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Application problems :Modeling and analysis of
complex systems

Complex system

System

Basic model assumptions
System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem
Generate “typical” states
- steady-state sampling
- ergodic simulation starting point
- state space exploring techniques
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Formalization

Quantification

1

4 3

2

Stochastic matrix : transition probability

P =
1

12


2 3 0 7
0 0 1 11
0 3 6 3
4 0 7 1


Non-negative, if irreducible and aperiodic
Unique probability vector π satisfying π = πP,
π = 1

350 [46, 47, 142, 115]

Solving π = πP
Formal methods N 6 50
Direct numerical methods N 6 1000
Iterative methods with preconditioning N 6 100, 000
Adapted methods (structured Markov chains) N 6 1, 000, 000
Monte-Carlo simulation N > 106
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Simulation : Visual representation

[0, 1] partitionning
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Random iterated system of functions
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Probability 1
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Stochastic matrix P =⇒ simulation algorithm = RIFS
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Forward simulation : convergence and bias

Forward iterations

State

Time

Simulation bias
- choice of the initial state
- bounded error

||πn − π∞|| 6 Cλn
2.

λ2 second greatest eigenvalue of P

Proposition
The convergence of the forward simulation algorithm does not depend
on the RIFS representation
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Forward simulation : avoid initial state dependence

Forward coupling

f3f4f6f7f3f1
Time

State

Example
Always couple in the blue state
Does not guarantee the steady state !
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Backward simulation

Backward coupling

State

Time

Convergence
When the algorithm stops the
generated state is “typical” (stationary
distributed).
Finite number of steps
⇒ unbiased generation (perfect)
Coupling condition
Coupling time τ

Proposition
The coupling time of the backward simulation algorithm depends on
the RIFS representation
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The coupling problem
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The coupling problem
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General problem

Objective
Given a stochastic matrix P = ((pi,j)) build a system of function (fθ, θ ∈ Θ)
and a probability distribution (pθ, θ ∈ Θ) such that :

1 the RIFS implements the transition matrix P,

2 ensures coupling in finite time

3 achieve the “best” mean coupling time : tradeoff between
- choice of the transition function according to ((pθ)),
- computation of the transition

Remarks
Usual method

|Θ| = number of non-negative elements of P = O(n2)

choice in O(log n)
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Non sparse matrices

Rearranging the system
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4 3

21

Convergence
When at least one column is non-negative ⇒ one step coupling.
The RIFS ensures coupling and the coupling time τ is upper bounded by a geometric distribution with rate

X
j

min
i

pi,j

number of transition functions : could be more than the number of non-negative elements
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Sparse matrices

Rearranging the system
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Complexity
M = maximum out degree of states
pθ uniform on {1, · · · , M}, threshold comparison
O(1) to compute one transition
Combination with “Synchronizing” techniques
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Sparse matrices
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Uniform-binary decomposition

Uniform superposition
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Aliasing transformation

2
12

1
12

4
12

7
12

3
12

3
12

11
12

1
12

6
12

7
12

3
12

1 2

34

Decomposition

P =
1

M

MX
i=1

Pi , Pi : stochastic matrix with at most 2 non negative elements per row
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Outline

1 Markov chains and simulation
Application problems
Formalization
Simulation and Random Iterated System of Functions

2 Algorithms and Markov chains
Visual representation
Forward simulation : convergence and bias
Backward simulation : coupling time
The coupling problem

3 Coupling time and representation
Minimize the coupling time
Doeblin matrices
Binary-Uniform decomposition

4 Future works
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Future works

Complexity
- find optimal representation
- find minimal representation
explore heuristics

Applications
performance evaluation
- queueing networks (software PSI2)
- dense or sparse matrices (software PSI) state space : ' 232

Fundamental properties
monotonicity of the functions
- find partial order such that the RIFS is monotone
-find the optimal order
⇒ Reduction by n of the simulation time
coupling time computation
- link with matrix properties
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