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1. Introduction. Performance visualization is a new branch of program devel-
opment not used in the case of sequential programs. Performance visualization aims
at discovering performance bottle-necks in logically correct parallel programs. Such
bottle-necks can lead back to previous stages of the parallel program development
according to the nature of the bottle-neck. Performance visualization is based on
intensive run-time monitoring. In the GRADE parallel program development envi-
ronment two tools have been integrated in order to realize performance visualization
support. These tools are:

e Tape/PVM monitor
e PROVE visualization tool

The current chapter describes these tools and their usage in the GRADE program

development environment.

2. Structure of performance visualization systems. Performance visual-
ization systems typically consist of four stages as shown in Figure 2.1. The first stage,
the source code instrumentation stage, serves for instrumenting the code with the
necessary calls to the operating system or to the underlying extended communication
library. The second stage serves to collect trace events during the execution of the
parallel program. These collected events are typically stored in one or several log files
that are analysed after the execution of the program. This third stage, called trace
analysis stage is important in order to establish the physical or logical timing order
of the collected events. Finally, the ordered events are visualised by several display
views in order to give easily conceivable explanation of the nature of parallel program
execution.

Source Code
Instrumentation

FiG. 2.1. Stages of performance visualization

Performance visualization systems can be classified according to how they sup-
port the four stages of performance measurement. Source code instrumentation is
decisive concerning the convenient use of the system or simply from the point of
view of usability. Scalability is another important aspect of performance visualization
systems.

Scalability is strongly related to the second and third stages of performance vi-
sualization. A tool is scalable if it enables the analysis of large, long running parallel
programs. It requires special techniques to avoid the generation of too large trace
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files at run-time. Finally, versatility is another key issue that defines the various
display views that the performance visualization system can provide as well as the
interoperability with other visualization tools. In the next sections we give a de-
tailed description of all these three aspects and show how they are supported by the
Tape/PVM monitor and the PROVE visualization tool in the GRADE programming
environment.

3. Source code instrumentation. Source code instrumentation has four ma-
jor components that should be considered in classifying performance visualization
systems:

1. Instrumentation mode

2. Filtering

3. Support for monitoring modes
4. Support for click-back facility

The instrumentation mode can be manual or automatic. All the state-of-the-art
performance visualization systems provide automatic instrumentation. It means that
the user has not to touch the source code, it is the task of the compiling/linking system
to transform the original source code or to call extended instrumented communication
libraries that support run-time monitoring. In the case of GRADE it is the GRP2C
pre-compiler and the GRAPNEL Library that are responsible for supporting automatic
code instrumentation. The GRAPNEL Library can call either instrumented PVM or
MPI library calls for tracing communication events. It also provides instrumented
calls for the graphical blocks of GRAPNEL enabling the GRAPNEL graphical block
level event generation and visualization.

Filtering means that the user can specify for the compiling/linking system the
interesting program components for which the run-time events should be generated
and collected. The lack of such a facility makes the trace file unnecessarily big.
Oppositely, filtering makes the trace file customisable to the particular interest of
the programmer. The size of the trace file is one of the most crucial problem of
performance visualization systems and hence all facilities that can reduce its size are
worth supporting. In GRADE, filtering is supported at the level of GRAPNEL as a
built-in feature of GRED. In a pull-down menu all the GRAPNEL graphical block types
can be filtered. In default, PROVE will collect events on the entry and exit point of
each GRAPNEL graphical block. However, if the user is interested for example, only
in the SEQ, CAI, CAO and CAIALT blocks, he can filter out all the other graphical
blocks (LOOPS, LOOPE, etc.) by the Filter Types pull-down menu as shown in
Figure 3.1. Moreover there is a possibility to individually turn on or off filtering on
each graphical block of the GRAPNEL program. In this way, the programmer is able to
customise the monitoring system to his particular interest and to focus on the events
most interesting for him.

Basically two monitoring modes are supported in performance visualization sys-
tems. The first one is the collection of individual events, the second one is the col-
lection of statistical information. The former one is supported by Tape/PVM. The
current version of PROVE cannot provide statistical information. However, in the
new version of GRADE, called P-GRADE (Professional GRADE) both the monitoring
system and PROVE will support the collection and visualization of statistical infor-
mation. The application of statistical information helps in reducing the size of the
trace file and hence its usage is highly advantageous.

Although, the click-back facility is one of the most important facilities of per-
formance visualization systems, there are only very few systems that support this
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FiG. 3.1. Filter Types pull-down menu

feature. The general problem with performance visualization systems is that they
provide various graphical views on the program execution based on collected events
but they cannot explain which part of the source code is responsible for the generation
of the visualised events. The click-back facility applied in advanced tools is a remedy
for the problem. It means that when clicking on a visualised event, the system can
highlight the part of the source code that is responsible for the generation of the event.

The click-forward facility is the opposite of the click-back facility and it means
that when clicking on a source code line, the visualization tool can indicate on its
graphical views which events were generated by the selected source code line.

The pair-wise use of click-back and click-forward facilities ensure the perfect iden-
tification of the role of program components during the parallel program execution.

The click-back facility of GRADE is illustrated in Figure 3.2. The vertical time
bar in the space-time diagram of PROVE in Figure 3.2 is used to realize the click-
back facility. The time bar selects the interesting or relevant moment of the execution
time. Clicking on the cross point of any process line and the time bar will result in
highlighting (making red) the corresponding process in the application window and
the corresponding graphical block in the process window. Vice versa, clicking on
a graphical block in the process window, the time bar will move in the space-time
diagram to the next event that was generated by the selected graphical block.

The click-back facility of PROVE is strongly supported by the Tape/PVM mon-
itor. In order to allow users to quickly find the statement in their source code that
generated a particular event, Tape/PVM’s events contain the line number of that
statement and the identifier of the source code file. In fact, the user’s source code is
instrumented by Tape/PVM’s pre-processor (tapepp, tapeppf) which knows the name
of the file it processes and the current line number. Each time a probe is inserted into
the user’s code (at a call of a PVM library function, for instance) the information
about file name and line number is given to that probe (in a way similar to Aims [8]).
Thus, a visualization tool, like PROVE, can feature source code click-back based on
Tape/PVM traces.

4. Data acquisition. Data acquisition is realized by the Tape/PVM run-time
monitoring system. Tape/PVM! is a tool to generate event traces of PVM appli-
cations for post-mortem performance analysis, e.g. discrete event simulation and

!The manual and Tape/PVM’s distribution are available at
ftp://ftp.imag.fr/imag/ APACHE/TAPE
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FiG. 3.2. Click-back facility in PROVE

visualization. It comprises the tool to generate the traces, as well as a utility to
transform the traces into the PICL format. It also contains a library of C functions
which allows to easily read the generated traces.

Trace generation and post-mortem analysis of traces are two different research
areas, each with its own specific problems. The main problem of trace analysis is the
design of an appropriate model and a simulator based on that model. The simulator
takes a trace file (set of events) as input and reconstructs the successive global states
of the system on which the traces were generated. Such a simulator can be coupled
with a visualization tool to give a global view of the system under study. However, the
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simulation is only as accurate as its input - the trace file. Such a trace file has to be
representative of what really happened in the parallel system under study. Thus, the
main problem in designing a tracing tool is to guarantee the representative quality of
the generated traces. The design of Tape/PVM particularly focused on the following
two points:

1. Precise, causally coherent event dating,
2. Minimal perturbation of analyzed applications.

Some existing tracing tools for PVM focus on trace visualization and “real-time”
interaction rather than on the representative quality of the generated traces. XPVM
[3] for example, is a graphical console and monitor for PVM. It uses the event col-
lection mechanism integrated in PVM V3.3.0 or later. Events are routed to XPVM
by the PVM kernel during run-time of the instrumented application. Thus, XPVM
can update its views in “real time”. XPVM can also be used for post-mortem trace
analysis using the events of previous executions saved into a file. However, whatever
the mode in which XPVM is used, real-time or post-mortem, its traces represent po-
tentially perturbed applications due to on-line event message routing. These messages
increase the load of the network which can infer a change in behaviour of the observed
application (in fact, many parallel applications are non-deterministic). In addition,
the tracing mechanism of the PVM kernel relies on a globally synchronized system
clock. Not many systems have a global time reference which is sufficiently accurate
to avoid dating anomalies.

In Tape/PVM a non-intrusive, statistical method is used to estimate a precise
global time reference [5] (see Chapter 6 for more information on global time im-
plementation in Tape/PVM). Rather than doing post-mortem tachyon removal, an a
priori tachyon prevention is achieved through the use of a global time reference. Dated
events are causally coherent. However, the estimated global time is only available at
the end of the instrumented application which prohibits on-line dating. This is not
a drawback because Tape/PVM is intended for post-mortem trace analysis only. In
addition to this, at generation, an event is not routed to a central collector task, like
in XPVM, in order to avoid additional network load. Instead, the events are stored
in local event buffers, which are flushed to local event files. The collection of events
into a single file is only done at the end of the user’s application to avoid interfering
with it.

The problem of perturbation of parallel applications due to the presence of a
tracing tool is a difficult one. The approach of Tape/PVM is similar to the one
adopted in the Aims environment [8]. Although intrusion can be reduced by careful
implementation of the tracing tool, it can not be eliminated. The main causes of
intrusion are the flushing of local event buffers, the accumulation of the delays of
each individual event generation, as well as the additional messages exchanged by the
tracing tool. To limit the intrusion due to Tape/PVM the following techniques are
used:

e On-line compacting of events. This allows a gain of about 50% with respect to
a non-compacted text representation of events. The number of buffer flushes
is significantly reduced and so is the perturbation of the application.

e The number of messages exchanged by Tape/PVM is reduced to a minimum.
Only events like PVM_addhost and PVM_ kill which change the configuration
of the parallel virtual machine need such additional messages.

e The additional tasks used by Tape/PVM (for global control, for clock synchro-
nisation) are not active while the instrumented user application is running.
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5. Trace analysis. The third stage of performance visualization is devoted to
trace analysis. The physical clocks of the processors in a distributed system are usually
non synchronized or even in the case of synchronisation they can be drifted to each
other. Hence the data collected at run time and time-stamped by the ticks of the
physical clocks cannot be considered as strongly and precisely ordered. The first task
of the data analysis is to create an at least logical ordering among the collected events.
The most frequently used ordering criteria is based on the happened-before relation
introduced by [4]. In the GRADE system the Tape/PVM monitor is applied which
guarantees the physical ordering of events in the trace file according to a non-intrusive,
statistical clock synchronisation algorithm [5].

The trace analysis phase should also support some displaying features that are
most relevant for the user. Such facilities are zooming and filtering. Zooming means
that the user can focus on any part of the whole execution and the visualization view
shows the selected part in a much more detailed way. The zooming facility of PROVE
is shown in Figure 5.1 and Figure 5.2 for the same program that is shown in Figure 3.2.
Total view of the complete program is given in Figure 5.1 but in such a condensed
figure the details of communication and other events cannot be observed. A zoomed
version of Figure 5.1 is shown in Figure 5.2 where only three processes were selected
in the time interval of 3144-3156. Notice that such a zoomed figure can give details
on the ports applied in the communication events as well as on the change of state of
processes during and among communications. The different colours in the horizontal
process bars represent different process states like idle, waiting for communication
and busy.
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F1G. 5.1. The complete space-time diagram of the flight simulation program

The role of post-mortem filtering is different from the role of the filtering during
code instrumentation. Post-mortem filtering helps in selecting relevant information
from the collected data similarly to the zooming feature. However, filtering is more
selective than zooming and hence it can help in selecting the required processes,
processors, communication events, etc. and to visualise only these selected events
and units. In order to help the user in selecting post-mortem filters and to rearrange
the order of processes and processors in the space-time diagram PROVE provides the

6



File Display  jnformation Windows Help

Profile: fhome/origin/dozsa/GRADE/EXAMPLES/flsim-2.4/flsim.tape Total tasks: 6 Total time: 5803.86 ms

3144.00 3146.00 3148.00 3150.00 3152.00 3154.00 3156._00

F1G. 5.2. The zoomed space-time diagram of the flight simulation program

dialog window shown in Figure 5.3.
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FiG. 5.3. Event filter dialog window in PROVE

6. Visualization. Most performance visualization tools (Paragraph [2] Pablo
[7] VAMPIR [6]) provide a significant number of various display views to visualise the
various aspects of program execution. The current version of PROVE gives detailed
space-time diagram which describes the communication aspects of parallel processes
as well as the change of their state in time. It also shows on which processor the
processes were executed and when they were created on the processor. The space-
time diagram of PROVE is shown in Figure 5.1 and Figure 5.2.

PROVE provides three additional windows for statistical purposes. One of them
shows the processor utilization by representing process states in a common window.
When all the processes that were executed on a particular processor are shown by the
Process State Window, the utilisation of the selected processor is well demonstrated.
The other two statistical windows are related to communication. The Process Com-
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munication window shows the amount of process communication as function of time.
The Host Communication window displays the amount of communication among se-
lected hosts in the communication network or among selected processors in a parallel
computer. The time range of the three windows are jointly synchronized together
with the space-time diagram. The statistical windows are shown in Figure 6.1.
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FiG. 6.1. Statistical windows of PROVE
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FiG. 7.1. Tape/PVM system architecture

7. Tape/PVM instrumentation architecture. So far we have described Ta-
pe/PVM and PROVE from the user’s point of view. In the current section we give
some insight into the Tape/PVM instrumentation of GRAPNEL programs which is
practically hidden from the user. The only feature which is important for the user
is the way how to set the Tape/PVM instrumentation option when he/she starts the
GRADE system.

In Chapter 11, it is explained how to generate C source code from GRAPNEL
programs and how to extend them with the necessary PVM or MPI function calls
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through GRAPNEL Library functions. In the current section we show how to create
the necessary instrumentation for the Tape/PVM trace generation system. The main
idea of the instrumentation is that every PVM call is replaced in a pre-processing
phase with its instrumented version taken from the Tape/PVM library. Instrumenting
a parallel application for Tape/PVM comprises three phases which will be discussed
in the following subsections.

7.1. Pre-processing phase. Tape/PVM proposes a trace format along with a
series of tools operating on this format. Users are also allowed to define their own
trace format. In this section we assume pre-processing is done in order to generate
traces in the Tape/PVM format.

The Tape/PVM software distribution contains special pre-processing tools which
can automatically insert instrumentation points (probes) in C and Fortran application
source files?. The pre-processing phase consists essentially of inserting a call to the
Tape/PVM initialization function (tapestart or tapefstart) and in intercepting calls to
the PVM library. For each PVM library function there is an associated intercepting
function which records the trace information before passing control to the actual PVM
function.

The Tape/PVM pre-processor is called tapepp or tapeppf depending on whether
you want to instrument C or Fortran code. Use

tapepp[f] [options] source.(f | c)

to create an instrumented source code. The resulting instrumented source file is
called source.t.(f | c)3. The tapepp tools associate a unique source file identifier to
each source file they processed and keep these identifiers in a database. The generated
Tape/PVM events contain pointers to the line number and file identifier which contain
the statement that generated the event. Thus, analysis tools based on Tape/PVM
traces can feature source code click-back.

7.2. Compiling phase. The instrumented source files (_t.(f | ¢)) are compiled
like the non instrumented files with few exceptions:

e The _t.c files need a special include file.

e Due to instrumentation insertion, the _t.f file may contain lines longer than
the 72 characters allowed by standard Fortran (a special option has to be
used in order to permit longer lines - unfortunately, there is no standard way
in Fortran to do so).

7.3. Linking phase. Like the PVM library, the Tape/PVM library comprises
two modules: a main library libtape.a and the associated Fortran interface library
libftape.a. The dependencies between the different modules are shown in Figure 7.1.
The name of the instrumented executable has to be the same as the name of the
corresponding non-instrumented executable suffixed by _t. When intercepting PVM
spawn calls, Tape/PVM automatically suffixes the task’s name by _t. If this naming
convention is not respected, all the spawns in the instrumented application will fail.

8. Tape/PVM as a stand-alone tool. The Tape/PVM monitor can be used
independently from GRADE as a stand-alone tool for monitoring PVM programs and
its output can be connected to stand-alone visualization tools like Paragraph. The

2User code pre-processing is required because Tape/PVM does not use PVM’s run-time event
collection mechanism.
3(f | c) means that the extension is either .f or .c.
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trace format output by Tape/PVM is close to the PICL format [1]. A tool (¢2p , t2np)
can be used to transform the traces to the PICL format so that they can be visualised
with Paragraph [2]. A special feature of t2p is that it models the overhead due to
buffer flushes by the “overhead” state. Thus, with Paragraph, the overhead due to
buffer flushes is clearly outlined on the “Task Gantt Chart” so that users can study
the intrusion by comparing different executions using different buffer sizes (which can
be parameterised in Tape/PVM). t2p also takes into account the overhead due to
packing (unpacking) data in (from) messages. Visualization of group operations in
Tape/PVM is fully supported.

9. Conclusions. The Tape/PVM monitor proved to be easily integrated into
the GRADE programming environment. Besides, it can be used as a stand-alone
monitoring tool for PVM programs. The main features of Tape/PVM are as follows:

e Trace of events at user application level (PVM library calls) through function
call interception.

e Pre-processor to instrument user source code (C or Fortran) automatically
(instrumented source code has to be recompiled).

e User defined events (like printf).

e An event contains the line and file number of the instruction which generated
the event (source code feed-back).

e Selective tracing using source code module groups and event types.

e Precise, causally coherent global time reference.

e On-line event compacting (gain up to 50% with respect to text storage) to
limit event buffer flushes.

e Includes a C library which allows to read Tape/PVM traces easily.

e Can generate PICL traces for use with Paragraph.

The PROVE visualization tool is strongly integrated with the Tape/PVM monitor
and also with other tools of the GRADE program development environment. Such a
strong integration enables the unique click-back and click-forward facilities of PROVE.
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