Markov Chains, Iterated System of Functions and Coupling time for Perfect Simulation

Jean-Marc Vincent¹

¹Laboratory ID-IMAG MESCAL Project Universities of Grenoble Jean-Marc.Vincent@imag.fr

Outline

Markov chains and simulation

- Application problems
- Formalization
- Simulation and Random Iterated System of Functions

Algorithms and Markov chains

- Visual representation
- Forward simulation : convergence and bias
- Backward simulation : coupling time
- The coupling problem

Coupling time and representation

- Minimize the coupling time
- Doeblin matrices
- Binary-Uniform decomposition

Future works

Outline

Markov chains and simulation

- Application problems
- Formalization
- Simulation and Random Iterated System of Functions
- Algorithms and Markov chains
 - Visual representation
 - Forward simulation : convergence and bias
 - Backward simulation : coupling time
 - The coupling problem
- Coupling time and representation
 - Minimize the coupling time
 - Doeblin matrices
 - Binary-Uniform decomposition
- Future works

- 4 ∃ →

Complex system	Basic model assumptions
	System : - automaton (discrete state space) - discrete or continuous time Environment : non deterministic - time homogeneous - stochastically regular
System	Problem
	Generate "typical" states - steady-state sampling - ergodic simulation starting point - state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time
- Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Generate "typical" states

- steady-state sampling
- ergodic simulation starting point
 state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time

Environment : non deterministic

- time homogeneous
- stochastically regular

Problem

Generate "typical" states

- steady-state sampling
- ergodic simulation starting point
- state space exploring techniques

Basic model assumptions

System :

- automaton (discrete state space)
- discrete or continuous time

Environment : non deterministic

- time homogeneous
- stochastically regular

Problem

Generate "typical" states

- steady-state sampling
- ergodic simulation starting point
- state space exploring techniques

Solving $\pi = \pi P$

Stochastic matrix : transition probability

$$P = \frac{1}{12} \begin{bmatrix} 2 & 3 & 0 & 7 \\ 0 & 0 & 1 & 11 \\ 0 & 3 & 6 & 3 \\ 4 & 0 & 7 & 1 \end{bmatrix}$$

Non-negative, if irreducible and aperiodic Unique probability vector π satisfying $\pi = \pi P$, $\pi = \frac{1}{350}$ [46, 47, 142, 115]

Solving $\pi = \pi P$

Solving $\pi = \pi P$

Stochastic matrix : transition probability

$$P = \frac{1}{12} \begin{bmatrix} 2 & 3 & 0 & 7 \\ 0 & 0 & 1 & 11 \\ 0 & 3 & 6 & 3 \\ 4 & 0 & 7 & 1 \end{bmatrix}$$

Non-negative, if irreducible and aperiodic Unique probability vector π satisfying $\pi = \pi P$, $\pi = \frac{1}{350}$ [46, 47, 142, 115]

Solving $\pi = \pi P$

Outline

- Markov chains and simulation
 - Application problems
 - Formalization
 - Simulation and Random Iterated System of Functions
- Algorithms and Markov chains
 - Visual representation
 - Forward simulation : convergence and bias
 - Backward simulation : coupling time
 - The coupling problem
- Coupling time and representation
 - Minimize the coupling time
 - Doeblin matrices
 - Binary-Uniform decomposition
- Future works

[0, 1] partitionning

Random iterated system of functions

Function	<i>f</i> ₁	f_2	<i>f</i> ₃	<i>f</i> 4	f 5	<i>f</i> ₆	f ₇	<i>f</i> 8
Probability						$\frac{4}{12}$		

Stochastic matrix $P \Longrightarrow$ simulation algorithm = RIFS

[0, 1] partitionning

Random iterated system of functions

Function	<i>f</i> ₁	f_2	<i>f</i> ₃	f 4	f 5	<i>f</i> ₆	f_7	<i>f</i> 8
Probability						$\frac{4}{12}$		

Stochastic matrix $P \Longrightarrow$ simulation algorithm = RIFS

[0, 1] partitionning

Random iterated system of functions

Function	<i>f</i> ₁	f_2	f_3	<i>f</i> 4	f 5	<i>f</i> ₆	f ₇	f ₈
Probability						$\frac{4}{12}$		

Stochastic matrix $P \Longrightarrow$ simulation algorithm = RIFS

[0, 1] partitionning

Random iterated system of functions

Function	f_1	f_2	f_3	<i>f</i> 4	f 5	<i>f</i> ₆	f ₇	<i>f</i> ₈
Probability						$\frac{4}{12}$		

Stochastic matrix $P \Longrightarrow$ simulation algorithm = RIFS

[0, 1] partitionning

Random iterated system of functions

Function	<i>f</i> ₁	f ₂	f ₃	<i>f</i> ₄	<i>f</i> ₅	<i>f</i> ₆	f ₇	<i>f</i> 8
Probability	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{4}{12}$	$\frac{2}{12}$	$\frac{1}{12}$

Stochastic matrix $P \implies$ simulation algorithm = RIFS

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

イロト イポト イヨト イ

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

- choice of the initial state
- bounded error

$$||\pi_n-\pi_\infty||\leqslant C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

▲ 同 ▶ ▲ 三 ▶

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of *P*

▲ 同 ▶ ▲ 三 ▶

Proposition

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of P

Proposition

The convergence of the forward simulation algorithm does not depend on the RIFS representation

TC 2006 april 8 / 18

- choice of the initial state
- bounded error

$$||\pi_n - \pi_\infty|| \leq C\lambda_2^n.$$

 λ_2 second greatest eigenvalue of P

Proposition

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

- 4 ∃ ▶

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

Example

Always couple in the blue state Does not guarantee the steady state !

- + ∃ →

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

TC 2006 april 10 / 18

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

TC 2006 april 10 / 18

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

Backward coupling

Convergence

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

TC 2006 april

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

10/18

Backward coupling

Convergence

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

TC 2006 april

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

10/18

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

Backward coupling

Convergence

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

Backward coupling

Convergence

When the algorithm stops the generated state is "typical" (stationary distributed). Finite number of steps \Rightarrow unbiased generation (perfect) Coupling condition Coupling time τ

Proposition

The coupling time of the backward simulation algorithm depends on the RIFS representation

 $\tau = 1$

-2

590

< 17 ▶

문 문 문

590

< 17 ▶

-2 TC 2006 april 11/18

590

ъ

< 冊

Outline

- Markov chains and simulation
 - Application problems
 - Formalization
 - Simulation and Random Iterated System of Functions
- Algorithms and Markov chains
 - Visual representation
 - Forward simulation : convergence and bias
 - Backward simulation : coupling time
 - The coupling problem
- Coupling time and representation
 - Minimize the coupling time
 - Doeblin matrices
 - Binary-Uniform decomposition

Future works

General problem

Objective

Given a stochastic matrix $P = ((p_{i,j}))$ build a system of function $(f_{\theta}, \theta \in \Theta)$ and a probability distribution $(p_{\theta}, \theta \in \Theta)$ such that :

- the RIFS implements the transition matrix P,
 - ensures coupling in finite time
- achieve the "best" mean coupling time : tradeoff between
 - choice of the transition function according to $((p_{\theta}))$,
 - computation of the transition

Remarks

Usual method

```
|\Theta| = number of non-negative elements of P = O(n^2)
```


イロト イポト イヨト イヨト

Non sparse matrices

Rearranging the system

Convergence

When at least one column is non-negative \Rightarrow one step coupling. The RIFS ensures coupling and the coupling time au is upper bounded by a geometric distribution with rate

 $\sum_{i} \min_{i} p_{i,j}$

number of transition functions : could be more than the number of non-negative elements

Non sparse matrices

Rearranging the system

Convergence

When at least one column is non-negative \Rightarrow one step coupling. The RIFS ensures coupling and the coupling time au is upper bounded by a geometric distribution with rate

 $\sum_{i} \min_{i} p_{i,j}$

number of transition functions : could be more than the number of non-negative elements

Non sparse matrices

Rearranging the system

Convergence

When at least one column is non-negative \Rightarrow one step coupling. The RIFS ensures coupling and the coupling time τ is upper bounded by a geometric distribution with rate

 $\sum_{j} \min_{i} p_{i,j}$

number of transition functions : could be more than the number of non-negative elements

Sparse matrices

Rearranging the system

Complexity

 $\begin{array}{l} M = \text{maximum out degree of states} \\ p_{\theta} \text{ uniform on } \{1, \cdots, M\}, \text{ threshold comparison} \\ \mathcal{O}(1) \text{ to compute one transition} \\ \text{Combination with "Synchronizing" techniques} \end{array}$

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

Sparse matrices

Rearranging the system

Complexity

 $\begin{array}{l} M = \text{maximum out degree of states} \\ p_{\theta} \text{ uniform on } \{1, \cdots, M\}, \text{ threshold comparisor} \\ \mathcal{O}(1) \text{ to compute one transition} \\ \text{Combination with "Synchronizing" techniques} \end{array}$

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

Sparse matrices

Rearranging the system

Complexity

 $\begin{array}{l} M = \text{maximum out degree of states} \\ p_{\theta} \text{ uniform on } \{1, \cdots, M\}, \text{ threshold comparison} \\ \mathcal{O}(1) \text{ to compute one transition} \\ \text{Combination with "Synchronizing" techniques} \end{array}$

Jean-Marc Vincent (Universities of Grenoble)Markov Chains, Iterated System of Functions

■ ◆ ■ ◆ ■ ◆ へへの TC 2006 april 15 / 18

< ロト < 回 ト < 回 ト < 三</p>

Uniform superposition

Decomposition

$$P = \frac{1}{M} \sum_{l=1}^{M} P_l$$
, P_l : stochastic matrix with at most 2 non negative elements per row

Uniform superposition

Decomposition

$$P = \frac{1}{M} \sum_{i=1}^{M} P_i$$
, P_i : stochastic matrix with at most 2 non negative elements per row

Uniform superposition

Decomposition

$$P = \frac{1}{M} \sum_{i=1}^{M} P_i$$
, P_i : stochastic matrix with at most 2 non negative elements per root

Uniform superposition

Decomposition

 $P = \frac{1}{M} \sum_{i=1}^{M} P_i$, P_i : stochastic matrix with at most 2 non negative elements per rou

Uniform superposition

Decomposition

 $P = \frac{1}{M} \sum_{l=1}^{M} P_l$, P_l : stochastic matrix with at most 2 non negative elements per rou

Uniform superposition

Decomposition

 $P = \frac{1}{M} \sum_{i=1}^{M} P_i$, P_i : stochastic matrix with at most 2 non negative elements per row

Outline

- Markov chains and simulation
 - Application problems
 - Formalization
 - Simulation and Random Iterated System of Functions

TC 2006 april

17/18

- Algorithms and Markov chains
 - Visual representation
 - Forward simulation : convergence and bias
 - Backward simulation : coupling time
 - The coupling problem
- 3 Coupling time and representation
 - Minimize the coupling time
 - Doeblin matrices
 - Binary-Uniform decomposition

4 Future works

Future works

Complexity

- find optimal representation
- find minimal representation explore heuristics

Applications

performance evaluation

- queueing networks (software PSI2)
- dense or sparse matrices (software PSI) state space : $\simeq 2^{32}$

Fundamental properties

- monotonicity of the functions
- find partial order such that the RIFS is monotone
- -find the optimal order
- \Rightarrow Reduction by *n* of the simulation time
- coupling time computation
- link with matrix properties