Tape/PVM). t2p also takes into a

ount the overhead due topa
king (unpa
king) data in (from) messages. Visualization of group operations inTape/PVM is fully supported.9. Con
lusions. The Tape/PVM monitor proved to be easily integrated intothe GRADE programming environment. Besides, it
an be used as a stand-alonemonitoring tool for PVM programs. The main features of Tape/PVM are as follows:� Tra
e of events at user appli
ation level (PVM library
alls) through fun
tion
all inter
eption.� Pre-pro
essor to instrument user sour
e
ode (C or Fortran) automati
ally(instrumented sour
e
ode has to be re
ompiled).� User de�ned events (like printf).� An event
ontains the line and �le number of the instru
tion whi
h generatedthe event (sour
e
ode feed-ba
k).� Sele
tive tra
ing using sour
e
ode module groups and event types.� Pre
ise,
ausally
oherent global time referen
e.� On-line event
ompa
ting (gain up to 50% with respe
t to text storage) tolimit event bu�er
ushes.� In
ludes a C library whi
h allows to read Tape/PVM tra
es easily.� Can generate PICL tra
es for use with Paragraph.The PROVE visualization tool is strongly integrated with the Tape/PVM monitorand also with other tools of the GRADE program development environment. Su
h astrong integration enables the unique
li
k-ba
k and
li
k-forward fa
ilities of PROVE.REFERENCES[1℄ G. A. Geist, M. T. Heath, P. B. W., and P. H. Worley, PICL, a portable instrumented
ommuni
ation library, TN 37831-8083, Oak Ridge National Laboratory, Oak Ridge, USA,1991.[2℄ M. T. Heath and J. A. Etheridge, Visualizing the Performan
es of Parallel Programs, IEEETrans. Softw. Eng., 8 (1991), pp. 29{39.[3℄ J. Kohl and G. A. Geist, The PVM 3.4 tra
ing fa
ility and XPVM 1.1, in Pro
. of the 29th.Hawai International Conferen
e on System S
ien
es, 1996.[4℄ L. Lamport, Time,
lo
ks, and the ordering of events in a distributed system, CACM, 21 (1978),pp. 558{565.[5℄ �E. Maillet and C. Tron, On EÆ
iently Implementing Global Time for Performan
e Evalua-tion on Multipro
essor Systems, Journal of Parallel and Distributed Computing, 28 (1995),pp. 84{93.[6℄ W. E. Nagel, A. Arnold, M. Weber, H. Hoppe, and K. Sol
henba
h, VAMPIR: Visual-ization and analysis of MPI resour
es, Super
omputer 63, 12 (1996), pp. 69{80.[7℄ D. A. Reed, Performan
e analysis of parallel systems: Approa
hes and open problems, in Pro-
eedings of JSPP'98, 1998, pp. 239{256.[8℄ J. C. Yan, Performan
e tuning with AIMS | an automated instrumentation and monitoringsystem for multi
omputers, in Pro
. of the Twenty-Seventh Annual Hawai Conferen
e onSystem S
ien
es, IEEE Computer So
iety Press, 1994, pp. 625{633.10

